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1 Introdu
tionSin
e 2002 when for the �rst time a bosoni
 gas was loaded into an opti
al latti
e [1℄, the interestin su
h systems of strongly 
orrelated parti
les has immensely in
reased. The underlying physi
s is
losely related to the phenomenon of super�uidity, whi
h is a mu
h older topi
. Super�uidity wasdis
overed in the 30s of the last 
entury, as a property of 
ool 4He liquids [2,3℄.1.1 Helium IISurely, one of the most 
urious phenomena in 
ondensed matter physi
s is the behavior of 4He at lowtemperature. Cooling it down at normal pressure, this noble gas be
omes liquid only at temperaturesbelow 6 K and never rea
hes a solid state, as shown in the phase diagram in Fig. 1.1(a). Instead, a moreex
iting phase transition takes pla
e at a temperature about 2.2 K, whi
h is dire
tly observable: Fortemperatures above this 
riti
al value, the 
old liquid looks like boiling water with the 
hara
teristi
bubbles. These bubbles are due to a temperature gradient within the liquid whi
h is 
aused byevaporative 
ooling at the surfa
e of the liquid. As a 
onsequen
e, the vapor pressure within the liquidis higher than at its surfa
e, allowing for the formation of gas bubbles. At 2.2 K, the bubbles suddenlydisappear and the liquid be
omes 
ompletely 
alm. Evaporation still takes pla
e, but in the newphase, 
alled helium II, the thermal 
ondu
tivity in
reases, allowing for an immediate heat balan
eand therefore a �bubblefree� evaporation only from the surfa
e of the liquid.Another astonishing feature 
an be observed, if one 
ools down 4He in an open vessel: Againstgravity a thin �lm of the �uid 
limbs up the wall of the vessel so that it �ows out of it. This behavior
omes along with a vanishing vis
osity of the �uid. In 1938, P. Kapitza [2℄ as well as J. F. Allen andD. Misener [3℄ measured the vis
osity of helium by observing the �ow through thin 
apillaries. Belowthe 
riti
al temperature, the vis
osity be
ame suddenly very small, possibly zero. Therefore the name�super�uidity� was given to this new phase of helium.An ex
iting e�e
t due to this vanishing vis
osity, is the so-
alled fountain e�e
t or thermome
hani
ale�e
t shown in Fig. 1.1(b): Heating helium II within a thin 
apillary whi
h is in 
onta
t with a bath,
auses a rise of the liquid within the 
apillary.The �rst explanation for the phase transition undergone by 
old helium was given in 1938 by F.London [6℄. Only one de
ade earlier, S. N. Bose and A. Einstein had made the theoreti
al predi
tion ofa new phase of matter, the so 
alled Bose-Einstein 
ondensation (BEC) [7,8℄. Now London 
al
ulatedthe 
riti
al temperature Tc for the transition into the BEC-phase assuming an ideal gas of bosoni
parti
les having the same density as liquid helium and the same parti
le mass as 4He. His result,
Tc = 3.1 K, agrees fairly well with the 
riti
al temperature of 4He known from experiments, so Londonbelieved that BEC and the super�uid phenomena of 4He are 
losely related.
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tion

(a) Phase diagram of 4He taken from [4℄. (b) Illustration of the thermome-
hani
al e�e
t, taken from [5℄.Figure 1.1: At normal pressure, there is no solid state in the phase diagram of 4He shown in (a). Aninteresting experiment with helium II is shown in (b): The liquid in the 
apillary rises whenit is heated.Shortly afterwards, L. Tisza proposed a two-�uid model [9℄, explaining hydrodynami
 properties ofsuper�ow like the fountain e�e
t. He therefore assumed a BE-
ondensed fra
tion of the liquid withno entropy and no vis
osity and a normal fra
tion with �nite entropy and �nite vis
osity. The e�e
tshown in Fig. 1.1(b) 
an then be interpreted as the 
onsequen
e of an osmoti
 pressure between thebath and the 
apillary. As the super�uid fra
tion within the 
apillary is destroyed by heat and thenormal 
omponent has no 
han
e to �ow out of the thin 
apillary, the only way to equilibrate the
on
entration is by a �ow of super�uid helium from the bath into the 
apillary.The two-�uid model has been further 
on�rmed by Andronikashvili's experiment done a few yearslater [10℄. Instead of measuring the vis
osity by the �ow through a 
apillary, he observed the dampingof a rotating disk within the liquid. What he found was a non-zero vis
osity even in the super�uidphase 
on�rming the idea of the two-�uid model: The damping is due to the normal 
omponent of theliquid whi
h is supposed to have a �nite vis
osity. This experiment therefore allows for determiningthe temperature-dependent ratio of the normal density to the super�uid density. One result is thatthe whole liquid be
omes super�uid if one approa
hes zero temperature. This does not agree withPenrose's predi
tion [11℄ of a BE-
ondensed fra
tion at T = 0, whi
h is, due to intera
tions, less than10% .
6



1.1 Helium II

Figure 1.2: Spe
i�
 heat of 4He and of an ideal Bose gas with the same density and parti
le mass:
λ-transition versus se
ond-order phase transition. Taken from [4℄.Negle
ting intera
tions and treating a liquid as a non-intera
ting gas, however, did not allow forexplaining all the properties of helium II. Comparing the spe
i�
 heat 
urves of an ideal Bose gas and

4He, both shown in Fig. 1.2, we 
an �nd two main di�eren
es:
• The transition from the normal helium I to the super�uid helium II shows an ostentatious loga-rithmi
 divergen
e resembling the Greek letter λ. Therefore it is referred to as the λ-transition.The spe
i�
 heat of the ideal Bose gas, however, is �nite at the 
riti
al point. This indi
ates thatfor a proper 
omprehension of the phase transition, intera
tions 
annot be negle
ted. Strong-
oupling �eld theory 
onsidering a Φ4-intera
tion is able to give a pre
ise explanation of themeasured spe
i�
 heat 
urve near the transition point. The universal 
riti
al exponents whi
hhave been measured with high pre
ision by spa
e shuttle experiments [12℄ agree best with the�eld-theoreti
 predi
tions in Refs. [13,14℄.
• A se
ond di�eren
e in the spe
i�
 heat of an ideal Bose gas and 4He, respe
tively, 
on
erns theregion where the temperature approa
hes zero. While the spe
i�
 heat of helium is proportionalto T 3, like the spe
i�
 heat of a solid at low temperature, the ideal gas heat obeys a di�erentpower law, being proportional to T 3/2.In order to 
ir
umvent this latter in
onsisten
y, L. Landau proposed another des
ription of super�u-idity [15,16℄. Instead of 
onsidering the 
ondensation of free parti
les into the ground-state, he assumedthat helium II was made up of 
ondensed atoms and ex
itations. For the latter, he postulated a dis-persion relation as shown in Fig. 1.3: The energeti
ally lowest ex
itations have a quasi-parti
le-like
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Figure 1.3: The ex
itation spe
trum of helium II, measured via neutron s
attering, 
on�rms Landau'spredi
tion of phonons and rotons. Taken from [17℄.
hara
ter like the a
ousti
 phonons of a solid:
ǫph(p) = c|p|, (1.1)where the energy ǫph of these ex
itations is related to their momentum p by their velo
ity c. Su
h adispersion relation explains the solid-like T 3-dependen
e of the spe
i�
 heat for T → 0. But other thana solid, a liquid is not expe
ted to sustain transversal opti
al modes, therefore the degrees of freedommust be exhausted with other ex
itations. Landau postulated their dispersion relation as

ǫr(p) = ∆ +
p2

2m
, (1.2)where ∆ is an energy gap and m the e�e
tive mass of the ex
itations. These ex
itations are 
alledrotons as they are 
onsidered to be the quanta of vortex motion. Both, phonons and rotons are bosoni
.What is 
ru
ial about this dispersion relation is the fa
t that it always has a �nite group velo
ity

ǫ/|p|. Fri
tionless �ow 
an then be understood from the energy balan
e. Let us therefore 
onsidersuper�uid helium at T = 0 �owing through a tube from two di�erent referen
e frames. In the laboratoryframe where the tube does not move all atoms �ow fri
tionless with a velo
ity v, ea
h of them havingthe momentum q. The total momentum is Q0 =
∑

i qi, the total energy of the system is E0. In therest frame of the liquid, ea
h atom has the momentum q′ = 0, i.e. Q′
0 = 0. The total energy E′

0 isrelated to the energy in the laboratory frame by the Galilei transform [17℄:
E′

0 = E0 + Q′
0 · v − 1

2
Mv2, (1.3)
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1.2 Bragg Spe
tros
opywhere M is the total mass. If there is fri
tion between the wall and the liquid, there should beex
itations �moving� with the wall, i.e. the total momentum in the rest frame of the liquid is non-zero,say Q′ = p for an ex
itation with momentum p. The total energy in the rest frame of the liquid nowis in
reased by the energy ǫ(p) of the ex
itation: E′ = E′
0 + ǫ(p). From the laboratory frame, the totalenergy therefore reads, a

ording to Eq. (1.3):

E = E′ − Q′ · v +
1

2
Mv2 = E0 + ǫ(p) − p · v. (1.4)This means that the energy di�eren
e asso
iated with an ex
itation is ∆E = E − E0 = ǫ(p) − p · v.To be energeti
ally favorable, i.e. ∆E < 0, the ex
itations must ful�ll the 
ondition:

ǫ(p)

|p| < |v|. (1.5)Be
ause a dispersion relation like the one shown in Fig. 1.3 has the property that ǫ(p)
|p| is �nite for any

p, there exists a 
riti
al velo
ity vc up to whi
h ex
itations are energeti
ally unfavored and the liquidtherefore �ows fri
tionless. So Landau's theory does not only explain super�uidity from the ex
itationspe
trum, but also predi
ts a 
riti
al velo
ity at whi
h super�uidity breaks down. And indeed, su
h a
riti
al velo
ity 
ould be observed in experiments, but it turned out to be mu
h smaller that the onepredi
ted by Landau [18℄. This deviation is due to turbulen
es whi
h have not been 
onsidered in ourargumentation.The above explanation was restri
ted to T = 0, be
ause only ex
itations from the ground-state are
onsidered. But the idea 
an be generalized to �nite temperatures by applying a two-�uid model.Other than in Tisza's model, where both the super�uid and the normal 
omponent are parti
le-like,Landau's model assumes a quasi-parti
le behavior of the normal 
omponent. This seemed to disagreewith London's and Tisza's point of view relating super�uidity to BEC, but the dis
repan
y was solvedin 1947 by N. N. Bogoliubov who gave the mi
ros
opi
 arguments for Landau's dispersion relation. He
al
ulated the ex
itation spe
trum for weakly intera
ting Bose gases [19℄ and showed that
• the depletion of the ground state 
an be negle
ted, allowing for BEC even in non-ideal gases,
• the ex
itations 
an be des
ribed by a phonon dispersion.In this way Bogoliubov's 
al
ulation re
on
iles the two di�erent points of view. The assumption ofweak intera
tion, however, hinders a good quantitative agreement of Bogoliubov's theory with thestrong intera
ting helium. Weakly intera
ting Bose gases have only been 
ondensed sin
e 1995 [20,21℄.We will therefore further dis
uss Bogoliubov's theory at a later stage in this thesis.What we have seen in this se
tion is the important role that dispersion relations play for the under-standing of super�uidity. In the following se
tion we will shortly sket
h how an experiment may testthe theoreti
 predi
tion.1.2 Bragg Spe
tros
opyThe dispersion relation of helium II postulated by Landau and predi
ted by Bogoliubov had been
on�rmed experimentally by neutron s
attering [22℄. A more pre
ise te
hnique whi
h was re
ently9
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(a) (b)Figure 1.4: The pi
ture is taken from Ref. [25℄ explaining Bragg spe
tros
opy with bosons in an opti
allatti
e. The two-photon transition (b) is indu
ed by two laser beams shining on the probe(a). The angle θ between the beams and the energy di�eren
e ~(ω1−ω2) allow for measuringthe band stru
ture of the system.applied to BEC [23,24℄ and also Bose gases in opti
al latti
es [25,26℄ is Bragg spe
tros
opy.It is based on a two-photon transition whi
h is indu
ed by two laser beams as shown in Fig. 1.4(a):The photon of one beam is absorbed and ex
ites the system from the initial state (= the groundstate) to an intermediate state. A se
ond photon from the other beam stimulates the transition to the�nal state. The energy and momentum related to this ex
ited state is known from the experimentalparameters de�ning the lasers: their wave ve
tors k1 and k2 as well as their frequen
ies ω1 and ω2.The momentum transfer of the Bragg pro
ess is ~kBragg = ~(k1 − k2). For |k1| ≈ |k2| = k, thetransferred momentum 
an be freely tuned by the laser angle θ:
~kBragg ≈ 2~k sin

(

θ

2

)(

k1

|k1|
− k2

|k2|

)

. (1.6)Thus, by varying the angle the whole Brillouin zone 
an be rea
hed.The energy balan
e ǫ of the two-photon pro
ess is given by the frequen
ies: ǫ = ~(ω1 − ω2). Ittherefore 
an be tuned independently from the momentum transfer by modifying one laser frequen
y.For a given momentum, the whole energy range 
an be s
anned.What is measured, is the response of the system to a given 
on�guration, i.e. whether transitionstake pla
e or not. The probability of a Bragg pro
ess is basi
ally given by the stati
 stru
ture fa
tor
Sk [27℄, whi
h is the Fourier transform of the density 
orrelation:

Sk ∼ 〈0|ρ̂†(k)ρ̂(k)|0〉, (1.7)where 〈0| · |0〉 denotes the ground-state expe
tation value and ρ̂(k) is the Fourier transform of thedensity. The transitions rate Γk(ω) is proportional to the dynami
 stru
ture fa
tor Sk(ω) = Skδ(~ω−
ǫk). The peaks of this fun
tion determine the ex
itation spe
tra. The heights of the peaks are related10



1.3 Outline of the Thesis

Figure 1.5: Ex
itation spe
tra of about 150.000 harmoni
ally trapped 87Rb atoms within a 
ubi
 opti
allatti
e. The latti
e depth is 7 ER for the blue 
urve and 11 ER for the purple 
urve. Thedashed lines with the quadrati
 shape for small k show the single-parti
le band stru
ture.The solid lines with the linear shape show the results of a Bogoliubov 
al
ulation. Obviously,the single-parti
le band stru
ture does not des
ribe well the ex
itations of the system. TheBogoliubov band stru
ture, however, is quite good and fails only at the edges of the Brillouinzone.to the spe
tral weights of ea
h ex
itation.All experiments [23�26℄ 
on�rm the linear shape of the super�uid dispersion relation for small k.As an example Fig. 1.5 shows the re
ent results of Ref. [25℄ for a 87Rb gas in a 
ubi
 opti
al latti
e.Bosoni
 gases in su
h latti
es are the topi
 of the present thesis whi
h is outlined in the next se
tion.1.3 Outline of the ThesisThe linear dispersion relation of helium II has turned out to be 
ru
ial for the understanding of itssuper�uid property. In the following we want to have a 
lose look at another system whi
h undergoesa transition into a super�uid phase, namely bosoni
 atoms in opti
al latti
es, i.e. in periodi
 potentials
reated by laser beams. The experimental data 
ited in the previous se
tion suggests that a similardispersion relation 
hara
terizes su
h systems. Understanding these ex
itation spe
tra theoreti
allymight allow for interpreting them as a trademark of super�uidity. Many theories for this problem,however, are hindered by the fa
t that they are either good in the super�uid phase as, for instan
e,the weak-
oupling Bogoliubov approa
h in Ref. [28℄, or in the opposite regime of an insulating system,whi
h 
an be well des
ribed by a strong-
oupling theory as in Ref. [29℄. The goal of this thesis isto derive a theory whi
h produ
es good results on both sides of the phase transition, where spe
ialattention is dire
ted on the spe
tra of the system.Common to most theoreti
al approa
hes is the Bose-Hubbard Hamiltonian, whi
h we thereforeintrodu
e only brie�y in Se
tion 2.1. We will dis
uss its validity for our problem at �nite temperaturesand put some detail on the derivation of a useful formula for the hopping parameter.As a guideline for our further approa
h, we will pi
k the Ginzburg-Landau theory of phase transitionsin Se
tion 2.2. One important ingredient of this theory is the spontaneous symmetry breaking dis
ussedin Se
tion 2.3. Then the goal will be to �nd an appropriate Ginzburg-Landau fun
tional des
ribingthis e�e
t. The proper 
andidate is the e�e
tive a
tion of the system. But we will rea
h this only in11



1 Introdu
tionChapter 6, be
ause a lot of groundwork has to be done before.For the predi
tion of ex
itation spe
tra, the dynami
s of the system plays an important role, so inthe �rst se
tion of Chapter 3 we will introdu
e the quantum-me
hani
al time evolution. Sin
e thee�e
tive a
tion is the Legendre transform of the generating fun
tional of the 
umulants, whi
h on itspart is the logarithm of the generating fun
tional of the Green's fun
tions, we dedi
ate the rest of this
hapter to a presentation of di�erent Green's fun
tion formalisms. It is possible to de�ne real-timeGreen's fun
tions at zero temperature or to rotate the problem to imaginary times, whi
h allows fora des
ription at �nite temperature, but real-time information is no longer dire
tly a

essible. Afterdis
ussing both methods shortly in Se
tions 3.2 and 3.3, we will therefore introdu
e a third Green'sfun
tion formalism, the so-
alled 
losed-time-
ontour formalism, with whi
h we 
an treat the real-timeproblem at �nite temperature. Sin
e this will be the formalism of our 
hoi
e, it will be presented inmore details, and important 
onventions for the following 
hapters are made in Se
tions 3.4 and 3.5.As the Hamiltonian is not exa
tly solvable, we have to rely on perturbation theory. In Chapter4 we will see how the perturbative expansion works for the generating fun
tional of the 
umulants.Its pe
uliarity 
onsists in treating the symmetry-breaking sour
e terms and the kineti
 part of theHamiltonian as a perturbation. The expansion with respe
t to the 
urrents may yield a fun
tional ofthe typi
al Ginzburg-Landau form. The hopping expansion is on the one hand obvious for pra
ti
alreasons, sin
e it redu
es the unperturbed part of the Hamiltonian to a simply solvable problem. Onthe other hand, we have good physi
al reasons to 
onsider the kineti
 part as a perturbation, sin
ewe know from Quantum Monte Carlo data [30℄ that it is small 
ompared to the intera
tions in theinteresting regime, where the phase transition takes pla
e. We will furthermore argue with dimensionals
aling properties of the Hamiltonian, due to whi
h a hopping expansion solves the problem exa
tly inin�nite dimensions. Applying the linked-
luster theorem dis
ussed in Se
tion 4.3, we are then able to�nd diagrammati
 rules for our series expansion in Se
tion 4.5. To get the desired Ginzburg-Landaufun
tional, we would have to trun
ate the series in the fourth order of the sour
e terms. But sin
ethe 
losed-time-
ontour formalism doubles the time degrees of freedom, they grow exponentially inhigher-orders of our perturbation theory, and therefore we will write down the expansion only up tothe se
ond order in the 
urrents in Se
tion 4.6. This restri
ts the validity of this fun
tional to theinsulating phase, but after having seen, how to perform the Legendre transformation of this fun
tionalin Chapter 5, we will be well prepared to repeat the pro
edure up to the desired fourth order in Chapter6. One main ingredient of the Legendre transform is a resummation of the Green's fun
tions, whi
h wewill dis
uss in Se
tion 5.3. Here we will �nd that, although the perturbative part of the Hamiltonianhas entered the expansion only in �rst order, some higher-order diagrams are taken into a

ount, whenwe 
onsider the e�e
tive a
tion.The fourth-order expansion in Chapter 6 a
tually demands 
al
ulating sixteen further 
ompli
atedGreen's fun
tions. By proving that one of them is zero, we will �nd that the equations of motion dependon only four new Green's fun
tions. Analyzing their symmetry properties redu
es the 
omputationaltask to only one Green's fun
tion in this order. The lengthy 
al
ulation of this fun
tion is put intothe appendix. For an analyti
al treatment of the equations of motion, we still have to linearize theseequations in Se
tion 6.2.
12



1.3 Outline of the ThesisAfter that, the theory is ready and we 
an apply it to get the desired results. These are presentedin Chapter 7 for zero temperature. We will �rst dis
uss the phase boundary and the spe
tra in theinsulating phase. In Se
tion 7.2 the spe
tra in the super�uid phase will be found and dis
ussed. Theyare 
ompared to the Bogoliubov predi
tion and to the spe
tra obtained in the insulating phase. Weare espe
ially interested in a mapping between both regimes. In Se
tion 7.3 the 
riti
al behavior onboth sides of the phase boundary will be analyzed in the light of a s
aling theory. Criti
al exponentsfor the gap and the mass of the spe
tra will be obtained.In the last 
hapter, we will have a look at other theories in order to 
ompare our approa
h withthem. In Se
tion 8.1 we will point out the relation to the Gross-Pitaevskii equation in the limit of weakintera
tions. In Se
tion 8.2 we will 
ompare our results with those obtained by a formalism whi
h wea
tually 
onsider to be equivalent for problems near equilibrium, namely a Ginzburg-Landau approa
hin imaginary time.

13



14



2 Models for the ProblemIn this 
hapter we are going to prepare our later study of bosoni
 parti
les in an opti
al latti
e by in-trodu
ing and dis
ussing the seminal Bose-Hubbard (BH) model [31,32℄ as the underlying Hamiltonianof the system. An interesting feature of this model is the possible phase transition from the so 
alledMott-insulator (MI) phase without any long-range 
orrelations between the parti
les to the super�uid(SF) phase where su
h 
orrelations exist. Therefore, we will also present the Ginzburg-Landau modelfor the free energy as a fun
tional of an order �eld [14℄, whi
h has turned out to be extremely useful forthe des
ription of se
ond-order phase transitions like, for instan
e, the transition from a paramagneti
into a ferromagneti
 phase.At this pla
e, however, we should stress a fundamental di�eren
e between this type of phase transi-tion, whi
h 
an be understood from a 
lassi
al point of view, and the phase transition that we have todeal with: While in 
lassi
al thermodynami
s phase transitions are driven by thermal �u
tuations ofthe system and the phase diagram therefore basi
ally depends on the temperature, the MI-SF transi-tion might o

ur even at zero temperature. The �u
tuations establishing the long-range 
orrelationsare of quantum nature, thus it is 
alled a quantum phase transition. Instead of thermodynami
alquantities like temperature, parameters of the Hamiltonian like the 
oupling 
onstant determine the
riti
ality of the system.In Ehrenfest's 
lassi�
ation s
heme for phase transitions, dis
ontinuities in the free energy or in anyof its derivatives with respe
t to temperature (
f. Ref. [33℄) are 
onsidered: If a dis
ontinuity o

urs�rst in the nth derivative, the phase transition is said to be of (n+1)th order. Thus, at a se
ond-orderphase transition, the free energy of a system does not jump, but 
hanges its shape abruptly. Adaptingthis s
heme to quantum phase transitions, these are said to be of se
ond order, if ex
itations from theground state have no energy gap at the phase boundary [34℄. One goal of this thesis is to show thatthe Ginzburg-Landau model originally used for des
ribing thermal phase transitions of se
ond order,
an be applied as well to the quantum phase transition undergone by BH systems.2.1 Bose-Hubbard ModelThe investigation of bosoni
 parti
les in opti
al latti
es is usually based on the Bose-Hubbard model[31,32℄. Given a perfe
tly periodi
 external potential and a short-range intera
tion between two parti-
les, e.g. a 
onta
t intera
tion, the model des
ribes the situation of parti
les lo
alized on latti
e sites
i being able to intera
t with other parti
les on the same site and to hop to neighboring sites. Thesimplest and most 
ommon version of the Bose-Hubbard-Hamiltonian reads:

ĤBH =
∑

i

[

1

2
U â†i âi

(

â†i âi − 1
)

− µâ†i âi

]

− J
∑

〈i,j〉

â†i âj , (2.1)
15



2 Models for the Problemwhere â†i and âi are the bosoni
 
reation and annihilation operators and the index i denotes the latti
esite. The operators ful�ll the usual bosoni
 
ommutation relations
[

â†i , â
†
j

]

= [âi, âj ] = 0,
[

âi, â
†
j

]

= δij . (2.2)The parameters U and J in Eq. (2.1) 
hara
terize the on-site intera
tion strength and the hoppingstrength, respe
tively. While the intera
tion is lo
al, the hopping pro
ess is des
ribed by a non-lo
alsum being proportional to the hopping strength J . The bra
ket 〈·, ·〉 restri
ts this sum to nearestneighbor terms only, so it re�e
ts the annihilation of one parti
le at a site i and its re-
reation at anadja
ent site j. There is a third parameter µ in Eq. (2.1) whi
h represents the 
hemi
al potential. Weneed it as a grand-
anoni
al des
ription is 
hosen. This means that the system is assumed to be in
onta
t with a huge bath allowing for an ex
hange of both energy and parti
les.In order to relate the model parameters to the ones 
on�guring the experiments [1℄, we note thatthe total parti
le number of the system N and the average parti
le number per site n be
ome �xed inthermal equilibrium via a minimization of the grand-
anoni
al free energy. The intera
tion parameter
U 
an be tuned by the s-wave s
attering length of the parti
les aBB via Feshba
h resonan
es [35℄.Besides, U is in�uen
ed by the parti
le mass m and the latti
e potential V (x). These two parametersalso determine the hopping strength J . This thesis is restri
ted to the most 
ommon 
ase of a 
ubi
latti
e potential

Vext(x) =
3
∑

j=1

V0 sin2
(π

a
xj

)

, (2.3)whi
h 
an be realized by six 
ounter-propagating lasers. Here V0 denotes the intensity of the laser.The latti
e 
onstant is a = λ/2, where λ is the wavelength of the laser light.The intera
tion potential is usually spe
i�ed to a delta-potential des
ribing 
onta
t intera
tion
Vint(x1,x2) =

4πaBB~
2

m
δ(x1 − x2). (2.4)While the experimentalists have the 
onvention to measure all parameters having the dimension ofenergies (like J,U, V0, µ) in units of the re
oil energy ER = ~

2π2/(2a2m), from the theoreti
al pointof view, it is more 
omfortable to use one of the model's parameters as a basi
 energy unit. We willmostly measure all energies in units of U .2.1.1 Model ParametersIn order to express U and J in terms of the experimental parameters, the Bose-Hubbard Hamiltoniangiven by Eq. (2.1) has to be derived from the general many-body Hamiltonian, whi
h is done, forinstan
e, in Ref. [36℄. We only present the main results here and derive an alternative formula for J .The intera
tion parameter U is found to be
U = Ui =

4πaBB~
2

m

∫

d3x |w(x − xi)|4, (2.5)where w(x − xi) is the energeti
ally lowest Wannier fun
tion [37℄. The argument of this fun
tion16



2.1 Bose-Hubbard Modeldepends on the 
oordinates xi of the latti
e site i, where the parti
le is lo
alized. The Wannierfun
tions are also needed for de�ning the hopping parameter J :
J = Jij = −

∫

d3x w∗(x − xi)

[

− ~
2

2m
∇2 + Vext(x)

]

w(x − xj). (2.6)To derive Eqs. (2.5) and (2.6), two fundamental assumptions have to be made:1. Other than the �rst-band Wannier fun
tion need not to be taken into a

ount.2. The overlap between neighboring Wannier fun
tions 
an be negle
ted in the intera
tion term. Sowe end up with a lo
al intera
tion. Consequently, we apply this restri
tion also to the kineti
 term
Jij and restri
t it to the �rst non-trivial 
ontribution, whi
h is the overlap of nearest neighbors.We will brie�y dis
uss the validity of these assumptions in the next subse
tion.The Wannier fun
tions, whose knowledge is required in the above expressions, 
ome from solid-statephysi
s. This 
onne
tion is no surprise, sin
e the situation here is basi
ally the same as in a solid:There are parti
les moving in a periodi
 potential. Thus the Blo
h theorem 
an be applied, whi
h tellsus that the a

essible states form energy bands. The determination of the Blo
h states Φn,k, where

n is the band number and ~k the momentum, demands solving the S
hrödinger equation for a singleparti
le in a periodi
 potential, i.e.:


− ~
2

2m
∇2 + V0

3
∑

j=1

sin2
(π

a
xj

)



Φn,k(x) = En,kΦn,k(x). (2.7)As the Blo
h states des
ribe delo
alized parti
les in the latti
e with �xed wave ve
tor k, one has tomake a Fourier transformation in order to deal with lo
alized parti
les, i.e. parti
les with �xed siteindex and inde�nite momentum. This gives us the Wannier fun
tions:
w(x − xi) = N−1/2

∑

k

e−ikxiΦ0,k(x), (2.8)where N is the number of latti
e sites and the sum runs over all k's in the �rst Brillouin zone. Herewe have restri
ted ourselves to the lowest Blo
h band, be
ause there is no Pauli prin
iple for bosons,so at low temperature the o

upation of higher bands 
an be negle
ted.In Ref. [36℄ a numeri
al approa
h for 
al
ulating the Wannier fun
tions is 
ompared with a har-moni
 approximation whi
h be
omes exa
t in the limit of an in�nite strong latti
e potential. In thisapproximation, the Wannier fun
tion of an one-dimensional system reads
w(x) =

(

π2V0

a4ER

)1/8

exp

[

−π
2

2

√

V0

ER

(x

a

)2
]

. (2.9)The Wannier fun
tions in higher dimensions 
an easily be 
onstru
ted by multipli
ation of one-dimensional fun
tions. In three dimensions we therefore have:
w(x − xi) = w(x− xi)w(y − yi)w(z − zi). (2.10)17



2 Models for the ProblemInserting this into Eq. (2.5) yields the on-site potential in harmoni
 approximation. One �nds thatthis expression depends on the dimensionality of the latti
e. In three dimension it reads
U

ER
=

√
8π
aBB

a

(

V0

ER

)3/4

. (2.11)Ex
ept for very small latti
e potentials, this harmoni
 approximation produ
es values of U similar tothe ones obtained by the numeri
al method.For the hopping parameter J a useful formula 
an be found from the theory of Mathieu's equationwhi
h agrees better with the numeri
al results than the harmoni
 approximation (see Ref. [38℄) andrequires no knowledge of the Wannier fun
tions. It reads:
J

ER
=

4√
π

(V0/ER)3/4e−2
√
V0/ER . (2.12)To derive it, we �rst must separate the spa
e 
oordinates. To this end, we insert the separationansatz (2.10) in Eq. (2.6) and note that a

ording to Eq. (2.3) the operator ĥ ≡ − ~2

2m∇2 + Vext(x)
an be written as a sum of operators a
ting on one spatial 
oordinate only: ĥ = ĥx + ĥy + ĥz. ThenEq. (2.6) reads
Jij = −

{

∫ ∞

−∞
dx w∗(x− xi)ĥxw(x− xj)

∫ ∞

−∞
dy w∗(y − yi)w(y − yj)

∫ ∞

−∞
dz w∗(z − zi)w(z − zj)

+

∫ ∞

−∞
dx w∗(x− xi)w(x− xj)

∫ ∞

−∞
dy w∗(y − yi)ĥyw(y − yj)

∫ ∞

−∞
dz w∗(z − zi)w(z − zj)

+

∫ ∞

−∞
dx w∗(x− xi)w(x− xj)

∫ ∞

−∞
dy w∗(y − yi)w(y − yj)

∫ ∞

−∞
dz w∗(z − zi)ĥzw(z − zj)

}

.(2.13)In the following, we will need the orthonormality of the Wannier fun
tions
∫ ∞

−∞
dx w∗(x− xi)w(x− xj) = δ(xi − xj). (2.14)Now we 
on
entrate on the fa
t that Jij should des
ribe nearest neighbor hopping only, so in one spatialdire
tion, say x, we have xi−xj = a, while in all the other dire
tions, say y and z, the spatial distan
eis zero. From this we see that the hopping matrix element does not depend on the dimensionality ofsystem. There is always only one term on the right-hand side of Eq. (2.13) whi
h survives. The wholeexpression redu
es to

Jij = −δ<i,j>
∫ ∞

−∞
dx w∗(x− xi)ĥxw(x− xj) ≡ δ<i,j>J. (2.15)The matrix element δ<i,j> should make sure, that i and j are nearest neighbors. It is equivalent towrite

Jij =

{

J, if i, j nearest neighbors
0, otherwise (2.16)

18



2.1 Bose-Hubbard ModelIf we express the Wannier fun
tions in terms of the Blo
h fun
tions by inserting Eq. (2.8), we 
an stilluse the orthogonality of the Blo
h fun
tions, i.e.:
∫ ∞

−∞
dx Φ∗

0,k′(x) Φ0,k(x) = δk,k′ . (2.17)With this we obtain
Jij = −δ<i,j>

1

Nx

∑

kx

eikx(xi−xj)E0,kx
= −δ<i,j>

1

Nx

∑

kx

eikxaE0,kx
. (2.18)From the Blo
h theorem we know that the energy bands have the periodi
ity of the re
ipro
al latti
e,i.e.

En,k = En,k+2π/a. (2.19)Due to the inversion symmetry of the external potential from Eq. (2.3), we furthermore have theKramer's theorem (see e.g. Ref. [39℄)
En,k = En,−k. (2.20)A

ording to Eqs. (2.19) and (2.20), all the sine-terms in the Fourier series of E0,k are zero:

E0,k =
e0
2

+

∞
∑

m=1

em cos(kma), (2.21)with the 
oe�
ients
ei =

a

π

∑

k∈1.BZ

E0,k cos(kma). (2.22)We insert this in Eq. (2.18) and transform the sum into an integral, a

ording to the rule 1/N
∑

k →
L/2π
L/a

∫ π/a
−π/a dk. These integrals then read

∫ π/a

−π/a
cos(ka) cos(mka)dk = δm,1

π

a
, (2.23)

∫ π/a

−π/a
sin(ka) cos(mka)dk = 0. (2.24)This means that J redu
es to minus half of the �rst Fourier 
oe�
ient of E0,k:

J = −e1
2
. (2.25)Now we must relate the �rst Fourier 
oe�
ient to the bandwidth B of E0,k. Sin
e cos(2nπ) = cos(0)with n ∈ N, even Fourier 
oe�
ients do not 
ontribute to the bandwidth. When we furthermoresuppose that E0,k has a shape similar to the 
osine, the third and higher Fourier 
oe�
ients have tobe mu
h smaller than the �rst one. Thus, the bandwidth of E0,k is almost identi
al with two timesthe absolute value of the �rst Fourier 
oe�
ient. With Eq. (2.25) we get J = B/4. 19



2 Models for the ProblemNow we 
onsider the S
hrödinger equation (2.7) and use the trigonometri
 relation sin2 α = (1 −
cos 2α)/2 in order to transform it into the one-dimensional Mathieu equation

[

− ∂2

∂x′2
+
Ṽ0

2
(1 − cos 2x′)

]

Φn,k = Ẽn,kΦn,k(x
′), (2.26)where we substituted the energies E → Ẽ ≡ E/ER and lengths x → x′ ≡ (π/a)x to dimensionlessvariables. From the literature on this equation [40℄, we know that there are stable solutions for a giveneigenvalue Ẽn,k only within stability regions depending on V0. The energeti
ally lowest stability regionhas a bandwidth whi
h is known to be given by four times the right side of Eq. (2.12) for large Ṽ0.With the relation between J and B derived above follows Eq.(2.12).2.1.2 Assumptions Made in the Bose-Hubbard ModelObviously, the model Hamiltonian (2.1) idealizes the experimental situation, as it 
ontains the followingfour assumptions:1. The system is translationally invariant.2. Only one state is 
onsidered on ea
h latti
e state.3. No intera
tion between parti
les on distin
t sites is in
luded in the model.4. Hopping to other than nearest neighbor sites is ex
luded.To justify the �rst assumption, we must re
ognize that the system is assumed to be large 
omparedwith the latti
e spa
ing and the trap, whi
h is ne
essary to 
on�ne the gas, represents a very smoothpotential. Nevertheless, there are some e�e
ts like the amplitude damping of the order parameter in
ollapse and revival experiments [41,42℄ or a visibility smaller than one even deep in the super�uidphase whi
h 
annot be understood from the point of view of an in�nitely large, homogeneous system[43℄. The inhomogeneity of the trap 
ould be taken into a

ount by letting the 
hemi
al potentialdepend on the latti
e site, but we will not do that, be
ause the equations of motion, that we will derivelater, be
ome lo
al in Fourier spa
e if spatial homogeneity is assumed.Let's take a look on the justi�
ation of the other assumptions: The se
ond one restri
ts the modelto systems of only one type of parti
les. Furthermore, parti
les with degenerate spin states 
annotbe des
ribed by su
h a Hamiltonian. In many 
ases, however, the system is magneti
ally trapped,su
h that all spins are aligned. Then it depends basi
ally on the temperature of the system, if we 
anrestri
t ourselves to the lowest energy band and the 
orresponding Wannier fun
tion w(x − xi), or ifhigher bands are important, too. In a few moments we will 
rudely estimate the o

upation of higherbands for a realisti
 temperature, in order to see that higher bands do not play an important role.The third assumption at �rst depends on the intera
tion between the parti
les, whi
h must be veryshort-range. Whether this is the 
ase, depends very mu
h on the parti
les under 
onsideration. Forthe most frequent experimental 
ase of alkali atoms, the magneti
 dipole moment is relatively smalland the ele
tri
 dipole moment is zero, thus in a good approximation, only 
onta
t intera
tion mustbe taken into a

ount. This alone is still not su�
ient to restri
t the intera
tion to the form given in20



2.2 Phase TransitionsEq. (2.5), sin
e a parti
le at site i, des
ribed by the nth Wannier fun
tion wn(x − xi), has a �niteprobability to be in 
onta
t with a parti
le at a di�erent site j des
ribed by wm(x′ − xj). However,if the se
ond assumption is true, i.e. n = m = 0, the overlap of the lowest nearest neighbor Wannierfun
tions is very small [44℄, whi
h then justi�es the third and also the fourth assumption. Ex
itedbands, however, are less lo
alized, so if the se
ond assumption fails, the others may not hold. Thusthe basi
 question is, whether we really 
an restri
t ourselves to the lowest single-parti
le band.As we deal with �nite temperatures, the goodness of the se
ond assumption has to be put intoquestion. By a Taylor expansion of the latti
e potential (2.3), we �nd that in the �rst non-vanishingorder a harmoni
 potential V (x) = (π/a)2V0x
2 des
ribes the system. In this approximation, the energyof the nth ex
ited state is En = (n+1/2)~

√

(2π2V0)/(ma2) = (2n+1)
√
V0ER, where m is the parti
lemass.Taking the value for ER from Ref. [25℄, whi
h is about 1 · 10−11 eV, and a typi
al value for V0,say 20 ER, we have E1 ≈ 1, 5 · 10−10 eV while E0 ≈ 0, 5 · 10−10 eV. Now we have to 
ompare thesevalues with the thermal energy kBT . As there is still no method of measuring the temperature, werely on theoreti
al 
onsiderations in order to �nd a suitable guess of it. In Ref. [36℄, for instan
e,the temperature of the gas is 
al
ulated by 
omparing the theoreti
al with the experimental visibilitywhere the data is taken from Ref. [25℄. For V0 = 20 ER, a temperature about 600 nK is found. Thisgives a ratio E1/(kBT ) of about 3, while E0/(kBT ) is about one. Inserting this in the Bose-Einsteinstatisti
, where the medium o

upation number is given by 〈n〉 = 1/ {exp[E/(kBT )] − 1}, we �nd

〈n0〉/〈n1〉 ≈ 10. So the �rst ex
ited band does not play a very important role and the �rst assumption
an be justi�ed not only for zero but as well for more realisti
 temperatures. Nevertheless, there seemto be 
ases where the o

upation of higher Blo
h bands has to be 
onsidered in order to a
hieve a goodagreement with experiments. An example are Bose-Fermi gas mixtures [45,46℄.2.2 Phase TransitionsAs already mentioned above, our main interest is related to the phase transition between the MI andthe SF phase whi
h may o

ur in a latti
e �lled with bosons. Experimentally, this transition be
omesmanifest in the time-of-�ight absorption pi
tures of the gas taken after swit
hing o� both the trap,whi
h has 
on�ned the system, and the opti
al latti
e. Then the initial momenta of the atoms makethe 
loud expand in spa
e, leading to a density distribution that reprodu
es the momenta distributionintegrated in one spatial dire
tion. Sin
e in the super�uid phase the bosons are delo
alized overthe whole latti
e, they have, by Heisenberg's un
ertainty prin
iple, a de�nite momentum. Therefore,sharp absorption peaks are measured in the SF phase while in the MIt phase the opposite is the 
ase:Lo
alized atoms have no de�nite momentum and the time-of-�ight absorption pi
tures show a fuzzy
loud (see Figure 2.1).In order to quantify this e�e
t, the visibility V is de�ned as
V ≡ nmax − nmin

nmax + nmin
, (2.27)where nmax is the highest and nmin the lowest density on a 
ir
le through the �rst side maximumaround the 
enter peak as shown in the inset of Fig. 2.2. In this �gure the data from an experiment21



2 Models for the Problem

Figure 2.1: Time-of-�ight absorption pi
tures taken from [1℄: When the latti
e potential is in
reasedfrom zero (a) to 20 re
oil energies (h), the phase 
oheren
e between the atoms on di�erentsites gets lost. In between the system 
arries out a phase transition from the SF into theMI phase.measuring the visibility is shown [47℄. Although the o

urren
e of a phase transition is evident fromFigs. 2.1 and 2.2, both �gures do not allow for determining the position of the phase transition. It thuswould be ni
e to �nd other 
riteria marking the phase transition. We will later see that the ex
itationspe
tra 
an do that job.From the theoreti
al point of view, the Bose-Hubbard model allows for predi
ting this phase tran-sition and 
al
ulating the phase boundary or even the time-of-�ight absorption pi
tures. For under-standing su
h a se
ond order phase transition, we introdu
e now the 
on
ept of an order parameter byGinzburg and Landau.2.2.1 Order Field and Ginzburg-Landau ModelThe basi
 idea related to the order parameter is that we have a quantity whi
h vanishes on thedisordered side of the transition and takes �nite values on the ordered side. In the following we denotethis parameter by Ψ. The dependen
e of the free energy F on this parameter is assumed to be:
F = F0 + (λ2/2) |Ψ|2 + (λ4/4!) |Ψ|4 +O(|Ψ|5), (2.28)with λ2 and λ4 being phenomenologi
al parameters to be determined. It is important not to haveodd terms in this expansion, as otherwise the transition would be of �rst order, i.e. the energy would
hange dis
ontinuously in the 
riti
al regime [14℄. For systems whi
h exhibit a se
ond-order phasetransition, 
hara
terized by the vanishing of the 
hara
teristi
 energy s
ale in the ex
itation spe
trum[34℄, the existen
e of a 
ubi
 term is forbidden by symmetry arguments. In our 
ase, the symmetry in
onsideration is the phase-rotational invarian
e of the Bose-Hubbard Hamiltonian (2.1).The des
ription in Eq. (2.28) whi
h was invented by Landau 
an be generalized to the so 
alledGinzburg-Landau model by letting Ψ vary in spa
e. The free energy F 
an then be written as a22



2.2 Phase Transitions

Figure 2.2: For N = 3.6 105 (gray 
ir
les) and N = 5.9 105 (bla
k 
ir
les) 87Rb atoms the visibility wasmeasured as a fun
tion of the latti
es potential by Ref. [47℄. The inset marks the regionof the time-of-�ight pi
tures whi
h were used in order to de�ne the visibility.fun
tional of the order �eld Ψ(x) and its gradient:
F [Ψ] =

∫

d3x

(

F0(x) +
1

2
|∇Ψ(x)|2 +

λ2

2
|Ψ(x)|2 +

λ4

4!
|Ψ(x)|4

)

, (2.29)where F0(x) is the free energy in the disordered phase. As it depends on the sign of λ2, whether a zeroor nonzero Ψ(x) minimizes F , phase transitions are expe
ted when the sign of λ2 
hanges. Originallyapplied to thermal phase transitions, the Landau 
oe�
ients λi were supposed to depend basi
ally onthe temperature of the system. For λ2 one has λ2 ∼ T
Tc

− 1, where Tc is the 
riti
al temperature [14℄.Our goal, however, is the des
ription of a quantum phase transition, so we wish to �nd 
oe�
ientswhi
h depend on a parameter given by the Hamiltonian of the system [34℄. In our system, the 
riti
alregime is determined by the relative value of the hopping parameter J to the on-site potential U .In the theory of super�uidity [4℄, the transition to the super�uid phase is attended by a ma
ros
opi
o

upation of the ground state. So as an order parameter or order �eld, a quantity should be 
hosen,whi
h is proportional to the 
ondensate amplitude. In the latter, the expe
tation value of the anni-hilation operator will de�ne the dis
rete order �eld: ~Ψi ≡ 〈âi〉. We will see in the next se
tion thata transition to non-vanishing order �elds is related to a breakdown of the phase-rotational symmetry.The di�eren
e between the normal and the super�uid phase is illustrated in the plot of the free energy
F [Ψ] (see Figure 2.3), whi
h has a paraboloid shape in the normal phase and a wine-bottle shape inthe super�uid phase. So there is only one minimum in the normal phase at Ψ = 0, but in the super�uidphase, for any 
ontinuous phase angle γ, the system has a global minimum at a �nite Ψ0.2.2.2 Spontaneous Symmetry BreakingWhen the Hamiltonian is invariant under a symmetry operation, but the ground state is not, it hasto be degenerate [48℄. The degenerate ground states are denoted by a label α whi
h 
orresponds toan observable distinguishing the di�erent states. There is no reason that a spe
ial α is preferred by23



2 Models for the Problem

Figure 2.3: The Landau free energy F as a fun
tion of the order parameters: In the normal phaseonly one minimum exists at the origin, in the super�uid phase gauge invarian
e leads toin�nitely many degenerate minima.nature, so its expe
tation value 〈α〉 should simply be the average of all possible α, whi
h 
an be setzero without loss of generality.A phase transition takes pla
e when the invarian
e of the Hamiltonian breaks down and the degen-era
y is lifted. Then one of the states |α〉 be
omes the unique ground state and 〈α〉 is no longer zero.The physi
al reason for this is a breakdown of ergodi
ity [49℄. It might be 
aused, e.g., by a potentialbarrier between the di�erent states |α〉, su
h that the system gets stu
k in one arbitrary state forever.In order to des
ribe phase transitions, it is a useful method to add external sour
es to the Hamiltonianwhi
h are linearly 
oupled to the order �eld. The symmetry of the system is destroyed by these obje
tswhi
h besides might have no further physi
al meaning and be arti�
ial.The broken symmetry in our 
ase of the transition to a super�uid phase is gauge invarian
e [4℄: TheBose-Hubbard Hamiltonian (2.1) remains un
hanged under a global phase rotation with a 
onstantphase angle γ for all 
reation and annihilation operators, i.e. âi → âie
iγ and â†i → â†ie

−iγ . This meansthat the expe
tation value of the 
reation and annihilation operators must not depend on the phaseangle γ, whi
h is only possible if 〈âi〉 = 〈â†i 〉 = 0. It is found that in this normal phase at T = 0 theo

upation number ni = 〈â†i âi〉 is pinned to integer values depending on µ/U [34℄.With an in
reasing hopping parameter J , however, the 
oupling of neighboring sites be
omes moreimportant. At some 
riti
al value J/U , it o

urs that states with a broken symmetry are preferred[34℄. Then we are in the super�uid phase with a non-zero 〈âi〉. This means that from the in�nitelymany minima in Fig. 2.3 the system has to 
hoose one.As the broken symmetry is 
ontinuous, the phase of the order parameter 
an �u
tuate withoutex
iting it energeti
ally. These zero-energy-ex
itations are 
alled Nambu-Goldstone modes [50,51℄.There is a famous theorem, the so-
alled Goldstone theorem, whi
h predi
ts one massless ex
itationmode for ea
h broken 
ontinuous symmetry. Flu
tuations of the amplitude, in 
ontrast, amongst themall the �u
tuations in the normal phase, have to go �uphill� against the free energy. Thus, the 
oheren
elength of the phase �u
tuations are in�nite, while the amplitude �u
tuations have a �nite 
oheren
elength [4℄.One of our later goals will be the study of the ex
itation spe
tra for bosons in opti
al latti
es. Wewill �nd what the Goldstone theorem predi
ts, namely one massless mode in the super�uid phase.24



3 Green's Fun
tions FormalismsThe partition fun
tion of a quantum system, des
ribed by a time-independent Hamilton operator Ĥ,is given by
Z ≡ Tr

(

e−βĤ
)

, (3.1)with β = 1/(kBT ) being the inverse of the temperature T times the Boltzmann's 
onstant kB. Itdetermines all thermodynami
 quantities, like the free energy, the entropy or the spe
i�
 heat of thesystem. On the other hand, no information on lo
al properties of the system, whi
h for instan
e areneeded for 
al
ulating time-of-�ight absorption pi
tures, 
an be extra
ted from this expression. Thisinformation is 
ontained in the so 
alled 
orrelation fun
tions [14℄. We will soon get to know a lot ofdi�erent formalisms in whi
h 
orrelation or Green's fun
tions appear. So we are not going to give apre
ise de�nition yet, but only a preview of what is meant by them:
G(i1, · · · , in; in+1, · · · , im) ∼ 〈âi1 · · · âin â†in+1

· · · â†in+m
〉, (3.2)where n,m ∈ N. The operators âi and â†i are the bosoni
 annihilation and 
reation operators whi
hhave already appeared in the de�nition of the Bose-Hubbard Hamiltonian (2.1) and ful�ll the usual
ommutation relations (2.2). The meaning of the bra
ket 〈· 〉 depends on the applied formalism. In a

T 6= 0 - theory it is de�ned by the following tra
e
〈· 〉 ≡ 1

Z Tr(· e−βĤ), (3.3)whi
h is the thermal average. For a pure quantum-dynami
 theory at T = 0, however, 〈· 〉 means thequantum-me
hani
al expe
tation value with respe
t to the ground state. After a short presentationof the 
orrelation fun
tions in this zero-temperature formalism in Se
tion 3.2, we will deal with �nitetemperatures and then always have the de�nition (3.3).One feature, that is 
ommon to all the presented formalisms, is some kind of time dependen
e ofthe 
orrelation fun
tions. So �rst we have to give an introdu
tion to the time evolution of quantum-me
hani
al systems.3.1 Quantum Me
hani
al Pi
turesAs in 
lassi
al physi
s, the time evolution of a quantum me
hani
al system is generated by the Hamil-tonian. But while in 
lassi
al physi
s it is 
lear on whi
h obje
ts the time evolution has to a
t, as nodis
repan
y between the observables and the 
orresponding fun
tions exists, the situation in quantumtheory is not that obvious. Of 
ourse, the theory has to reprodu
e the measurable quantities, but itdeals with theoreti
al 
onstru
ts like states and operators, whi
h are not per se observable. Only some25



3 Green's Fun
tions Formalismsspe
ial 
ombinations of them, e.g. s
alar produ
ts, expe
tation values or transition amplitudes, 
an bemeasured dire
tly. For this reason, a freedom of 
hoi
e remains: the time evolution of an observable
an either be 
onstru
ted by letting the states evolve with time (S
hrödinger pi
ture) or the operators(Heisenberg pi
tures) or both (Dira
 pi
ture).3.1.1 S
hrödinger and Heisenberg Pi
tureFor the perturbative 
al
ulations done later in this thesis, the Dira
 pi
ture will be used. Nevertheless,a short de�nition of the S
hrödinger and the Heisenberg pi
tures is helpful, sin
e the Dira
 pi
tureis a mixture of both. Moreover, it's in the Heisenberg pi
ture, where the de�nition of the 
orrelationfun
tions (3.2) holds as well in the time-dependent 
ase.There is one time, say t = 0, when the S
hrödinger and the Heisenberg pi
ture 
oin
ide. Then the
onstant Heisenberg states |φ〉H, 
an be identi�ed with the S
hrödinger states |φ(0)〉S:
|φ(0)〉S ≡ |φ〉H. (3.4)The time evolution of the S
hrödinger states is generated by the total Hamiltonian ĤS(t). This oper-ator, although in the S
hrödinger pi
ture, might have an expli
it time dependen
e, e.g. be
ause of atime-dependent potential. By solving the time-dependent S
hrödinger equation

i~
∂

∂t
|φ(t)〉S = ĤS(t)|φ(t)〉S (3.5)we 
an �nd out how a state evolves with time [48℄:

|φ(t)〉S = T̂
{

e−
i
~

R t

0
dt′ĤS(t′)

}

|φ(0)〉S. (3.6)Here the time-ordering operator T̂ is introdu
ed. It a
ts on an operator produ
t by bringing it into
hronologi
al order from the right to the left. Eq. (3.6) holds for the most general 
ase. Simpli�
ationsare possible, if ĤS(t) has no expli
it time-dependen
e or if Hamiltonians at di�erent time arguments
ommute, i.e. [ĤS(t), ĤS(t′)] = 0. In the latter 
ase, one 
an drop the time-ordering operator in Eq.(3.6), in the �rst 
ase the integration in the exponent yields trivially exp
(

− i
~
ĤSt

).In 
ontrast to the states, the operators Ô, if not expli
itly time-dependent, are 
onstant in theS
hrödinger pi
ture. The opposite is the 
ase in the Heisenberg pi
ture where the states are 
onstant.As the expe
tation values have to be the same in both pi
tures, the relation between Heisenberg andS
hrödinger operators is found to be:
ÔH(t) ≡ T̂

[

e
i
~

R t

0
dt′ĤS(t′)

]

ÔS(t)T̂
[

e−
i
~

R t

0
dt′ĤS(t′)

]

. (3.7)From this, we �nd the famous Heisenberg equation of motion by di�erentiation:
dÔH(t)

dt
=
i

~

[

ĤH(t), ÔH(t)
]

+

(

∂ÔS(t)

∂t

)

H

. (3.8)
26



3.1 Quantum Me
hani
al Pi
tures3.1.2 Dira
 Pi
tureThe Dira
 pi
ture will be introdu
ed now in a little bit more detail, as the perturbation theory thatwe will perform later works in this pi
ture. The idea is to split the Hamiltonian in a �free� part Ĥ0that 
an be solved exa
tly and a small perturbative term λĤ1(t) whose in�uen
e on the system is tobe 
al
ulated in a power series of λ. So λ might be only a formal devi
e whi
h 
an be set to 1 at theend. Usually Ĥ0 is 
hosen to be time-independent, while expli
it time-dependen
ies of the Hamiltonoperator appear as the perturbation. Although it is not essential, let us take su
h a splitting for
onvenien
e.The Dira
 states |φ(t)〉D and operators ÔD(t) are de�ned by the following relations to their equiva-lents in the S
hrödinger pi
ture [48,49℄:
|φ(t)〉D ≡ exp

(

i

~
Ĥ0St

)

|φ(t)〉S, (3.9)
ÔD(t) ≡ exp

(

i

~
Ĥ0St

)

ÔS(t) exp

(

− i

~
Ĥ0St

)

. (3.10)It is important to note that for the unperturbed system, where Ĥ0 is the full Hamiltonian, the Dira
pi
ture 
oin
ides with the Heisenberg pi
ture.By inserting Eq. (3.9) into the S
hrödinger equation Eq. (3.5), we get a S
hrödinger-like equationfor the time evolution of the Dira
 states, whi
h is driven by Ĥ1D(t). Correspondingly, we obtain from(3.10) a Heisenberg-like equation of motion for the time evolution of the Dira
 operators, whi
h isdriven by Ĥ0S = Ĥ0D ≡ Ĥ0:
i~
∂

∂t
|φ(t)〉D = Ĥ1D(t)|φ(t)〉D, (3.11)

d

dt
ÔD(t) =

i

~

[

Ĥ0, ÔD

]

+

(

∂ÔH(t)

∂t

)

D

. (3.12)We de�ne a unitary operator Û(t, t0), 
alled evolution operator, with the property:
|φ(t)〉D = Û(t, t0)|φ(t0)〉D. (3.13)Then we get from Eq. (3.11)

i~
∂

∂t
Û(t, t0) = Ĥ1D(t)Û(t, t0), (3.14)whi
h has to be solved with the initial 
ondition

Û(t0, t0) = 1. (3.15)Integrating Eq. (3.14) with Eq. (3.15) iteratively, yields a formal solution for the time-evolution
27



3 Green's Fun
tions Formalismsoperator [49℄:
Û(t, t0) = 1 +

(−i
~

)∫ t

t0

dt1 Ĥ1D(t1) +

(−i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 Ĥ1D(t1)Ĥ1D(t2) + · · ·+

+ (
−i
~

)n
∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnĤ1D(t1) · · · Ĥ1D(tn) + · · · . (3.16)This expression is 
alled Dyson series. With the help of the time-ordering operator T̂ it 
an bewritten more 
ompa
tly a

ording to:
Û(t, t0) =

∞
∑

n=0

(−i/~)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT̂
{

Ĥ1D(t1) · · · Ĥ1D(tn)
}

, (3.17)where the fa
tor 1/n! arises from the fa
t that there are exa
tly n! permutations in the expression onthe right side. Noting that this is the power expansion of the exponential fun
tion, Eq. (3.17) redu
esto:
Û(t, t0) = T̂ exp

(−i
~

∫ t

t0

dt1Ĥ1D(t1)

)

. (3.18)By 
omparing Eqs. (3.7), (3.10), and (3.18), we �nd the following useful relation between theHeisenberg and the Dira
 operators:
ÔH(t) = Û(t0, t)ÔD(t)Û(t, t0). (3.19)3.2 Correlation Fun
tions at T = 0Now that the time evolution is de�ned, we 
an adapt the de�nition (3.2) of the 
orrelation fun
tionsto the time-dependent 
ase. All we have to do is to in
lude a time-ordering operator T̂ and write downthe operators in the Heisenberg pi
ture [49℄:

G(x1, · · · , xn;xn+1, · · · , xn+m) ≡
〈

T̂
(

âH(x1) · · · âH(xn)â
†
H(xn+1) · · · â†H(xn+m)

)〉

. (3.20)Here the 
olle
tive index xj ≡ {ij , tj} 
ontains the time variable as well as the spatial 
oordinates, i.e.site indi
es. It still might be useful to take prefa
tors into the de�nition, but we will struggle with themlater. Remember that in this de�nition the bra
kets mean the expe
tation value with respe
t to the fullground-state |Ω〉. For T 6= 0, we will have to modify the de�nition by introdu
ing a thermal averaging.This leads either to the imaginary-time formalism (ITF) or to the 
losed-time-path formalism (CTPF)being introdu
ed later.But let us �rst sket
h the manipulations that 
an be performed on Eq. (3.20) in order to derivean expression appropriate for a perturbative expansion. Using Eq. (3.19) we 
an swit
h to the Dira
pi
ture. This leaves us with evolution operators between all the operators in (3.20). Be
ause of thetime-ordering operator in front of them and the group property of Û, i.e. Û(t, t′)Û(t′, t′′) = Û(t, t′′), they
an be 
ombined. Then the Gell-Mann-Low theorem [52℄ states that the ground state of the perturbedsystem |Ω〉 is, up to a possible phase whi
h is 
an
eled by a denominator, related to the ground stateof the unperturbed system |0〉 by a time evolution from the in�nite past, where the perturbation was28



3.3 Wi
k Rotation and Thermal Green's Fun
tions
ompletely swit
hed o�, to a �nite time when the perturbation is 
ompletely swit
hed on. Analogously,a time evolution to the in�nite future relates 〈Ω| to 〈0|. So instead of taking the expe
tation valuewith respe
t to the full ground state, we 
an take it with respe
t to the unperturbed ground state
|0〉 only, if we simultaneously extend the time evolution to times in the in�nite past and future. Thisallows for 
al
ulating the whole 
orrelation fun
tion by a straight time evolution from −∞ to ∞. Forthe 2-point 
orrelation fun
tion at T = 0, one gets for example [49℄:

G(x1;x2) = 〈Ω|T̂
{

âH(x1)â
†
H(x2)

}

|Ω〉 = lim
t→∞

〈0|T̂
{

âD(x1)â
†
D(x2)Û(t,−t)

}

|0〉
〈0|Û(t,−t)|0〉

. (3.21)This expression paths the way for a perturbative 
al
ulation in whi
h Û is repla
ed by the Dysonseries (3.16). This formalism, however, does not hold for �nite temperature. Therefore, we refer to itas zero-temperature formalism (ZTF). For �nite temperatures a thermal average, i.e. a tra
e over allstates, must repla
e the ground state expe
tation value. But then the Gell-Mann-Low theorem 
annotbe applied any longer. We will see in the next se
tion how to 
ir
umvent this by rotating the problemto imaginary times.3.3 Wi
k Rotation and Thermal Green's Fun
tionsFor problems in thermal equilibrium a 
onne
tion between quantum dynami
s to statisti
al me
hani
s
an be exploited, whi
h stems from the formal similarity between time evolution and thermal averaging.To see this relation, we assume a Hamiltonian without any expli
it time dependen
e. Then the Dira
pi
ture evolution operator (3.18) is found to be given in terms of S
hrödinger operators:
Û(t, 0) = e

i
~
Ĥ0te−

i
~
ĤSt. (3.22)Comparing this with the partition fun
tion (3.1), we write down the following equation and noti
e thatit be
omes true for τ̃ = −i~β:

Z = Tr
{

e−βĤ0Û(τ̃ , 0)
}

= Z(0)〈Û(τ̃ , 0)〉0, (3.23)where 〈·〉0 is the thermal average with respe
t to Ĥ0 a

ording to de�nition (3.3), and Z(0) = Tre−βĤ0is the partition fun
tion of the unperturbed system. Note that the operator Ĥ0 is the same in theDira
 as in the S
hrödinger pi
ture.This analyti
al 
ontinuation to a 
omplex time variable is 
alled Wi
k rotation [53℄. The fa
tor
i appearing in the new �time� variable τ̃ 
an be absorbed by the i whi
h 
omes along with the timeevolution. This delivers a time evolution without any i's. The Wi
k rotated time evolution operatorin the Dira
 pi
ture then reads:̂

U(τ, τ0) = T̂ exp

(

−1

~

∫ τ

τ0

dτ1Ĥ1D(τ1)

)

, (3.24)where τ is a real number, though it is often 
alled imaginary time. 29



3 Green's Fun
tions FormalismsWhat has been said about evolution in real time, remains true in the ITF. In the Dira
 pi
ture wehave for the evolution of the states:
|φ(τ)〉D = Û(τ, τ0)|φ(τ0)〉D. (3.25)The relation between time-independent S
hrödinger operators and Dira
 operators depending on imag-inary time is in analogy to Eq. (3.10):̂
OD(τ) ≡ eĤ0τ/~ÔSe

−Ĥ0τ/~. (3.26)Correspondingly, instead of Eq. (3.19) we �nd for the Heisenberg operators:
ÔH(τ) = Û(τ0, τ)ÔD(τ)Û(τ, τ0). (3.27)We 
an now take the de�nition of the 
orrelation fun
tions (3.20) and modify it by letting theoperators depend on imaginary time instead of real time. We still repla
e the quantum me
hani
alexpe
tation value by a thermal average. We then get fun
tions whi
h are usually referred to as thermalor imaginary-time Green's fun
tions or, in order to stress the number N of operators, N -point fun
tions:

G(x1, · · · , xn;xn+1, · · · , xn+m) ≡
Tr
{

e−βĤT̂
(

âH(x1) · · · âH(xn)â
†
H(xn+1) · · · â†H(xn+m)

)}

Tr
{

e−βĤ
} . (3.28)We now have de�ned the 
olle
tive variable x ≡ {i, τ}. Most often, the number of annihilators equalsthe number of 
reators, i.e. n = m and N = 2n.De�nition (3.28) 
an be brought to a form similar to Eq. (3.21). To this end we have to transform theHeisenberg operators in the Dira
 pi
ture using Eq. (3.27) and note that taking the thermal averagewith respe
t to the total Hamiltonian (whi
h does not depend on real time) is the same as an evolutionin imaginary time from 0 to ~β given by Eq. (3.24) and taking the thermal average with respe
t tothe unperturbed Hamiltonian Ĥ0. To this end we rewrite Eq. (3.22) as

e−βĤ = e−βĤ0Û(~β, 0). (3.29)We then �nd:
G(x1, · · · , xn;xn+1, · · · , xn+m) =

Tr
{

e−βĤ0Û(~β, 0)T̂
(

âD(x1) · · · âD(xn)â
†
D(xn+1) · · · â†D(xn+m)

)}

Tr
{

e−βĤ0Û(~β, 0)
} .(3.30)Despite of many analogies between evolution in real time and in imaginary time, two di�eren
esshould be mentioned here. The �rst one is quite a formal one: Whereas the real-time evolutionoperator Û(t, t0) de�ned in Eq. (3.18) is unitary, i.e. Û(t, t0)Û

†(t, t0) = 1, its imaginary-time analog
Û(τ, τ0) from Eq. (3.24) is not. This would mean that Ô†(τ) 6=

(

Ô(τ)
)†. To bypass this in
onsisten
y,we have to remind that τ should be treated like an imaginary variable, i.e. apart from a
ting on theoperator itself, 
omplex 
onjugation should also 
hange the sign of τ . Thus instead of Û†(τ, τ0), we30



3.4 Closed-Time-Path Formalism (CTPF)take as the 
omplex 
onjugated imaginary-time evolution operator:
Û(τ, τ0) ≡ Û†(−τ,−τ0). (3.31)With this de�nition, Û is unitary even in the ITF.The se
ond and very important di�eren
e between real and imaginary time 
omes along with theinterpretation of the imaginary time as something like an inverse temperature. Thus, the evolutionalong the imaginary-time axis makes sense only in the interval [0,~β]. As Eq. (3.28) is a fun
tion ofimaginary-time di�eren
es, all of its time arguments lie within the interval [−~β,~β]. In Ref. [54℄ itis shown for the 2-point fun
tion G(τ1, τ2) that it 
an be interpreted as a fun
tion G̃(τ) of one timevariable τ = τ1 − τ2 with the property
G̃(τ) = ±G̃(τ + ~β), (3.32)where the upper sign holds for bosoni
 parti
les whereas for fermions the anti-
ommutation relationsimply a minus sign. Respe
ting this property, we 
an periodi
ally extend the imaginary-time fun
tionsto times of any absolute value. This ~β-periodi
ity (anti-periodi
ity) be
omes espe
ially importantwhen one transforms the fun
tions into frequen
y spa
e. While the real-time 
orrelation fun
tionsdepend on 
ontinuous frequen
ies, their imaginary-times analogs depend on dis
rete frequen
ies 
alledMatsubara frequen
ies

ωn =
nπ

~β
, (3.33)where n is an integer. Eq. (3.32) implies that for bosons only frequen
ies with even n 
an survive inthe Fourier transformation, while for fermions n has to be odd.3.4 Closed-Time-Path Formalism (CTPF)When using imaginary times, no e�e
ts appearing in real time like ex
itation spe
tra 
an be des
ribed,unless one re-rotates ba
k to the real-time axis. This is usually done in frequen
y spa
e, where thereal-time fun
tions appear as fun
tions of 
ontinuous frequen
ies, while the imaginary-time fun
tionstransform into fun
tions of a dis
rete set of Matsubara frequen
ies lying on the imaginary axis. There-fore, an analyti
 
ontinuation from imaginary time to real time is uniquely possible only under theadditional 
ondition that we have in�nitely many 
oin
iding points with a limit point in the region ofanalyti
ity. In Ref. [54℄ it is shown how this pro
edure works for the 2-point fun
tion by repla
ing

iωn → −ω± iǫ. For more 
ompli
ated fun
tions depending on more than one frequen
y, however, thisanalyti
 
ontinuation be
omes very di�
ult. For the 3-point and 4-point fun
tions, this problem isdis
ussed in detail in Refs. [55�57℄.If the Hamiltonian has an expli
it dependen
e on real times, then the ITF is not appli
able anylonger, sin
e it performs no time evolution along the real-time axis.Therefore we would like to have a formalism keeping real times, but sin
e our system is very large,the thermodynami
 limit should also be taken into a

ount, i.e. it should not be restri
ted to zero
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3 Green's Fun
tions Formalisms
Figure 3.1: Contours of time evolution: a) S
hwinger 
ontour, b) intera
tion 
ontour, 
) Keldysh 
on-tour.temperature. The CTPF presented now promises a des
ription at both real time and �nite temperature.The Green's fun
tions, whi
h we want to 
al
ulate now, are again thermal averages with respe
t toa given initial density matrix ρ̂, but now of a produ
t of real-time-dependent Heisenberg operators.Instead of dire
tly giving the de�nition, it is useful to see where it 
omes from. So let's have a look atthe following operator produ
t whi
h has not any time-ordering:

〈âH(t1)â
†
H(t2)〉ρ ≡

Tr
{

ρ̂âH(t1)â
†
H(t2)

}

Tr {ρ̂} . (3.34)We have suppressed spatial 
oordinates here. Inserting the relation (3.19) between the Heisenberg andthe Dira
 pi
ture yields
〈âH(t1)â

†
H(t2)〉ρ =

Tr
{

ρ̂ Û(t0, t1)âD(t1)Û(t1, t2)â
†
D(t2)Û(t2, t0)

}

Tr {ρ̂} , (3.35)where Û is the Dira
 time evolution operator de�ned in Eq. (3.18). We see that the time evolutiongoes forward from an initial time t0 to the largest time (t1 or t2) and ba
k to t0, i.e. the time evolvesalong a 
losed path. Su
h a 
ontour, whi
h is shown in Fig. 3.1a), is sometimes 
alled S
hwinger
ontour as he �rst introdu
ed it [58℄.But we still have to 
onsider the pro
edure of thermal averaging: If the system is initially in equi-librium, the density matrix in Eq. (3.35) reads
ρ̂ = e−βĤ =

∑

X

e−βEX |X〉〈X| (3.36)with |X〉 being an eigenbasis to Ĥ with eigenvalues EX . The formalism, however, is not ne
essarilyrestri
ted to su
h a spe
ial initial 
ondition.Sin
e we have no eigenbasis for the full Hamiltonian Ĥ, we are not able to 
al
ulate the Green'sfun
tion in Eq. (3.35) perturbatively by only expanding the real-time evolution operator Û. A possibleway out would therefore be a mix between evolution in real and imaginary time [59℄. This would leadto a 
ontour shown in Fig. 3.1b). Instead we 
an also push the starting point of our time evolutionin the in�nite past. Then the part of the 
ontour from t0 to t0 − i~β is in�nitely far away fromanything happening at �nite times, so that it should make no di�eren
e, if the system was perturbedor unperturbed at the beginning. This means that we 
an substitute ρ̂ by the density matrix ρ̂0 ofthe unperturbed system [60,61℄. This density matrix will 
ause no di�
ulties, as a diagonal basis for32



3.4 Closed-Time-Path Formalism (CTPF)the unperturbed problem should be known. Sin
e the time-evolution operator is unitary, we 
an alsoextend the 
ontour from the largest time t1 to the in�nite future and end up with 
ontour in Fig. 3.1
),whi
h was �rst introdu
ed by L. V. Keldysh [62℄. Instead of Eq. (3.35), we now have 
orrelations like
〈âH(t1)â

†
H(t2)〉0 ≡

Tr
{

e−βĤ0 âH(t1)â
†
H(t2)

}

Tr
{

e−βĤ0

} , (3.37)whi
h yields, when translated into the Dira
 pi
ture,
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0Û(−∞, t1)âD(t1)Û(t1, t2)â
†
D(t2)Û(t2,−∞)

}

Tr
{

e−βĤ0

} . (3.38)The index 0 at the bra
ket means a thermal averaging with respe
t to the unperturbed Hamiltonian
Ĥ0. Note that this does not mean that it is the 
orrelation of the unperturbed system, be
ause thein�uen
e of the perturbation is in
luded in the time evolution.We will now try to 
olle
t the di�erent pie
es of the time evolution into a single operator whi
hperforms a time evolution along the 
ontour indi
ated in Fig. 3.1
). For this purpose, we introdu
ethe identity 1 = Û(t2,∞)Û(∞, t2) in front of the se
ond operator if t1 > t2 or the identity 1 =

Û(t1,∞)Û(∞, t1) behind the �rst operator if t1 < t2. We �nd for t1 > t2:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0

(

Û(−∞, t1)âD(t1)Û(t1, t2)Û(t2,∞)
)(

Û(∞, t2)â
†
D(t2)Û(t2,−∞)

)}

Tr
{

e−βĤ0

} ,(3.39)and for t1 < t2:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0

(

Û(−∞, t1)âD(t1)Û(t1,∞)
)(

Û(∞, t1)Û(t1, t2)â
†
D(t2)Û(t2,−∞)

)}

Tr
{

e−βĤ0

} .(3.40)In both equations the parentheses signalize that the operator produ
t 
an be split into two parts.The right part 
an be interpreted as a time evolution from −∞ to∞ with the operator â†D(t2) appearingduring the evolution, while the part on the left side evolves ba
k from ∞ to −∞ with âD(t1) lyingon this path. We 
an write the evolution in the forward dire
tion 
ompa
tly by introdu
ing the time-ordering operator T̂. For the ba
kward path the dire
tion is inverted requiring the anti-time-orderingoperator ˆ̃T for a 
ompa
t writing. This allows for redu
ing both Eq. (3.39) and Eq. (3.40) to:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0 ˆ̃T
(

Û(−∞,∞)âD(t1)
)

T̂
(

Û(∞,−∞)â†D(t2)
)}

Tr
{

e−βĤ0

} . (3.41)Now we de�ne an operator Ŝ†Ŝ where Ŝ ≡ Û(∞,−∞), whi
h performs a time evolution along the
33



3 Green's Fun
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ontour of Fig. 3.1
), i.e.
Ŝ†Ŝ = exp

{

− i

~

∫

c
dt Ĥ1D(t)

}

, (3.42)and a 
ontour-ordering operator T̂c 
ollo
ating �rst the operators on the forward path in time-orderwhile the ba
kward ones are pla
ed further left and brought to anti-time-order. This, however, requiresthat ea
h operator is provided with an additional information about its path. Therefore we will denoteoperators that should appear on the forward path by the index + and the operators on the ba
kwardpath with the index -. This enables us to transform the 
ontour integration in (3.42) into a singleintegration from t = −∞ to ∞. We only need to 
hange the sign of the operators on the ba
kwardpath, e.g.:
Ŝ†Ŝ = exp

{

− i

~

∫ ∞

−∞
dt
[

Ĥ1+D(t) − Ĥ1−D(t)
]

}

. (3.43)The advantage of introdu
ing path indi
es should be
ome 
lear by using (3.42) in order to re-write Eq.(3.41). We simply get
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0T̂c

(

Ŝ†Ŝâ−D(t1)â
†
+D(t2)

)}

Tr
{

e−βĤ0

} . (3.44)This shows us that the 
onsidered 
orrelation 〈âH(t1)â
†
H(t2)〉0 
an be 
al
ulated by going into theDira
 pi
ture and performing a time evolution along a 
losed path with the se
ond operator lyingon the forward and the �rst operator lying on the ba
kward part of the 
ontour. We will dis
ussother path-orderings of two operators in the next se
tion. We will �nd that any physi
ally relevant2-point 
orrelation 
an be expressed in terms of path-ordered Green's fun
tions. This motivates us togeneralize the de�nition to higher orders. We therefore de�ne the CTPF Green's fun
tions as thermalaverages (with respe
t to Ĥ0) of path-ordered operators in the Dira
 pi
ture. Furthermore, we multiplywith the 
onvenient prefa
tor in+m−1. Then we have with the abbreviation x ≡ {i, t}:

G±···±(x1, · · · , xn;xn+1, · · · , xn+m)

≡ in+m−1
〈

T̂c

{

Ŝ†Ŝâ±D(x1) · · · â±D(xn)â
†
±D(xn+1) · · · â†±D(xn+m)

}〉

0
. (3.45)These 2n+m fun
tions for any n,m represent the basis of our further 
onsiderations.3.5 Keldysh RotationSin
e the path index introdu
ed in the se
tion above doubles the time degrees of freedom, the CTPFGreen's fun
tions rapidly be
ome very 
omplex. A helpful simpli�
ation is the Keldysh rotationpresented in this se
tion. To this end we will �rst examine the easiest Green's fun
tions of only oneannihilation and one 
reation operator. By rotating them we �nd how to extra
t useful informationout of them. The same 
an and will be done later for higher Green's fun
tions. Taking the de�nition34



3.5 Keldysh Rotation(3.45) and translating ba
k into the Heisenberg pi
ture, we �nd the following four 2-point fun
tions:
G++
ij (t, t′) = i

〈

T̂
{

âi,H(t)â†j,H(t′)
}〉

0
,

G+−
ij (t, t′) = i

〈

â†j,H(t′)âi,H(t)
〉

0
,

G−+
ij (t, t′) = i

〈

âi,H(t)â†j,H(t′)
〉

0
,

G−−
ij (t, t′) = i

〈

ˆ̃T
{

âi,H(t)â†j,H(t′)
}〉

0
. (3.46)These are the time-ordered Green's fun
tion, two Green's fun
tions with a �xed order and the anti-time-ordered Green's fun
tion. They 
an be used to form a 2x2 matrix

G̃ij(t, t
′) ≡

(

G++
ij (t, t′) G+−

ij (t, t′)

G−+
ij (t, t′) G−−

ij (t, t′)

)

. (3.47)Later we will re
ognize the meaning of the matrix (3.47) as a bilinear form a
ting on two 
urrents,where ea
h of them is a two-
omponent ve
tor.For the 
on
rete 
al
ulation of these fun
tions we will have to apply a perturbative expansion.Therefore the fun
tions in Eq. (3.46) will be expressed in the Dira
 pi
ture whi
h allows for a powerseries expansion of the evolution operator (3.42) in a small parameter. To any expansion order n, we will�nd 
orre
tions to the Green's fun
tions of the unperturbed system G
(0)±±
ij (t, t′) where âD(t) = âH(t).These 
orre
ted Green's fun
tions will be denoted by G(n)±±

ij (t, t′). This perturbative pro
edure will bedis
ussed in detail in the next 
hapter. But we should be aware of the fa
t that the relations betweenthe di�erent path-ordered Green's fun
tions, whi
h will be dis
ussed now, do not only hold for theunperturbed or the full Green's fun
tions, but also for any order of the later perturbative expansion[63℄.If we use the the Heaviside step fun
tion θ(t), the time-ordered and the anti-time-ordered Green'sfun
tions de�ned in Eq. (3.46) 
an be expressed in terms of the other two fun
tions:
G++
ij (t, t′) = θ(t− t′)G−+

ij (t, t′) + θ(t′ − t)G+−
ij (t, t′), (3.48)

G−−
ij (t, t′) = θ(t− t′)G+−

ij (t, t′) + θ(t′ − t)G−+
ij (t, t′). (3.49)From this follows the important equation

G++
ij (t, t′) +G−−

ij (t, t′) = G+−
ij (t, t′) +G−+

ij (t, t′). (3.50)This means that, without making use of the Heaviside fun
tion, we 
an always eliminate one of thefour fun
tions in Eq. (3.46) by expressing it in terms of the others. Therefore, the matrix (3.47) 
anbe rotated in su
h a way that one matrix element vanishes. A rotation matrix whi
h does this is:
Q ≡ 1√

2

(

1 1

1 −1

)

. (3.51)This is 
alled the Keldysh rotation whi
h will be very useful for all our 
al
ulations. Note that35
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QQ−1 = 1. Let us still see what the rotation does on a ve
tor:

Q

(

A

B

)

=
1√
2

(

A+B

A−B

)

. (3.52)If the upper 
omponent of the original ve
tor represents a quantity whi
h depends on a time lying onthe forward time path, while the lower 
omponent represents the same quantity at the same time buton the ba
kward time path, the 
omponents of the rotated ve
tor are 
alled 
lassi
al and quantum
omponent:
Ocl(t) ≡

1√
2

[O+(t) +O−(t)] , Oq(t) ≡
1√
2

[O+(t) −O−(t)] . (3.53)There are other 
hoi
es of a 
onvenient basis to handle the doubled time degrees of freedom in theCTPF. A dis
ussion of them 
an be found in Ref. [64℄. But let us stay in the Keldysh basis and seewhat happens to the Green's fun
tion matrix (3.47) when we rotate it: The non-vanishing elementsare the following 
ombinations:
1

2

(

G++
ij (t, t′) −G+−

ij (t, t′) +G−+
ij (t, t′) −G−−

ij (t, t′)
)

= iθ(t− t′)
〈 [

âi,H(t), â†j,H(t′)
] 〉

0
≡ GR

ij(t, t
′),

1

2

(

G++
ij (t, t′) −G−+

ij (t, t′) +G+−
ij (t, t′) −G−−

ij (t, t′)
)

= −iθ(t′ − t)
〈 [

âi,H(t), â†j,H(t′)
] 〉

0
≡ GA

ij(t, t
′),

1

2

(

G++
ij (t, t′) +G−−

ij (t, t′) +G−+
ij (t, t′) +G+−

ij (t, t′)
)

= i
〈 [

âi,H(t), â†j,H(t′)
]

+

〉

0
≡ Aij(t, t

′).(3.54)We were able to write down two elements of the rotated matrix as a Heaviside step fun
tion timesthe thermal average of a 
ommutator. The third non-vanishing element is the expe
tation value ofan anti
ommutator [·, ·]+. We �nd that these 
ommutator fun
tions GR,A are the retarded/advan
edGreen's fun
tions [65,66℄. They appear, e.g., in linear response theory, where the in�uen
e of a smalltime-dependent perturbation on a system in equilibrium is given by the retarded Green's fun
tion GRof the unperturbed system.The rotated matrix reads
Gij(t, t

′) ≡ QG̃ij(t, t
′)Q−1 =

(

Aij(t, t
′) GR

ij(t, t
′)

GA
ij(t, t

′) 0

)

. (3.55)In the following we refer to the stru
ture of the matrix in Eq. (3.55) as the Keldysh stru
ture. We willlater expli
itly see that the �rst hopping-
orre
ted matrix turns out to have the same stru
ture.3.6 Generating Fun
tionalsFor all formalisms presented in the above se
tion, there exist 
orresponding generating fun
tionals fromwhi
h the Green's fun
tions 
an be derived. Their de�nition is quite similar to the partition fun
tion
Z from Eq. (3.1) in equilibrium. In the ITF whi
h deals with equilibrium system it is basi
ally thesame. The only di�eren
e is the in
lusion of a so 
alled sour
e term in the Hamiltonian. It 
onsists36



3.6 Generating Fun
tionalsof auxiliary external �elds ji(t) and j∗i (t) 
oupled to a 
reation or annihilation operator. For bosoni
systems, the ji(t)'s and j∗i (t)'s are 
omplex fun
tions 
alled 
urrents [67℄. Of 
ourse, the 
urrents in theITF depend on imaginary time instead of real time. But from now on, let's spe
ialize on the CTPF.In the Heisenberg pi
ture the sour
e term ĤQ(t) whi
h is 
oupled to the Hamiltonian Ĥ of theoriginal system expli
itly readŝ
HQ,H(t) =

∑

i

[

ji(t)â
†
i,H(t) + j∗i (t)âi,H(t)

]

. (3.56)Sin
e the a
tual physi
al situation is des
ribed when the 
urrents are set to zero, one may ask whatit is needed for. A
tually, there are two answers: First, this term allows for the 
onstru
tion ofthe Green's fun
tions by taking fun
tional derivatives with respe
t to the sour
es. We will see howthis works in a few moments. Se
ond we should remember from Chapter 2 that phase transitionsinvolve symmetry breaking. Sin
e a linear term in the Ginzburg-Landau free energy (2.29) destroys itssymmetri
al behavior (see Fig. 2.3), a standard method to deal with phase transitions is to add a so
alled 
onjugate or symmetry breaking �eld whi
h is linearly 
oupled to the variable whose expe
tationvalue is taken as an order �eld [67℄. So the physi
al reason for introdu
ing 
urrents is to break thesymmetry of the Hamiltonian. Note that for an in�nitely large system it remains broken even if weset the 
urrents equal zero at the end.In the CTPF the generating fun
tional Z[j, j∗] for the Green's fun
tions is usually de�ned in theDira
 pi
ture, sin
e the 
ontour has been de�ned via the Dira
 evolution operator Ŝ†Ŝ from Eq. (3.42).Then the de�nition reads
Z [j, j∗] ≡

〈

T̂c

{

Ŝ†Ŝe−
i
~

R

c
dtĤQ,D(t)

}〉

0
=

〈

T̂c

{

Ŝ†Ŝ exp
[

− i

~

∫ ∞

−∞
dt
∑

i

(

ji,+(t)â†i+,D(t) (3.57)
+ j∗i,+(t)âi+,D(t) − ji,−(t)â†i−,D(t) − j∗i,−(t)âi−,D(t)

)]}

〉

0

.As mentioned above, we 
an derive the 
ontour-ordered Green's fun
tions from Z[j, j∗]. To this endwe must take the fun
tional derivatives with respe
t to the 
urrents and set the 
urrents to zero:
G±···±(i1t1, · · · , i2nt2n) ∼

δ

δj∗i1,±(t1)
· · · δ

δj∗in,±(tn)

δ

δjin+1,±(tn+1)
· · · δ

δji2n,±(t2n)
Z[j, j∗]

∣

∣

∣

∣

j=j∗=0

. (3.58)To see that this is true we only have to 
ompare the result of the fun
tional derivatives with thede�nitions of the Green's fun
tions in the Dira
 pi
ture given by Eq. (3.45). If we take 
are with theprefa
tor, we 
an ex
hange the proportionality sign in Eq. (3.58) by an equality sign: Ea
h derivativewith respe
t to j+, j∗+ gives a fa
tor −i/~, while the derivatives with respe
t to j−, j∗− give a fa
tor
+i/~.With the generating fun
tional of the Green's fun
tions de�ned, we 
an now go a step further and
onstru
t the generating fun
tional of the 
onne
ted Green's fun
tions. This is a
hieved by taking thelogarithm of Z[j, j∗] and multiplying this with a 
onvenient prefa
tor:

F [j, j∗] ≡ −i lnZ[j, j∗]. (3.59)37



3 Green's Fun
tions FormalismsThis fun
tional is 
alled F as in the ITF it is equal to the free energy, when the 
urrents are set to zero.What is meant by 
onne
ted Green's fun
tions will get 
learer in the next se
tion, when we present amethod to perturbatively 
al
ulate the quantity F [j, j∗].A third generating fun
tional that is to be mentioned is the Legendre transform of F [j, j∗] withrespe
t to the 
urrents. This fun
tional is 
alled the e�e
tive a
tion and our �nal goal is to �nd anexpli
it expression for it. The e�e
tive a
tion will no longer be a fun
tional of the 
urrents, but of its
onjugates, the order �elds. For this reason, it is an appropriate 
andidate for the Ginzburg-Landaudes
ription of the phase transition. Yet, we do not give a detailed de�nition of this fun
tional, as wewill extensively dis
uss it later.At �rst we have to �nd a way how to 
al
ulate the generating fun
tional Z, whi
h we 
annot doexa
tly, sin
e the Bose-Hubbard Hamiltonian from Eq. (2.1) 
annot be diagonalized. Thus we rely onperturbation theory in order to be able to pro
eed.
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4 Perturbation ExpansionSummarizing our previous 
onsiderations, we found three di�erent time-dependent formalisms in whi
hGreen's fun
tions or 
orrelation fun
tions are used to des
ribe the system. As we would like to in
ludeboth temperature and real-time dynami
s in the des
ription, we 
on
entrate on the CTPF. Withinthis formalism we would like to derive the e�e
tive a
tion as a Ginzburg-Landau fun
tional, but tothis end we �rst must have expressions for the fun
tionals Z[j, j∗] from Eq. (3.57) and F [j, j∗] fromEq. (3.59). If we knew the Green's fun
tions of the system, we 
ould expand Z[j, j∗] in terms of them.But we have no basis in whi
h the full Hamiltonian ĤBH is diagonal, so it's not possible to 
al
ulatethe Green's fun
tions straightforwardly. With the introdu
tion of the Dira
 pi
ture, however, we havealready prepared the method whi
h will allow for approximating them. To this end we must expandEq. (3.57) not only in the 
urrents, but also in the time evolution operator Ŝ†Ŝ.4.1 Spe
ifying the PerturbationTo pro
eed, we now must be
ome more 
on
rete and de
ide how to split the Bose-Hubbard Hamiltonian
ĤBH from Eq. (2.1). It is natural to take the lo
al intera
tion as the solved part and the non-lo
alhopping as a perturbation. With the de�nition of the o

upation number operator n̂i ≡ â†i âi, the lo
alHamiltonian Ĥ0 
an be written as

Ĥ0 ≡
∑

i

Ĥi ≡
∑

i

(

U

2
n̂i (n̂i − 1) − µn̂i

)

. (4.1)This means that the Fo
k states |N ;n1, · · · , ni, · · ·〉 from se
ond quantization provide a diagonal basisfor Ĥ0, i.e. they solve the Ĥ0 eigenvalue problem. Here N represents the total parti
le number and nidenotes an eigenvalue for n̂i, i.e. the number of parti
les on site i.Note that in our treatment, we 
an even generalize the lo
al Hamiltonian to any Hamiltonian beinga fun
tion f of n̂i. So we 
ould also write:
Ĥ0 ≡

∑

i

fi(n̂i). (4.2)Su
h a generalization would be important if an external trap is 
onsidered. In our simple model,however, Ĥi does not depend on the site index and on ea
h latti
e site we have:
Ĥi|N ;n1, · · · , ni, · · ·〉 = Eni

|N ;n1, · · · , ni, · · ·〉, (4.3)
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4 Perturbation Expansionwith the energy eigenvalues given by
Eni

=
U

2
ni(ni − 1) − µni. (4.4)In the ground-state, all sites are o

upied by the same number of parti
les. We refer to su
h a statein the short-hand notation |n〉 with eigenenergy En per site.In the de�nition of Z in Eq. (3.57), a sour
e term is 
oupled to the system. Although these sour
eterms are lo
al, we 
annot in
lude them in Ĥ0, be
ause they are linear in the 
reation or annihilationoperators, so the Fo
k basis doesn't diagonalize them. We therefore in
lude them in the perturbation.The whole perturbative part then reads in the Dira
 pi
ture:

Ĥ1(t) ≡
∑

P=±

P





∑

i

∫ ∞

−∞
dt



ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t) −
∑

j

Jij â
†
i,P(t)âj,P(t)







 . (4.5)Here and in the following the index D has been dropped as we will ex
lusively work within the Dira
pi
ture. Then the evolution operator Ŝ†Ŝ is de�ned by inserting Eq. (4.5) into Eq. (3.42). With thatde�nition, we 
an write:
Z[j, j∗] = 〈T̂cŜ

†Ŝ〉0. (4.6)This equation formally deviates from Eq. (3.57), be
ause we now have in
luded the sour
e terms intothe perturbative part.We should note that the splitting introdu
ed in Eq. (4.5) di�ers from the 
ommon one in quantum�eld theory, where the non-intera
ting parti
les are taken as the solved problem and the intera
tionas a perturbation. This will have 
onsequen
es, sin
e the usually applied Wi
k theorem holds only forsystems where Ĥ0 is quadrati
 in the 
reation and annihilation operators â†i and âi. In the followingse
tions we will see how to ta
kle this problem, but before we should dis
uss the validity of our ansatz.Up to now, we have justi�ed our 
hoi
e of the perturbation by pra
ti
al reasons. But we 
an onlyexpe
t good results if the Fo
k states approximate well the real physi
al states. This should be true,as long as the o�-diagonal parts that we have thrown in the perturbation Hamiltonian Ĥ1(t) fromEq. (4.5) are small 
ompared with Ĥ0 from Eq. (4.1). The sour
e term, though at �rst only ate
hni
al tool, will gain importan
e after transforming from the 
urrents to the order parameter inthe next 
hapter. As dis
ussed in Se
tion 2.2, the order parameter must be a quantity whi
h vanishesin the normal phase, thus at the onset of super�uidity it is small. However, to be able to des
ribesymmetry-breaking, we will have to take into a

ount all orders up to the fourth one.Considering the kineti
 part as a perturbation seems to be more problemati
, sin
e we want todes
ribe a long-range 
orrelation e�e
t. But we should note that a

ording to well a

epted Monte-Carlo data [30℄, in a three-dimensional latti
e the transition from the MI phase to the SF phase takespla
e at a 
riti
al value J/U ≈ 0.03 or even lower, depending on the value of µ/U . Thus a hopping-expansion suggests itself. We 
an still go one step further and 
onsider the s
aling of the Bose-HubbardHamiltonian with dimension [31,68℄. Ref. [68℄ argues that one must distinguish between non-
ondensedbosons sitting on one site and being able to hop to an adja
ent site, and 
ondensed bosons, whi
h are40



4.2 Dyson Seriesnot lo
alized anymore. For the energy to remain �nite, the hopping matrix element has to be s
aledwith J → J/
√
z, if there is no 
ondensate, while in the presen
e of 
ondensed bosons the s
aling

J → J/z must be applied. Here z = 2d is the number of nearest neighbors in the d-dimensional latti
e.Under this s
aling rule, however, a hopping expansion without loops, i.e. without two simultaneoushopping pro
esses between adja
ent sites, be
omes exa
t in the limit z → ∞. To see that, we mustre
ognize that there are z possibilities for a hopping from one given site to another, thus the energyfor a single hopping pro
ess must be multiplied with z. This 
an
els the denominator from the s
aledhopping strength J/z. For a loop from one given site to another and ba
k, there are still only zpossibilities, but sin
e there are two hopping pro
esses, we now have z2 in the denominator. Thus for
z → ∞ the loop 
ontribution to the total energy vanishes.In high dimensions (like d = 3), our 
hoi
e of the perturbative part in Eq. (4.5) is thus not only apra
ti
al one, but also physi
ally justi�ed.4.2 Dyson SeriesThe following perturbative approa
h is based on a Taylor expansion of the generating fun
tional F [j, j∗]de�ned in Eq. (3.59) with respe
t to the 
urrents and to the hopping parameter. For temporal andspatial 
onstant order parameters at T = 0, this has been done in Ref. [69℄. In Ref. [70℄, this pro
edurehas been applied within the ITF.It seems to be helpful to postpone the expansion of F [j, j∗] and �rst take a look at the expansionof Z[j, j∗]. This expansion 
an be done straightforwardly, but it leads, as we will see, to large and
onfusing formulas. But when we understand the di�eren
es between the generating fun
tionals Z[j, j∗]and F [j, j∗], we �nd the expansion of the latter fun
tional by sele
ting spe
ial terms from the expansionof Z [j, j∗], whi
h 
an be done in an easy graphi
al way.From Eq. (4.6) we see that Z[j, j∗] is nothing else than the thermal average of the time evolutionoperator along the whole 
ontour, so we take a look ba
k to the derivation of a 
ompa
t expressionfor Û(t, t′) in Eqs. (3.16), (3.17), and (3.18). Now we 
an do the opposite: Having a 
losed formulafor the CTPF evolution operator, i.e. T̂cŜ

†Ŝ, we expand it by taking the derivatives with respe
t tothe 
urrents and the hopping parameter. In Eq. (3.58) we have already seen that the derivatives of
Z [j, j∗] with respe
t to the 
urrents, evaluated at j = j∗ = 0, are the Green's fun
tions (times ±i/~).So we have:

Z[j, j∗](J) =
∞
∑

m=0,m′=0

1

(m!)(m′!)

∑

i1,··· ,im+m′∈ {site indices}

∑

P1,··· ,Pm+m′=±

∫ ∞

−∞
dti1 · · ·

∫ ∞

−∞
dtim+m′

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J)ji1,P1
(ti1) · · · jim,Pm(tim)j∗im+1,Pm+1

(tim+1
) · · · j∗im+m′ ,Pm+m′

(tim+m′
) (4.7)with the expansion 
oe�
ients

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J) ≡ (4.8)
δm+m′Z [j, j∗](J)

δji1,P1
(ti1) · · · δjim,Pm(tin)δj∗im+1,Pm+1

(tim+1
) · · · δj∗im+m′ ,Pm+m′

(tim+m′
)

∣

∣

∣

∣

j=j∗=0

=
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4 Perturbation Expansion
=

〈

T̂c

{

â†i1,P1
(ti1) · · · â†im,Pm

(tim)âim+1,Pm+1
(tim+1

) · · · âim+m′ ,Pm+m′
(tim+m′

)

× exp





i

~

∑

ij

∑

P=±

P

∫ ∞

−∞
Jij â

†
i,P(t)âj,P(t)dt





}〉

0

(− i

~
P1) · · · (−

i

~
Pm+m′).Up to now we have only expanded the sour
e term in the evolution operator, so we still have to performan expansion of these 
oe�
ients with respe
t to J around J = 0:

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J) = (4.9)
∞
∑

n=0

1

n!

∑

k1···k2n

(

∂n

∂Jk1kn+1
· · · ∂Jknk2n

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J)

∣

∣

∣

∣

J=0

)

Jk1kn+1
· · · Jknk2n

=
∞
∑

n=0

1

n!

∑

k1···k2n

×
∑

Pk1
···Pkn=±

∫ ∞

−∞
dtk1 · · ·

∫ ∞

−∞
dtkn

Jk1kn+1
· · · Jknk2n

(
i

~
Pk1) · · · (

i

~
Pkn

)(− i

~
P1) · · · (−

i

~
Pm+m′)

〈

T̂c

{

â†i1,Pi1
(ti1) · · · âim+m′ ,Pi

m+m′

(tim+m′
)â†k1,Pk1

(tk1)âkn+1,Pk1
(tk1) · · · â†kn,Pkn

(tkn
)âk2n,Pkn

(tkn
)
}

〉

0

.Note that the thermal averages in this expression are the unperturbed Green's fun
tions as the operatorsare de�ned in the Dira
 pi
ture. They 
an be easily 
al
ulated in the Fo
k basis. We immediatelyre
ognize that all the terms in the sum vanish where the numbers of annihilation operators on ea
hsite does not equal the number of 
reation operators. This automati
ally implies m = m′ and restri
tsthe sum over the originally 2m + 2n site indi
es in ea
h term to a sum over only m + n indi
es, e.g.those belonging to 
reation operators, plus all the permutations that 
an be done to the other m+ nindi
es. We �nally get
Z[j, j∗](J) =

∞
∑

m,n=0

1

(m!)2n!

∑

k1···kn,i1···im

∑

{kn+1···k2n,im+1···i2m}∈{k1···kn,i1···im}

∑

Pk1
···Pkn ,Pi1

···Pi2m
=±

∫ ∞

−∞
dti1 · · ·

∫ ∞

−∞
dt2n

∫ ∞

−∞
dtk1 · · ·

∫ ∞

−∞
dtkm

(
i

~
Pk1) · · · (

i

~
Pkn

)(− i

~
Pi1) · · · (−

i

~
Pi2m

)

×
〈

T̂c

{

â†i1,Pi1
(ti1) · · · âi2m,Pi2m

(ti2m
)â†k1,Pk1

(tk1)âkn+1,Pk1
(tk1) · · · â†kn,Pkn

(tkn
)âk2n,Pkn

(tkn
)
}

〉

0

× ji1,Pi1
(ti1) · · · jim,Pim

(tim)j∗im+1,Pim+1
(tim+1

) · · · j∗i2m,Pi2m
(ti2m

)Jk1kn+1
· · · Jknk2n

. (4.10)As this formula looks very 
onfusing, it would be ni
e to �nd diagrammati
 rules instead. The usualway to do this is to apply Wi
k's theorem for a de
omposition of the Green's fun
tions. But as alreadymentioned above, the requirements of this theorem are not 
omplied. So another te
hnique is ne
essaryin order to treat the problem diagrammati
ally. With the help of the linked-
luster theorem, we 
anredu
e the number of terms to only those made up of 
onne
ted Green's fun
tions or 
umulants [67,71℄.It is possible to de
ompose them into lo
al 
umulants whi
h was done some time ago for the Fermi-Hubbard model [72℄ and re
ently adopted to the Bose-Hubbard model [73℄. We will see how this worksin the following se
tions.
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4.3 Linked-Cluster Theorem4.3 Linked-Cluster TheoremThe 
umulant de
omposition is based on the idea to expand F [j, j∗] rather than Z[j, j∗]. As our �nalgoal will be the derivation of the e�e
tive a
tion, we don't even need Z[j, j∗]. The big advantage thatwe have when we expand F [j, j∗], is the fa
t that the linked-
luster theorem 
an be applied [67℄.To understand the meaning of this theorem, �rst a de�nition of what a 
luster is seems advisable:Asso
iated with a 
luster C is a 
luster Hamiltonian ĤC whi
h 
onsists of some parts of the totalHamiltonian Ĥ = Ĥ0 + Ĥ1. All terms in the perturbative expansion of a physi
al quantity O whi
hare given only by this 
luster Hamiltonian build a 
luster C. Ea
h 
luster 
ontributes a unique weight
W (C) to the expansion of O.Now we 
all a 
luster �linked�, if there are no disjoint hoppings and if all sour
e terms are 
onne
tedby hopping terms. On the other hand, a dis
onne
ted 
luster is a 
luster that 
an be written asthe disjoint union of nonempty sub-
lusters, e.g. A and B with the 
luster Hamiltonians ĤA and
ĤB, respe
tively. Denoting the Hilbert spa
es of these Hamiltonian by εA and εB, C ≡ A

⋃

B is adis
onne
ted 
luster if there are at least two nonempty sub-
lusters with εA⋂ εB = ∅.Let's be more 
on
rete: In our 
ase the Hamiltonian 
ontains sums over all site indi
es. If we takeonly parts of these sums, e.g. if we restri
t the Hamiltonian to only a few site indi
es and makethe same expansion as done before in Eq. (4.10) with the whole Hamiltonian, then we get a 
luster
ontribution to Z[j, j∗]. If we take only one single site i, we get a 
luster of 
urrents �owing in and outof site i. It is, per de�nition, linked. If we add a next neighbor site j to the expansion, the expansionwould in
lude the same terms as before, with 
urrents on one site, but also terms with 
urrents onboth sites i and j. These sub-
lusters 
an appear either a

ompanied by (at least) a hopping betweenboth sites, whi
h means they are linked, or without a hopping, whi
h means they are unlinked.The linked-
luster theorem now states that be
ause of the uniqueness of the weights W (C) and theadditivity property of extensive quantities the weights of dis
onne
ted 
lusters in the expansion ofan extensive quantity have to be zero [71℄. From thermodynami
s we know that the free energy isextensive (be
ause of the logarithm) while the partition fun
tion is not (be
ause of the exponential).This holds as well in our 
ase with the generalization of those thermodynami
al quantities to generatingfun
tionals, be
ause their mathemati
al stru
ture is the same.Therefore we 
an, with the help of this statement, expand the free-energy-like fun
tional F [j, j∗] ≡
−i lnZ[j, j∗] by taking the expansion of Z[j, j∗] from Eq. (4.10) and sorting out unlinked terms. Inthe remaining terms we have to substitute the Green's fun
tion by the so 
alled 
onne
ted Green'sfun
tions or 
umulants. We will see how to do this in the next se
tion.
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4 Perturbation Expansion4.4 Cumulant De
ompositionTo see the relation between the 
onne
ted Green's fun
tions and the Green's fun
tions, we �rst 
onsidera system without hopping. In this 
ase, we �nd out that lnZ[j, j∗]|J=0 is a sum of lo
al quantities:
− i lnZ[j, j∗]

∣

∣

∣

J=0
= −i ln

〈

T̂c exp

{

−i
∑

P=±

P

∫ ∞

−∞
dt
∑

i

[

ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t)
]

}〉

0

= −i
∑

i

ln

〈

T̂c exp

{

−i
∑

P=±

P

∫ ∞

−∞
dt
[

ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t)
]

}〉

0

. (4.11)From this we 
an dire
tly see what the linked-
luster theorem states: The expansion of this fun
tional
onsists only of linked 
lusters, whi
h in this 
ase are lo
al quantities. Fun
tional derivatives withrespe
t to 
urrents on di�erent sites vanish.The 
onne
ted Green's fun
tions making up the expansion of F [j, j∗]|J=0 are related to the Green'sfun
tions by a de
omposition formula that 
an easily be derived by taking the fun
tional derivativesof Z[j, j∗]|J=0 and 
omparing it with the same derivatives of lnZ[j, j∗]|J=0. One will �nd that aGreen's fun
tion of n variables (or more a

urately: sets of variables {P, t, i}) de
omposes into the
orresponding 
umulant with the same n variables plus all possible produ
ts of lower 
umulants havingaltogether the same n variables again.As we have set the hopping to zero, the unperturbed 
umulants denoted by Ci 
an be expressedin terms of the unperturbed Green's fun
tions G(0). Be
ause of the U(1)-symmetry, these vanish forunequal numbers of 
reation and annihilation operators on ea
h site whi
h redu
es the number of termsin the de
omposition. For the 2-point fun
tions, we have for example:
CP1P2

i (t1, t2) = δijG
P1P2(0)
ij (t1, t2). (4.12)Apart from this, in the following we will need only one more de
omposition:

CP1P2P3P4

i (t1, t2; t3, t4) =δijδjkδklG
P1P2P3P4(0)
ijkl (t1, t2; t3, t4)

− iCP1P3

i (t1, t3)C
P2P4

i (t2, t4) − iCP1P4

i (t1, t4)C
P2P3

i (t2, t3), (4.13)where GP1P2P3P4,(0)
ijkl (t1, t2; t3, t4) was de�ned in Eq. (3.45). Note the prefa
tor in+m−1 there whi
h wasin
luded in the de�nitions (4.12) and (4.13). This explains the appearan
e of the fa
tor i in front ofthe de
ompositions in Eq. (4.13).4.5 Diagrammati
 RulesNow the expansion of the system 
an easily be depi
ted diagrammati
ally. To this end we make thefollowing de�nitions:

• A 
umulant CP1···P2n

i (t1, · · · , t2n) is represented by a bla
k 
ir
le with n entering legs and n
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4.5 Diagrammati
 Rulesexiting legs. For example we have for n = 1:
t2P2 t1P1

i
= CP1P2

i (t1, t2). (4.14)
• The 
urrents ji,P2

(t2) or j∗i,P1
(t1) are represented by bla
k squares with one leg, entering orexiting, respe
tively. As we 
an see in Eq. (4.10), ea
h derivative with respe
t to a 
urrent onthe ba
kward path brings down a minus sign, so we in
lude this sign into the de�nition of thegraph:

it2P2
= P2ji,P2

(t2) , it1P1
= P1j

∗
i,P1

(t1). (4.15)
• Multiplying a 
umulant with 
urrents, integrating over the 
ontinuous variables, i.e. the time,and summing over dis
rete variables, i.e. site and path indi
es, is represented by 
ombining the
orresponding graphs. With this we obtain �
losed� graphs with no indi
es, as for instan
e:

=
∑

ij

∑

P1,P2

P1P2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 δijC

P1P2

i (t1, t2)j
∗
i,P1

(t1)jj,P2
(t2). (4.16)This diagram makes up the expansion up to se
ond order in the 
urrents of a system withouthopping.When we now add a hopping term to the Hamiltonian and expand F [j, j∗](J) only in the 
urrents, weget terms whi
h are made up of perturbed 
umulants, just like the expansion of Z[j, j∗](J) only in the
urrents in Eq. (4.7), was made up of perturbed Green's fun
tions. These perturbed 
umulants arenot ne
essarily lo
al and a de
omposition 
an involve averages like 〈âH(t)〉0 (whi
h obviously are zerowithout hopping).However, we still have to expand the time-evolution operator with respe
t to the hopping and afterthat, only the unperturbed 
umulants will remain. These are lo
al, but they 
an be linked to ea
hother via a hopping.If we want to see this expli
itly, we 
an go ba
k to Eq. (4.7) and repla
e the Green's fun
tionsthere by the 
onne
ted Green's fun
tions. They are 
omposed by various Green's fun
tions. Next weexpand the hopping. Then we get an expansion in terms of unperturbed Green's fun
tion. We re-writethem in terms of unperturbed 
umulants, and �nally �nd in ea
h order, what we already know fromthe linked-
luster theorem without any 
omputation, namely that the weight of all the terms where atleast one 
umulant stays unlinked to the others, is zero.

• In our diagrammati
 approa
h, we therefore have to add the possibility of linking 
umulantsby a hopping. This is done by an internal line between two 
umulants. The respe
tive timesasso
iated with the hoppings are always integrated and the path indi
es are always summed.45



4 Perturbation ExpansionAsso
iated with the path index is a prefa
tor ± of the hopping term. For instan
e we obtain:
t2P2 t1P1

j i
= J̃ij

∑

P

P

∫ ∞

−∞
dt CP1P

i (t1, t)C
PP2

j (t, t2) (4.17)Here we have de�ned the dimensionless matrix element J̃ij ≡ Jij/J where J is the hoppingstrength. This will allow us a better bookkeeping at a later stage.
• For the whole expansion of F [j, j∗], we need the sum of all topologi
ally nonequivalent 
onne
teddiagrams. Ea
h diagram must be 
losed. We still have to 
ompare the diagram with Eq. (4.10)in order to get the right number of i and ~ prefa
tors. Finally, another prefa
tor 
alled symmetryfa
tor has to be taken into a

ount.The last point requires a further dis
ussion: Let's pi
k one 
onne
ted diagram. If we inter
hange twointernal lines in the diagram, we might get either the same diagram representing the same de
omposi-tion or a similar diagram whi
h, however, represents another term in the de
omposition. The same istrue when we inter
hange two entering or two exiting external lines or two site indi
es. If we assumethat all these permutations lead to di�erent terms, the prefa
tor 1

(n!)(m!)2 in the expansion (4.10) wouldbe 
an
eled in the diagrammati
 s
heme. In truth we now have over
ounted all diagrams whi
h appearrepeatedly in the de
omposition. To 
ompensate this, we have to divide through the symmetry fa
torwhi
h is the number of times that one permutation of internal lines, entering or exiting lines or verti
esgives the same diagram.If there are, e.g., M external lines entering (or exiting) one vertex, any of the M ! permutations ofthose lines will lead to the same diagram. This is also true for M internal lines in the same dire
tion.The third symmetry to be 
onsidered is the symmetry between equivalent verti
es. Equivalent meansthat the number of any type of lines (entering, exiting, internal, external) is the same at these verti
es.ForM verti
es with su
h a symmetry we would get a fa
torM ! as well. If we have any doubts with thesymmetry fa
tor, we 
an 
he
k it by writing down and 
ounting all permutations in the de
omposition.4.6 Expansion in the MI PhaseAs the number of n-point fun
tions in the CTPF in
reases exponentially with every order, we willbegin our problem slowly: We know that there is a phase transition, so the behavior of the gas shouldstrongly depend on whether we are in the MI or the SF phase. Remember that in the latter phase,the U(1)-symmetry is broken and even in equilibrium the order �elds di�er from zero. For that reasonwe have to take into a

ount terms of at least fourth order in the order parameter when we want todeal with the super�uid phase. The MI system, however, 
an be well des
ribed only by the knowledgeof the 2-point fun
tion. Therefore, we will restri
t ourselves at �rst to the MI 
ase. When we haveseen how the formalism works in this relatively easy 
ase, it will be not too di�
ult to extend our
onsiderations afterwards to the super�uid 
ase.This means, we now have to expand F [j, j∗](J) up to se
ond order in the 
urrents and to �rst order
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4.6 Expansion in the MI Phasein the hopping. We therefore denote our result F (2,1). It reads
F (2,1)[j, j∗] =

1

~2

{

+
J

~

}

. (4.18)Note that the prefa
tor −i from the de�nition of F in Eq. (3.59) and the i's 
oming from the expansionin Eq. (4.10) are killed by the prefa
tor in the de�nition of the Green's fun
tions in Eq. (3.45).We now have put a lot of work into �nding an easy way of obtaining and writing down this expansionin a diagrammati
 way. So it may seem strange to go ba
k from these ni
e graphs to big formulas, butwe still have to see how the Legendre transformation of this fun
tional works in detail, so we are notyet at the end.As we don't have to distinguish between the 
onne
ted Green's fun
tions and the Green's fun
tionshere due to GP1P2(0)
ij (t1, t2) = δijG

P1P2(0)
ij (t1, t2) = CP1P2

i (t1, t2), the kernel in Eq. (4.18) delivers us aformula for the �rst hopping-
orre
ted 
ontour-ordered Green's fun
tions:
G

P1P2(1)
ij (t1, t2) ≡ G

P1P2(0)
ij (t1, t2) +

Jij
~

∑

P

P

∫ ∞

−∞
dt G

P1P(0)
ii (t1, t)G

PP2(0)
jj (t, t2). (4.19)We 
an interpret these Green's fun
tions as the elements of a 2x2 matrix G̃

(1)
ij (t1, t2) like the onede�ned in Eq. (3.47). It a
ts on the 
urrents whi
h are now written as 2-
omponent ve
tors. The
orresponding signs P1,2 
an be in
luded in ea
h ve
tor by putting a minus sign in front of the lower
omponent. We 
an then write:

F (2,1)[j, j∗] =

1

~2

∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

{

(

j∗+,i(t1),−j∗−,i(t1)
)

(

G
++(1)
ij (t1, t2) G

+−(1)
ij (t1, t2)

G
−+(1)
ij (t1, t2) G

−−(1)
ij (t1, t2)

)(

j+,j(t2)

−j−,j(t2)

)}

≡ 1

~2

∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j̃

∗
i (t1)G̃

(1)
ij (t1, t2)j̃j(t2) (4.20)with the de�nition of the ve
tor 
urrents

j̃i(t) ≡
(

j+,i(t)

−j−,i(t)

)

, j̃
∗
i (t) ≡

(

j∗i,+(t),−j∗i,−(t)
)

. (4.21)Now we perform the Keldysh rotation (3.51), i.e. we insert 1 = QQ−1 in front and behind of thematrix. We then �nd the rotated 
urrents Qj and j∗Q−1, a

ording to (3.53):
ji(t) ≡ Qj̃i(t) =

(

jq,i(t)

jcl,i(t)

)

=
1√
2

(

j+,i(t) − j−,i(t)

j+,i(t) + j−,i(t)

)

, (4.22)
j∗i (t) ≡ j̃

∗
i (t)Q

−1 =
(

j∗q,i(t), j
∗
cl,i(t)

)

=
1√
2

(

j∗+,i(t) − j∗−,i(t), j
∗
+,i(t) + j∗−,i(t)

)

. (4.23)The question now is whether the rotated matrix QG
(1)
ij Q

−1 really has the desired Keldysh stru
ture47



4 Perturbation Expansion(3.55). Obviously, this is true for vanishing hopping Jij = 0:
F (2,1)[j, j∗]

∣

∣

∣

J=0
=
∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

(

j∗q,i(t1), j
∗
cl,i(t1)

)

(

A
(0)
ij (t1, t2) G

R(0)
ij (t1, t2)

G
A(0)
ij , (t1, t2) 0

)(

jq,j(t2)

jcl,j(t2)

)

=
∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j∗i (t1)G

(0)
ij (t1, t2)jj(t2) (4.24)Let us give, at this pla
e, the expli
it expressions for those unperturbed matrix elements whi
h 
an beeasily 
al
ulated from the de�nition Eq. (3.54) as we know the unperturbed eigenstates |ni〉, given bythe eigenvalue problem Ĥi,0|ni〉 ≡ En|ni〉:

G
R(0)
ij (t1, t2) = iδijθ(t1 − t2)

∞
∑

n=0

e−βEn

Z(0)

[

(n+ 1)e
i
~
(En+1−En)(t2−t1) − ne

i
~
(En−En−1)(t2−t1)

]

, (4.25)
G

A(0)
ij (t1, t2) = −iδijθ(t2 − t1)

∞
∑

n=0

e−βEn

Z(0)

[

(n+ 1)e
i
~
(En+1−En)(t2−t1) − ne

i
~
(En−En−1)(t2−t1)

]

, (4.26)
A

(0)
ij (t1, t2) = iδij

∞
∑

n=0

e−βEn

Z(0)

[

ne
i
~
(En−En−1)(t2−t1) + (n + 1)e

i
~
(En+1−En)(t2−t1)

]

. (4.27)Not surprisingly, the expressions in Eqs. (4.25)�(4.27) only depend on the time di�eren
e t1 − t2. Thisinvarian
e under time translations is dire
tly related to the 
onservation law of energy by the Noethertheorem [74℄. This general feature of time-independent Hamiltonians always allows us to eliminate onetime argument of the Green's fun
tions, e.g.:
G(t1, t2) = G(t1 − t2, 0). (4.28)But now let's go ba
k to our a
tual problem and look at the Keldysh rotation of the perturbedmatrix in Eq. (4.20). It reads expli
itly:

G
(1)
ij ≡ 1

2

(

G
++(1)
ij +G

+−(1)
ij +G

−+(1)
ij +G

−−(1)
ij G

++(1)
ij −G

+−(1)
ij +G

−+(1)
ij −G

−−(1)
ij

G
++(1)
ij +G

+−(1)
ij −G

−+(1)
ij −G

−−(1)
ij G

++(1)
ij −G

+−(1)
ij −G

−+(1)
ij +G

−−(1)
ij

)

. (4.29)The next step is straightforward, but a little bit lengthy: We have to insert the expression (4.19) intoEq. (4.29). The unperturbed part of ea
h matrix element 
an immediately be separated into a matrix
G

(0)
ij (t1, t2). The perturbed part of ea
h Green's fun
tion 
onsists of a sum of two produ
ts

∑

P

P G
P1P(0)
ii (t1, t)G

PP2(0)
jj (t, t2), (4.30)so in ea
h matrix element we have in total 8 terms. But we 
an fa
torize them and then exploit theidentity in Eq. (3.50) whi
h then allows for a further fa
torization. With this we �nd, indeed, thevanishing of the lower right 
omponent in Eq. (4.29). Furthermore, with Eq. (3.54) we 
an expressea
h o�-diagonal element in terms of the 
orresponding o�-diagonal element of the unperturbed matrix

48



4.6 Expansion in the MI Phaseand obtain:
G

R(1)
ij (t1, t2) = G

R(0)
ij (t1, t2) +

Jij
~

∫ ∞

−∞
dt G

R(0)
ii (t1, t)G

R(0)
jj (t, t2), (4.31)

G
A(1)
ij (t1, t2) = G

A(0)
ij (t1, t2) +

Jij
~

∫ ∞

−∞
dt G

A(0)
ii (t1, t)G

A(0)
jj (t, t2). (4.32)This very ni
e s
heme, whi
h holds for the advan
ed and retarded Green's fun
tions, does not workwith the upper left element in Eq. (4.29). As we will later see, this is not a big problem, as this matrixelement will not enter our equations of motion. Nevertheless, for the sake of 
ompleteness, we give theresult here:

A
(1)
ij (t1, t2) = A

(0)
ij (t1, t2) +

Jij
~

∫ ∞

−∞
dt
(

G
R(0)
ii (t1, t)A

(0)
jj (t, t2) +A

(0)
ii (t1, t)G

A(0)
jj (t, t2)

)

. (4.33)Now we would like to write down the perturbed Green's fun
tion matrix (4.29) as a matrix whi
his built up of the unperturbed matri
es. We 
ould expe
t that the hopping 
orre
tion is given asthe produ
t of two unperturbed matri
es. But this turns out to be false. We �nd that the elements(4.31)�(4.33) are produ
ed, when we interpose the Pauli matrix σ1 ≡
(

0 1

1 0

) between the Green'sfun
tions [59℄, i.e.:
G

(1)
ij (t1, t2) = G

(0)
ij (t1, t2) +

Jij
~

∫ ∞

−∞
dt G

(0)
ii (t1, t)σ

1G
(0)
jj (t, t2). (4.34)Finally, we 
an bring the whole expansion (4.18) to the following form:

F (2,1)[j, j∗] =
1

~2

∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

(

j∗q,i(t1), j
∗
cl,i(t1)

)

(

A
(1)
ij (t1, t2) G

R(1)
ij (t1, t2)

G
A(1)
ij (t1, t2) 0

)(

jq,j(t2)

jcl,j(t2)

)

=
1

~2

∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j∗i (t1)G

(1)
ij (t1, t2)jj(t2). (4.35)
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5 E�e
tive A
tion in the MI PhaseIn the previous se
tion we expanded the generating fun
tional of 
onne
ted Green's fun
tions F [j, j∗]up to se
ond order in the 
urrents j and j∗. These have only been a te
hni
al tool to break the U(1)-symmetry of the system. In the real physi
al system, however, they are zero. Therefore, we wouldlike to repla
e them by a quantity being manifest in nature. As already mentioned, se
ond-orderphase transitions 
an be understood with the help of an order �eld. In the 
ase of the transition fromthe MI to the SF phase, the 
ondensate amplitude ~Ψi,±(t) = 〈âi,±(t)〉0 and its 
omplex 
onjugate
~Ψ∗

i,±(t) = 〈â†i,±(t)〉0 are a good 
hoi
e for an order �eld. Let us now see how we 
an �nd a fun
tionalof Ψ and Ψ∗, starting from F [j, j∗].5.1 Legendre TransformationThe way to perform su
h a variable 
hange, is the Legendre transformation. In this se
tion, we wantto show the general formalism for transforming the free energy into the e�e
tive a
tion. As a result, wewill see that we have to invert the Green's fun
tions that we have found in the expansion of F [j, j∗] inEq. (4.18). In our spe
ial 
ase of a hopping expansion, the inversion s
heme that we will apply for thehopping-perturbed fun
tion is the �heart� of the formalism, as it impli
itly in
ludes a resummation ofthe hopping diagrams. We will denote an own se
tion to see how this works in detail. In the presentse
tion, however, we do not yet 
onsider the hopping expansion, thus we are not restri
ted to a 
ertainorder in the hopping. Instead we 
on
entrate on the expansion in the order �elds, whi
h are taken intoa

ount up to the se
ond order.From the de�nition of F [j, j∗] in Eqs. (3.57) and (3.59) we know that
δF [j̃, j̃

∗
]

δj̃
∗
i (t)

=
1

~

(

〈âi,+(t)〉0
〈âi,−(t)〉0

)

, (5.1)where the fun
tional derivative is de�ned a

ording to Eq. (4.21) as
δ

δj̃
∗
i (t)

≡





δ
δj∗+,i(t)

− δ
δj∗

−,i(t)



 . (5.2)We 
an exploit relation (5.1) to de�ne the order parameter.
Ψ̃i(t) =

(

Ψi,+(t)

Ψi,−(t)

)

≡ δF [j̃, j̃
∗
]

δj̃
∗
i (t)

. (5.3)Note that from the de�nition (5.2), the ba
kward 
omponent of Ψ̃ does not have the usual minus51



5 E�e
tive A
tion in the MI Phasesign. The relation (5.3) means that j̃ and Ψ̃ are 
onjugate variables whi
h motivates us to introdu
ea Legendre transformation. This will lead from the generating fun
tional of the 
onne
ted Green'sfun
tions to the generating fun
tional of the one-parti
le irredu
ible Green's fun
tions, i.e. the e�e
tivea
tion Γ[Ψ̃, Ψ̃
∗
]. The transformation is given as usual by

Γ[Ψ̃, Ψ̃
∗
] ≡ F

[

j̃[Ψ̃, Ψ̃
∗
], j∗[Ψ̃, Ψ̃

∗
]
]

−
∑

i

∫ ∞

−∞
dt
(

j̃
∗
i [Ψ̃, Ψ̃

∗
](t) · Ψ̃i(t) + Ψ̃

∗
i (t) · j̃i[Ψ̃, Ψ̃

∗
](t)
)

. (5.4)To determine this quantity expli
itly, we must express the 
urrents j̃ and j̃
∗ in terms of the order �elds

Ψ̃ and Ψ̃
∗. We 
an do this by performing the fun
tional derivative (5.3) in (4.35),

Ψ̃i(t1) =
1

~2

∑

j

∫ ∞

−∞
dt2 G̃ij(t1, t2)j̃j(t2), (5.5)with G̃ij(t1, t2) being impli
itly de�ned in Eq. (4.20). A subsequent inversion yields:

j̃i(t1) = ~
2
∑

j

∫ ∞

−∞
dt2 G̃

−1
ij (t1, t2)Ψ̃j(t2). (5.6)Putting this into Eq. (5.4) gives us the e�e
tive a
tion, with an index (2,m) to stress that it 
omesfrom a se
ond-order expansion in the �elds, while the hopping order is (still) not spe
i�ed:

Γ(2,m)[Ψ̃, Ψ̃
∗
] = −~

2
∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ψ̃

∗
i (t1)G̃

−1
ij (t1, t2)Ψ̃j(t2). (5.7)It is 
onvenient to rotate the expressions on the right side of Eq. (5.4), leaving us with Γ as a fun
tionalof the rotated order �elds Ψi(t). With the de�nition (5.3), we �nd

Ψi(t) = QΨ̃i(t) =

(

Ψi,cl(t)

Ψi,q(t)

)

, Ψ
∗
i (t) = Ψ̃

∗
i (t)Q

−1 =
(

Ψ∗
i,cl(t),Ψ

∗
i,q(t)

)

. (5.8)Note that the 
lassi
al 
omponent is the one on top/on the left, whi
h di�ers from the de�nition of
j, j∗ in Eqs. (4.22) and (4.23). For the rotation of the matrix, we note

QG̃
−1
Q−1 = Q−1G̃

−1
Q = (Q−1G̃Q)−1 = G−1. (5.9)So we have to invert the matrix given in Eq. (4.35) whi
h has the Keldysh stru
ture from Eq. (3.55).This leads to:

G−1
ij (t1, t2) =





0
[

GA
ij(t1, t2)

]−1

[

GR
ij(t1, t2)

]−1
Ãij(t1, t2)



 . (5.10)In this matrix, the inverse fun
tions of the advan
ed and the retarded Green's fun
tions appear. The
52



5.2 Frequen
y Spa
e Green's Fun
tionsentry in the third non-vanishing 
omponent is given by
Ãij(t1, t2) = −

∑

k,l

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
[

GR
ik(t1, t)

]−1
Akl(t, t

′)
[

GA
lj(t

′, t2)
]−1

. (5.11)The �nal result for the e�e
tive a
tion in Keldysh spa
e reads
Γ(2,m) [Ψ,Ψ∗] = −~

2
∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ψ

∗
i (t1)





0
[

GA
ij(t1, t2)

]−1

[

GR
ij(t1, t2)

]−1
Ãij(t1, t2)



Ψj(t2).(5.12)We note that this is always zero if Ψq = Ψ∗
q = 0, i.e. when the value of Ψ and Ψ∗ do not dependwhether time evolves forward or ba
kward. Thus, we have an important normalization property of thee�e
tive a
tion [75℄:

Γ
[

Ψcl,Ψ
∗
cl,Ψq = 0,Ψ∗

q = 0
]

= 0. (5.13)Now, the a
tual problem is the 
al
ulation of the matrix elements in Eq. (5.10). For the unper-turbed system, this is a straightforward task. We only have to �nd the inverse of the unperturbedretarded/advan
ed Green's fun
tions, whi
h will be done in the next se
tion. Afterwards, we will dealwith a hopping-perturbed system. As already mentioned, the inversion there will work di�erently.5.2 Frequen
y Spa
e Green's Fun
tionsTo �nd the inverse fun
tions, it is 
onvenient to perform the Fourier transformation
f(ω) =

∫ ∞

−∞
dt f(t)eiωt (5.14)for quantities related to annihilation operators and

f∗(ω) =

∫ ∞

−∞
dt f∗(t)e−iωt (5.15)for its 
onjugates. The inverse relations read 
orrespondingly

f(t) =
1

2π

∫ ∞

−∞
dω f(ω)e−iωt , f∗(t) =

1

2π

∫ ∞

−∞
dω f∗(ω)eiωt. (5.16)In parti
ular, this transformation will turn out to be useful for a later resummation. We will see thisat the end of this se
tion when we take a look at the hopping-
orre
ted Green's fun
tion. But let'sbegin with the inversion of the unperturbed retarded fun
tion de�ned in Eq. (4.25). To �nd its Fouriertransform G

R(0)
ij (ω1, ω2), we use the integral representation of the step fun
tion:

θ(t1 − t2) = lim
ǫ→0+

∫ ∞

−∞

i/2π

x+ iǫ
e−i(t1−t2)xdx. (5.17)
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5 E�e
tive A
tion in the MI PhaseIn the following we will suppress the limit-symbol for e
onomi
 reasons. The Dira
 δ-fun
tion has thefollowing Fourier representation
δ(ω1 − ω2) =

1

2π

∫ ∞

−∞
ei(ω1−ω2)t dt. (5.18)Performing the substitution t ≡ t1 − t2, we have

G
R(0)
ij (ω1, ω2) = i

δij

Z(0)

∞
∑

n=0

e−βEn

∫ ∞

−∞
dt1 ei(ω1−ω2)t1

∫ ∞

−∞
dt eitω2

∫ ∞

−∞
dx

i/2π

x+ iǫ
e−itx

×
[

(n+ 1)e−
i
~
(En+1−En)t − n e−

i
~
(En−En−1)t

]

=
−δij
Z(0)

∞
∑

n=0

e−βEn δ(ω2 − ω1)

∫ ∞

−∞

dx

x+ iǫ

∫ ∞

−∞
dt

×
[

(n+ 1)e−
i
~
(En+1−En−~ω2+~x)t − ne−

i
~
(En−En−1−~ω2+~x)t

]

=
−2πδij

Z(0)

∞
∑

n=0

e−βEnδ(ω2 − ω1)

×
∫ ∞

−∞
dx



(n + 1)
δ
(

En+1−En

~
− ω2 + x

)

x+ iǫ
− n

δ
(

En−En−1

~
− ω2 + x

)

x+ iǫ





= 2πδijδ(ω1 − ω2)
1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω2 − iǫ

− n
En−En−1

~
− ω2 − iǫ

)

. (5.19)For pra
ti
al reasons we de�ne the fun
tion
gR(ω) ≡ 1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω − iǫ

− n
En−En−1

~
− ω − iǫ

)

. (5.20)With this we 
an write 
ompa
tly:
G

R(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)gR(ω1). (5.21)We see that the unperturbed fun
tion is diagonal in its spatial as well as in its temporal variables. Sothe inverse of it reads

[

G
R(0)
ij (ω1, ω2)

]−1
=

1

2π
δijδ(ω1 − ω2)

1

gR(ω1)
. (5.22)Repeating the whole pro
edure for the advan
ed Green's fun
tion shows that it is nothing but the
omplex 
onjugate of (5.22):

G
A(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)gA(ω1). (5.23)with

gA(ω) ≡ 1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω + iǫ

− n
En−En−1

~
− ω + iǫ

)

. (5.24)
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5.2 Frequen
y Spa
e Green's Fun
tionsAs in the 
ase of the retarded fun
tion, this representation in Fourier spa
e allows for an immediateinversion. For 
ompleteness, we still give the Fourier representation of the third non-vanishing matrixelement Aij :
Aij(ω1, ω2) = 2πδijδ(ω1 − ω2)

∞
∑

n=0

e−βEn [nδ(ω1 − ωn) + (n+ 1)δ(ω1 − ωn+1)]

≡ 2πδijδ(ω1 − ω2)a(ω1), (5.25)where we have de�ned
ωn ≡ En − En−1

~
. (5.26)In Ref. [66℄ it is shown by a spe
tral analysis of the Green's fun
tions that Aij(ω1, ω2) equals thedissipative part of the time-ordered Green's fun
tion. The whole Green's fun
tion matrix reads:

G
(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)

(

a(ω1) gR(ω1)

gA(ω1) 0

)

≡ 2πδ(ω1 − ω2)G
(0)
ij (ω1). (5.27)We have already found the form of the inverse matrix fun
tion in Eq. (5.10). To write it downexpli
itly, we still have to take a look at the 
omponent Ãij . It is given in time spa
e by Eq. (5.11) asa double temporal integral. In Fourier spa
e, these integrals be
ome trivial be
ause of the frequen
y
onservation. Thus we �nd

Ãij(ω1, ω2) = − 1

2π
δ(ω1 − ω2)δij

a(ω1)

gR(ω1)gA(ω1)
≡ − 1

2π
δ(ω1 − ω2)δij ã(ω1). (5.28)This allows for the following writing

[

G
(0)
ij (ω1, ω2)

]−1
=

1

2π
δijδ(ω1 − ω2)

(

0 1/gA(ω1)

1/gR(ω1) ã(ω1)

)

≡ 1

2π
δ(ω1 − ω2)

[

G
(0)
ij (ω1)

]−1
.(5.29)Let us still take a look at the Fourier transform of the �rst hopping-
orre
ted Green's fun
tion fromEq. (4.34), and the free energy from Eq. (4.35):

~
2F [j, j∗] =

∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j∗i (t1)G

(1)
ij (t1, t2)jj(t2) (5.30)

=
∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

{

j∗i (t1)G
(0)
ij (t1, t2)jj(t2) +

Jij
~

∫ ∞

−∞
dt j∗i (t1)G

(0)
ii (t1, t)σ

1G
(0)
jj (t, t2)jj(t2)

}

.Using the Fourier representation of all quantities in Eq. (5.30) and doing the time integrations weobtain δ-fun
tions, whi
h 
an be integrated out. This leaves us with the following expression:
∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

{

j∗i (ω1)G
(0)
ij (ω1, ω2)jj(ω2) +

∫ ∞

−∞

dω

2π

Jij
~

j∗i (ω2)G
(0)
ii (ω1, ω)σ1G

(0)
jj (ω, ω2)jj(ω2)

}

.(5.31)55



5 E�e
tive A
tion in the MI PhaseInserting Eq. (5.27) in Eq. (5.31), two frequen
y integrations be
ome trivial. We get
~

2F [j, j∗] =

∫ ∞

−∞

dω1

2π

{

j∗i (ω1)G
(0)
ij (ω1)jj(ω1) +

Jij
~

j∗i (ω2)G
(0)
ii (ω1)σ

1G
(0)
jj (ω1)jj(ω1)

}

. (5.32)This shows that we don't have to integrate over inner frequen
y variables in Fourier spa
e. Instead,the hopping links two 
umulants via a simple multipli
ation. The whole hopping-
orre
ted Green'sfun
tion 
an be dire
tly taken from Eq. (5.32):
G

(1)
ij (ω1) = G

(0)
ij (ω1) +

Jij
~

G
(0)
ii (ω1)σ

1G
(0)
jj (ω1), (5.33)or, if we want to keep both frequen
y variables:

G
(1)
ij (ω1, ω2) = G

(0)
ij (ω1, ω2) +

∫ ∞

−∞

dω

2π

Jij
~

G
(0)
ii (ω1, ω)σ1G

(0)
jj (ω, ω2)

= 2πδ(ω1 − ω2)

[

G
(0)
ij (ω1) +

Jij
~

G
(0)
ii (ω1)σ

1G
(0)
jj (ω1)

]

. (5.34)5.3 ResummationWe now want to 
onsider expli
itly a system with hopping. What is di�erent then? The matrix in Eq.(5.12) still has the same form, but until now we have only found how to invert the unperturbed Green'sfun
tions. The perturbed matrix G
(1)
ij (t1, t2), however, is built up of the perturbed fun
tions from Eqs.(4.31)�(4.33) whi
h are not lo
al. In the temporal variables, we pro
eed as before by diagonalizingthese fun
tions via a transformation into frequen
y spa
e. For the spatial variables, however, we do nottry an exa
t diagonalization, although this would be possible for a homogeneous system by performinganother Fourier transformation into k-spa
e. But as we are doing a hopping expansion, we have asystemati
al reason to demand for the inverted Green's fun
tion that it has the form of a power seriesin the hopping as well. This motivates us to perform the inversion iteratively. We start with theequation
∑

k

G
(1)
ik (ω)

[

G
(1)
kj (ω)

]−1
= δij . (5.35)Now, the iterative pro
edure works the following way: Instead of [G(1)

kj (ω)
]−1, we plug into thisequation the zeroth-order solution, i.e. [G(0)

kj (ω)
]−1 from Eq. (5.29). The expression for G

(1)
ik (ω) isgiven by Eq. (5.33). Then left side of Eq. (5.35) reads

δij +
Jij
~

G
(0)
ii (ω)σ1. (5.36)We see that the se
ond term, whi
h is linear in Jij , di�ers from the right side of Eq. (5.35). Wesubtra
t this term from [

G
(0)
kj (ω)

]−1, whi
h gives us a better approximation of [G(1)
kj (ω)

]−1. Let ustherefore de�ne:
[

G
(1)
ij (ω)

]−1
≡
[

G
(0)
ij (ω)

]−1
(

δij −
Jij
~

G
(0)
ij (ω)σ1

)

. (5.37)
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5.3 ResummationBy re-inserting Eq. (5.37) in Eq. (5.35), we �nd that now the right side deviates from left side only byterms whi
h are of se
ond-order in J . To be 
onsistent with our hopping expansion, these terms mustbe negle
ted. Although Eq. (5.37) is not the mathemati
ally the inverse of Eq. (5.33), in a physi
alsense it is, sin
e Eq. (5.33) approximates the full Green's fun
tion G and Eq. (5.37) approximates theinverse of it G−1.From Eq. (5.37) we 
an dire
tly read o� the Green's fun
tion of two frequen
y variables. We mustonly note the prefa
tor 1/2π from Eq. (5.29):
[

G
(1)
ij (ω1, ω2)

]−1
=
δ(ω1 − ω2)

2π

[

G
(0)
ij (ω1)

]−1
(

δij −
Jij
~

G
(0)
ij (ω1)σ

1

)

=
[

G
(0)
ij (ω1, ω2)

]−1
(

δij −
Jij
2π~

G
(0)
ij (ω1, ω2)σ

1

)

. (5.38)The se
ond line of this equation shows us that the hopping has to be divided by 2π, when we expressthe inverse Green's fun
tion in terms of Green's fun
tions of two frequen
y variables. The retardedand advan
ed 
omponents of this matrix read:
[

G
R/A(1)
ij (ω1, ω2)

]−1
= δ(ω1 − ω2)

1

2πgR/A(ω1)

{

δij − gR/A(ω1)
Jij
~

}

. (5.39)Now we 
an get the expli
it expression for the hopping-expanded e�e
tive a
tion. We must insertEq. (5.38) into the Fourier transform of Eq. (5.12) and �nd
Γ(2,1) [Ψ,Ψ∗] = −~

2
∑

i,j

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
Ψ

∗
i (ω1)

[

G
(1)
ij (ω1, ω2)

]−1
Ψj(ω2) (5.40)

= − ~
2

(2π)2

∑

i,j

∫ ∞

−∞

dω1

2π
Ψ

∗
i (ω1)

{

[

G
(0)
ij (ω1)

]−1
− Jij

~
σ1

}

Ψj(ω1).The advantage of the inversion s
heme applied above is the fa
t that a resummation is automati
allymade. Let us sket
h what is meant by this by looking at the exa
t re-inversion of Eq. (5.37). To dothis we must de�ne the Fourier transformation into k-spa
e:
fk =

∑

i

fie
−ik·ri , f∗k =

∑

i

f∗i e
ik·ri (5.41)

fi =
1

Ns

∑

k

fkeik·ri , f∗i =
1

Ns

∑

k

f∗ke−ik·ri . (5.42)Here both the index i and the 
oordinate ri denote the position at a latti
e site i, the total number ofsites is denoted by Ns.Assuming spatial homogeneity, we have Jij → Jk,k′ = Jkδk,k′ . With the δ-fun
tion in the frequen
iesand the Krone
ker-δ in the wave ve
tors, we 
an de�ne the Green's fun
tion as a fun
tion of only onefrequen
y and one wave ve
tor:
[

G(1)(k, ω)
]−1

=
[

G(0)(k, ω)
]−1

{

1 − Jk

~
G(0)(k, ω)σ1

}

, (5.43)
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5 E�e
tive A
tion in the MI Phasewhi
h is immediately inverted:
G(1)(k, ω) =

{

1 − Jk

~
G(0)(k, ω)σ1

}−1

G(0)(k, ω). (5.44)The term in the bra
kets 
an be interpreted as a geometri
 sum:
{

1 − Jk

~
G(0)(k, ω)σ1

}−1

=

∞
∑

m=0

(

Jk

~
G(0)(k, ω)σ1

)m

. (5.45)This shows what is meant by resummation. Diagrammati
ally, this resummed Green's fun
tion isrepresented by the following 
hain diagram:
+ + + · · · (5.46)Although in our expansion of F given by Eq. (4.18), we had only 
onsidered the �rst two of thepro
esses shown in the diagram above, our resummed Green's fun
tion in
ludes all of them. If wedid again an expansion of F , but now took into a

ount any of those longer 
hain diagrams, afterperforming the Legendre transform like done before, we would �nally get the same result as in Eq.(5.37). The �eld-theoreti
al reason for this lies in the role of Γ as the generating fun
tional of one-parti
le irredu
ible (OPI) Green's fun
tions [14℄. As all diagrams in (5.46) are 
onstru
ted of one andthe same OPI diagram, for the 
al
ulation of Γ it does not matter, how mu
h of these diagram we takeinto a

ount. We only need the �rst diagram (whi
h is the OPI) and the se
ond one, in order to haveat least one non-lo
al diagram seeding the resummation.Our hope is that, although we started the expansion with the assumption of a small hopping, theresummation leads to equations whi
h are even valid for larger hoppings.5.4 Equations of MotionNow let's have a look at the dynami
s of the order �elds. To �nd an equation of motion for them, wehave to �nd the saddle points of Γ(2,1). For this we take the fun
tional derivative of Γ(2,1) with respe
tto the order �elds and set it equal to zero. For simpli
ity we do this in Fourier spa
e, as we then haveno integral over the time.

δΓ(2,1)

δΨ∗
i,q(ω)

=
−~

2

(2π)2

∑

j

{

[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) + Ã

(1)
ij (ω)Ψj,q(ω)

}

= 0, (5.47)
δΓ(2,1)

δΨ∗
i,cl(ω)

=
−~

2

(2π)2

∑

j

[

G
A(1)
ij (ω)

]−1
Ψj,q(ω) = 0. (5.48)
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5.4 Equations of MotionTaking the trivial solution of the last equation, Ψj,q(ω) = 0 on any site, the �rst equation redu
es to
∑

j

[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) = 0. (5.49)This result states that, as long as we restri
t ourselves on 
on�gurations with Ψq = 0, the dynami
s ofa system is given by the retarded Green's fun
tion. For the 
omplex 
onjugated �eld, we get a similarequation, but the advan
ed fun
tion will appear instead of the retarded one:

δΓ(2,1)

δΨi,q(ω)
=

−~
2

(2π)2

∑

j

{

Ψ∗
j,cl(ω)

[

G
A(1)
ji (ω)

]−1
+ Ψ∗

j,q(ω)Ã
(1)
ji (ω)

}

= 0, (5.50)
δΓ(2,1)

δΨi,cl(ω)
=

−~
2

(2π)2

∑

j

Ψ∗
j,q(ω)

[

G
R(1)
ji (ω)

]−1
= 0. (5.51)whi
h now redu
es to

∑

j

Ψ∗
j,cl(ω)

[

G
A(1)
ji (ω)

]−1
= 0 (5.52)when Ψ∗

j,q(ω) = 0. This result agrees perfe
tly with the linear response theory, whi
h is valid nearequilibrium, where all the physi
s is given by the retarded/advan
ed Green's fun
tions. We postponethe dis
ussion of this equation to Chapter 7, where the spe
tra in the MI phase and the phase boundarybetween the MI and the SF are found from Eq. (5.49). Before we do that, we go beyond this phaseboundary and extend our theory to the super�uid phase.
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6 E�e
tive A
tion in the SF PhaseA

ording to Fig. 2.3, a super�uid system 
annot be des
ribed by an e�e
tive a
tion, whi
h is quadrati
in the order �elds. It is 
ru
ial to take into a

ount the next order, thus the expansion of Eq. (4.18)has to be extended up to fourth order in the 
urrents.6.1 Ψ
4 ExpansionWith the diagrammati
 rules given in Se
tion 4.5, it is straightforward to write down the expansion of

F up to fourth order in the 
urrents diagrammati
ally:
F (4,1)[j, j∗] =

1

~2

{

+
J

~
(6.1)

+
1

4~2
+

J

2~3

[

+

]}

.The fa
tor 1/2 in front of the last two terms 
omes from the symmetry of the diagrams. Either forthe ingoing or for the outgoing lines, we have two possibilities of inter
hanging them without 
reatinga new diagram. In the third diagram, both the ingoing and the outgoing lines have this symmetry,whi
h gives us in total the prefa
tor 1/4.In Eq. (6.1) a new 
umulant with four legs appears, i.e. it depends on four time variables. Therefore,
24 = 16 possibilities to distribute path indi
es ± exist. In the MI phase we were able to �nd amatrix representation for the 22 = 4 
umulants in the se
ond order. By a rotation of this matrixwe 
ould redu
e the number of terms to only three. Now we will try a similar pro
edure again, butinstead of a bilinear form, a fourth rank tensor must be rotated. The 
omponents of this tensor
CP1P2P3P4

i (t1, t2; t3, t4) are given by Eq. (4.13). To save some spa
e, we 
hange the notation a little
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6 E�e
tive A
tion in the SF Phasebit by writing iC
P1P4

P2P3
in the following. The produ
t of this tensor with the 
urrents 
an be written as

iC
P1P4

P2P3
j∗i,P1

(t1)j
∗
i,P2

(t2)ji,P3
(t3)ji,P4

(t4) =

= j̃
∗
i (t1)



























j̃
∗
i (t2)







iC
++
++ iC

++
+−

iC
++
−+ iC

++
−−






j̃i(t3) j̃

∗
i (t2)







iC
+−
++ iC

+−
+−

iC
+−
−+ iC

+−
−−






j̃i(t3)

j̃
∗
i (t2)







iC
−+
++ iC

−+
+−

iC
−+
−+ iC

−+
−−






j̃i(t3) j̃

∗
i (t2)







iC
−−
++ iC

−−
+−

iC
−−
−+ iC

−−
−−






j̃i(t3)



























j̃i(t4) (6.2)
where the de�nition of the ve
tor 
urrents from Eq. (4.21) is applied.This obje
t 
an be Keldysh-rotated by rotating the sub-matri
es as well as the overall matrix. Inthe new expression the 
urrents j̃ and j̃

∗ are repla
ed by j and j∗ de�ned in Eqs. (4.22) and (4.23).The new 
umulants are linear 
ombinations of the 16 original ones from Eq. (6.2). These rotated
umulants are denoted by iC
cl/q,cl/q
cl/q,cl/q . For an impli
it de�nition of these 
umulants, we write down therotated equivalent of Eq. (6.2):

j∗i (t1)



























j∗i (t2)







iC
cl,cl
cl,cl iC

cl,cl
cl,q

iC
cl,cl
q,cl iC

cl,cl
q,q






ji(t3) j∗i (t2)







iC
cl,q
cl,cl iC

cl,q
cl,q

iC
cl,q
q,cl iC

cl,q
q,q






ji(t3)

j∗i (t2)







iC
q,cl
cl,cl iC

q,cl
cl,q

iC
q,cl
q,cl iC

q,cl
q,q






ji(t3) j∗i (t2)







iC
q,q
cl,cl iC

q,q
cl,q

iC
q,q
q,cl iC

q,q
q,q






ji(t3)



























ji(t4) ≡

≡ j∗i (t1)j
∗
i (t2)C

(4)
i (t1, t2; t3, t4)ji(t3)ji(t4). (6.3)It might appear strange to 
all, for instan
e, the 
umulant in the top left-hand 
orner iCcl,cl

cl,cl , although itis multiplied only with quantum 
omponents of the 
urrents, but the meaning be
omes 
lear, when wetake a look at the origin of the 
umulants: Inverting the relations (3.53), we 
an express the operators
â± and 
urrents j± in terms of operators âq/cl and 
urrents jq/cl. The generating fun
tional F [j, j∗],given in Eq. (3.59) whi
h is a fun
tional of j+, j−, j∗+, and j∗−, 
an then be rewritten as a fun
tionalof the rotated 
urrents jcl, jq, j∗cl, and j∗q . Instead of terms like j+â+ − j−â−, we have jqâcl + jclâq.Thus quantum 
urrents mix with 
lassi
al �elds and vi
e versa. When we now expand this generatingfun
tional in terms of the rotated 
urrents, we always get a 
lassi
al operator in the 
umulant, whena derivative with respe
t to a quantum 
urrent is taken, e.g. δ

δji,cl(t)
~F [j, j∗] = 〈â†i,q(t)〉. Therefore we
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6.1 Ψ4 Expansionhave together with the de
omposition formula from Eq. (4.13):
iC

cl,cl
cl,cl (t1, t2; t3, t4) = i3

{

〈

T̂c

{

âi,cl(t1)âi,cl(t2)â
†
i,cl(t3)â

†
i,cl(t4)

}〉

0
−
〈

T̂c

{

âi,cl(t1)â
†
i,cl(t3)

}〉

0

×
〈

T̂c

{

âi,cl(t2)â
†
i,cl(t4)

}〉

0
−
〈

T̂c

{

âi,cl(t1)â
†
i,cl(t4)

}〉

0

〈

T̂c

{

âi,cl(t2)â
†
i,cl(t3)

}〉

0

}

. (6.4)The other 
umulants in Eq. (6.3) are obtained in the same way. As for n = 2, the element in theright-down 
orner vanishes:
iC

q,q
q,q (t1, t2; t3, t4) = i3

{

〈

T̂c

{

âi,q(t1)âi,q(t2)â
†
i,q(t3)â

†
i,q(t4)

}〉

0
−
〈

T̂c

{

âi,q(t1)â
†
i,q(t3)

}〉

0

×
〈

T̂c

{

âi,q(t2)â
†
i,q(t4)

}〉

0
−
〈

T̂c

{

âi,q(t1)â
†
i,q(t4)

}〉

0

〈

T̂c

{

âi,q(t2)â
†
i,q(t3)

}〉

0

}

= 0. (6.5)This guarantees the 
omplian
e of the normalization 
ondition (5.13), sin
e this 
umulant is the onlyone whi
h is not multiplied by quantum 
urrents jq, and thus this term wouldn't vanish by setting
jq = 0. We 
an generalize the latter observation for any 
umulant Cq···q: These 
umulants haveto vanish in order to have Eq. (5.13) ful�lled [75℄. The normalization 
ondition (5.13) therefore isequivalent to

Cq···q = 0. (6.6)The proof of Eq. (6.6) is important and will be needed again at a later stage. We must show that anyexpe
tation value of quantum 
omponent operators 〈T̂c

{

âi,q(t1) · · · â†i,q(tn)
}〉

0
is zero. We thereforerepla
e these operators by the operators in the ±-basis a

ording to the de�nition (3.53):

2−n/2
〈

T̂c

{(

âi,+(t1) − âi,+(t1)
)

· · ·
(

â†i,+(tn) − â†i,−(tn)
)}〉

0
.Multiplying this out yields 2n path-ordered terms. Now it is 
ru
ial to note that within a path-orderedprodu
t the position of the operator with the largest time does not depend on its path index. But thismeans that ea
h ordered produ
t appears twi
e, though with di�erent signs. Thus, every term 
an
elsout.Instead of examining the other elements at this stage, let's 
ontinue with, in prin
ipal, the samepro
edure as in the MI phase and perform a Legendre transformation of F [j, j∗] in Eq. (6.1). After-wards we will see whi
h of the 
umulants we really need to 
al
ulate. The de�nition for the Legendretransformation is the same as before, given in Eqs. (5.3) and (5.4), but to be more e
onomi
, wework in the {q,
l}-basis and in Fourier spa
e from the beginning. As the Legendre transformationnow requires a lot of bookkeeping, it is 
onvenient to write it down diagrammati
ally. To this end, we
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6 E�e
tive A
tion in the SF Phasemodify our previous de�nitions from Eqs. (4.14) and (4.15). The 
umulant tensors are symbolized by
ω2 ω1

i ≡ C
(2)
i (ω1, ω2) ≡ G

(0)
ii (ω1, ω2) and

ω3

ω4

ω1

ω2

i ≡ C
(4)
i (ω1, ω2;ω3, ω4). (6.7)The ve
tor 
urrents are depi
ted by

iω
= ji(ω) and iω

= j∗i (ω). (6.8)If we now 
onne
t 
urrents and 
umulants with a 
losed line, we must integrate the 
orrespondingfrequen
y variable divided by 2π. When two 
umulants are linked by a hopping, we additionally haveto put the Pauli matrix σ1 between the 
umulants. Note that these re-de�nitions of the diagrams donot a�e
t the expansion (6.1).To do the Legendre transformation, we still must de�ne symbols for the order �elds and the inverse
umulants. We asso
iate them with white squares and 
ir
les:
iω

= Ψi(ω) ,
iω

= Ψ
∗
i (ω), (6.9)and

ω2 ω1
i ≡

[

C
(2)
i (ω1, ω2)

]−1
≡
[

G
(0)
ii (ω1, ω2)

]−1
. (6.10)If we multiply a 
umulant with its inverse, we get a δ-fun
tion in the frequen
ies and a Krone
ker-δ inspatial variables, i.e.:

ω2 ω1
i j

= δijδ(ω1 − ω2). (6.11)Note that the internal line between bla
k and white 
umulants does not represent a hopping, thereforeit is not asso
iated with the Pauli matrix σ1.Diagrammati
ally, Eq. (5.3) reads
iω

= δF [j, j∗]/δ(
iω

). (6.12)Su
h a diagrammati
 derivative is performed by taking away the respe
tive leg from all the graphs in
F . If there are graphs without su
h legs, they vanish 
ompletely. For graphs with more than one of64



6.1 Ψ4 Expansionthem, the usual produ
t rule of di�erentiation has to be applied. We this we get from Eq. (6.1):
iω

=
1

~2

{

ω
i

+
Jij
~

ω
i

+
1

2~2
ω

i (6.13)
+
Jij
2~3

[

2
ω

i
+

ω
i

+

ω
i

]}

,and a similar expression for the 
omplex 
onjugate. Due to the derivative, there are some 
umulants�xed to the site index i. Of 
ourse, 
urrents whi
h are dire
tly linked to these 
umulants must havethe same site index. The site index of 
umulants whi
h are linked to them is summed, but su
h a linkne
essarily 
omes along with a hopping matrix element Jij multiplying the whole diagram. In our 
asethis restri
ts the summation to nearest neighbors.Now Eq. (6.13) must be inverted iteratively, but now the iteration involves the hopping and theorder �elds. From our previous 
onsiderations in the Mott phase, we already know the solutions inthe �rst hopping order and in se
ond order in the �elds, sin
e we only have to insert Eq. (5.37) in therotated and Fourier-transformed version of Eq. (5.6). In our diagrammati
 notation this yields:
iω

= ~
2











ω
i −

∑

j

Jij
2π~

jω











, (6.14)
iω

= ~
2











ω
i −

∑

j

Jij
2π~

jω











. (6.15)Here we have used a dotted line in order to mark the legs originally 
oming from a hopping pro
ess.They have to be distinguished from the others be
ause of the σ1 matrix whi
h is multiplied by them.Now we multiply Eq. (6.13) with iω and insert Eqs. (6.14) and (6.15). We throw away alldiagrams with a prefa
tor J2 and are already at the end of the iteration, be
ause any further stepwould give only terms whi
h are of higher than fourth order in the �elds. We now have
iω

= (6.16)
~

2

{

ω
i − 1

2~2
ω

i

−
∑

j

Jij
2π~

[

jω
+

1

2~2 ω

j

]}

.A similar expression exists for the 
omplex 
onjugate of the order �eld. When we insert this into theequation for the e�e
tive a
tion given by (5.4), we at �rst get a lot of diagrams. Of 
ourse, all diagramswith more than four order �elds or of higher than linear hopping order are not taken into a

ount.
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6 E�e
tive A
tion in the SF PhaseWe �nd that the diagrams with four legs and one hopping 
an
el. Thus the �nal result be
omes very
ompa
t. Not surprisingly, it only 
ontains the one-parti
le-irredu
ible diagrams:
Γ(4,1) = −~

2

{

− J

2π~
− ~

2

4

}

. (6.17)Now we 
an repla
e the diagrams by its analyti
al analogues:
Γ(4,1)[Ψ,Ψ∗] = −~

2

{

∑

i,j

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω3

2π

[

(

Ψ
∗
i (ω1)

[

G
(0)
ii (ω1)

]−1
Ψj(ω3) −

Jij
~

Ψ
∗
i (ω1)σ

1
Ψi(ω3)

)

× 1

2π
δ(ω1 − ω3) −

~
2

4

∫ ∞

−∞

dω2

2π

∫ ∞

−∞

dω4

2π
Ψ

∗
i (ω1)

[

G
(0)
ii (ω1)

]−1
Ψ

∗
i (ω2)

[

G
(0)
ii (ω2)

]−1

×iC
4(ω1, ω2;ω3, ω4)

[

G
(0)
ii (ω3)

]−1
Ψi(ω3)

[

G
(0)
ii (ω4)

]−1
Ψi(ω4)

]}

. (6.18)6.2 Equations of MotionLike before in the MI phase, we are espe
ially interested in the equations of motion, whi
h we getby taking the fun
tional derivatives of Γ(4,1)[Ψ,Ψ∗] from Eq. (6.18) with respe
t to the order �elds.Again we 
hoose the trivial solution for the quantum 
omponents of the order �elds, Ψq = Ψ∗
q = 0,be
ause we always want the ba
kward �elds having the same value as the forward ones. With this, thefollowing two equations of motion are solved for arbitrary Ψcl and Ψ∗

cl:
δΓ

δΨi,cl(ω)

!
= 0, (6.19)

δΓ

δΨ∗
i,cl(ω)

!
= 0. (6.20)In these derivatives, the only terms whi
h do not in
lude any quantum �elds are the ones whi
h
ontain the vanishing �all q�-
umulant. These terms, however, are zero be
ause of the vanishing ofthis 
umulant. Taking the derivatives with respe
t to a quantum 
omponent �eld yields another twoequations of motion, whi
h remain non-trivial under the 
ondition Ψq = Ψ∗

q = 0:
δΓ[Ψ,Ψ∗]

δΨi,q(ω)
=

~
2

(2π)3

∑

j

{

Ψ∗
j,cl(ω)

(

1

gA(ω)
− Jji

~

)

− ~
2

4

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3 (6.21)

× 1

2π

[

jC
q,cl
q,q (ω1, ω2;ω3, ω) + jC

q,q
q,cl(ω1, ω2;ω, ω3)

] Ψ∗
j,cl(ω1)Ψ

∗
j,cl(ω2)Ψj,cl(ω3)

gA(ω1)gA(ω2)gR(ω3)gA(ω)

}

!
= 0,

δΓ[Ψ,Ψ∗]

δΨ∗
i,q(ω)

=
~

2

(2π)3

∑

j

{

Ψj,cl(ω)

(

1

gR(ω)
− Jij

~

)

− ~
2

4

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

∫ ∞

−∞
dω4 (6.22)

× 1

2π

[

jC
cl,q
q,q (ω, ω2;ω3, ω4) + jC

q,q
cl,q(ω2, ω;ω3, ω4)

] Ψ∗
j,cl(ω2)Ψj,cl(ω3)Ψj,cl(ω4)

gR(ω)gA(ω2)gR(ω3)gR(ω4)

}

!
= 0.

66



6.2 Equations of MotionThus, only four of the �fteen non-vanishing elements in jC
(4) determine the dynami
s of the system aslong as we assume the quantum 
omponent to be zero. These four 
umulants jCcl,q

q,q , jC
q,cl
q,q , jC

q,q
cl,q, jC

q,q
q,clrequire a 
loser examination.6.2.1 The {q,q,q,
l} CumulantsTo simplify the notation, we will drop the site index of both the 
umulants and the operators in thissubse
tion.

• We �rst take a look at the relation of these 
umulants to the Green's fun
tions. A

ording toEq. (4.13), the de
ompositions are given by Ccl,q
q,q = Gcl,q

q,q − iGcl,qGq,q − iGcl
qG

q
q. Both produ
tsof 2-point fun
tions involve a {q,q} Green's fun
tion and therefore vanish. Thus any {q,q,q,
l}
umulant is identi
al to its 
orresponding Green's fun
tion. We have

Ccl,q
q,q (t1, t2; t3, t4) = −i

〈

T̂c

{

âcl(t1)âq(t2)â
†
q(t3)â

†
q(t4)

}〉

0
, (6.23)

Cq,q
cl,q(t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âcl(t2)â
†
q(t3)â

†
q(t4)

}〉

0
, (6.24)

Cq,q
q,cl(t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âq(t2)â
†
cl(t3)â

†
q(t4)

}〉

0
, (6.25)

Cq,cl
q,q (t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âq(t2)â
†
q(t3)â

†
cl(t4)

}〉

0
. (6.26)

• Se
ond we note a quite obvious symmetry 
on
erning the inter
hange of variables: We 
an 
hangethe time variables of two annihilation operators or of two 
reation operators if we 
hange as welltheir indi
es {q,
l}. Note that, in general, we 
annot do that with one annihilation and one
reation operator. As a 
onsequen
e of this we have
Ccl,q

q,q (t1, t2; t3, t4) = Cq,q
cl,q(t2, t1; t3, t4), (6.27)

Cq,cl
q,q (t1, t2; t3, t4) = Cq,q

q,cl(t1, t2; t4, t3). (6.28)This relation also holds in frequen
y spa
e as 
an easily be seen by applying a Fourier trans-formation on these equations. Therefore the number of di�erent 
umulants in the equations ofmotion is redu
ed from four to two. Thus, in both equations (6.21) and (6.22), we 
an simplysum the 
umulants:
Cq,cl

q,q (ω1, ω2;ω3, ω) + Cq,q
q,cl(ω1, ω2;ω, ω3) = 2Cq,cl

q,q (ω1, ω2;ω3, ω), (6.29)
Ccl,q

q,q (ω, ω2;ω3, ω4) + Cq,q
cl,q(ω2, ω;ω3, ω4) = 2Ccl,q

q,q (ω, ω2;ω3, ω4). (6.30)
• Finally we will show how these remaining two 
umulants are related to ea
h other by means ofa 
omplex 
onjugation. That there exists su
h a relation, is already obvious from the de�nitions(6.23)�(6.26), but we will show this expli
itly via a long but helpful 
al
ulation.
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6 E�e
tive A
tion in the SF PhaseTo this end we introdu
e the short-hand notation [â+ ± â−
]

(t1) = â+(t1) ± â−(t1) and use thede�nition from Eq. (3.53):
Ccl,q

q,q (t1, t2; t3, t4) =
−i
4

〈

T̂c

{

[

â+ + â−
]

(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
=

−i
4

〈

T̂c

{

[

â+ − â− + 2â−
]

(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
=

−i
2

〈

T̂c

{

â−(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
. (6.31)For the last equality we have to split the expe
tation value of the se
ond line into a sum of twoexpe
tation values and re
ognize that one of them vanishes, sin
e it 
ontains operators â+ − â− ∼ âqonly.Now we must show the important relation

〈

T̂c

{

â−(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
= 0 if t1 is not the largest time. (6.32)The proof of this is based on the same arguments as for the vanishing of the {q,q,q,q} 
umulantsgiven in Se
tion 6.1. We must remember that the path order does not depend on the path index ofthe operator with the largest time. Sin
e in Eq. (6.32) the operators at t2, t3, t4 appear twi
e withdi�erent signs, all ordered produ
ts 
an
el if one of those times was the largest.Note furthermore the symmetry in t3 ↔ t4. This allows to 
onsider only three di�erent time-orders

θ(t1− t2)θ(t2− t3)θ(t3− t4), θ(t1− t3)θ(t3− t2)θ(t2− t4), and θ(t1− t3)θ(t3− t4)θ(t4− t2). Time-orderswith t4 > t3 
an dire
tly be read from the ones given here by re-symmetrizing the result. We willdenote this symmetrization by {·}t3↔t4 . This saves spa
e and redu
es the 
omputational task.For a 
al
ulation of the expe
tation value in Eq. (6.32), we multiply out all the produ
ts yieldingeight path-ordered terms. Then we 
onsider ea
h of the three relevant time-orders making use ofHeaviside step fun
tions θ(t − t′). We then �nd for ea
h time-order that the eight produ
ts 
an beexpressed by a triple 
ommutator. We therefore have:
Ccl,q

q,q (t1, t2; t3, t4) =
−i
2

{

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)

〈[

[

[

â(t1), â(t2)
]

, â†(t3)

]

, â†(t4)

]〉

0

(6.33)
+ θ(t1 − t3)θ(t3 − t2)θ(t2 − t4)

〈[

[

[

â(t1), â
†(t3)

]

, â(t2)

]

, â†(t4)

]〉

0

+ θ(t1 − t3)θ(t3 − t4)θ(t4 − t2)

〈[

[

[

â(t1), â
†(t3)

]

, â†(t4)

]

, â(t2)

]〉

0

}

t3↔t4

.We note that this is almost identi
al to the usual de�nition of retarded n-point fun
tions [55℄. For
onvenien
e we introdu
e a fa
tor 2 and de�ne:
2Ccl,q

q,q (t1, t2; t3, t4) ≡ CR(t1, t2; t3, t4). (6.34)
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6.2 Equations of MotionThe other 
umulant 
an be brought analogously to a similar form
Cq,cl

q,q (t1, t2; t3, t4) =
−i
2

{

θ(t4 − t1)θ(t1 − t3)θ(t3 − t2)

〈[

[

[

â†(t4), â(t1)
]

, â†(t3)

]

, â(t2)

]〉

0

(6.35)
+ θ(t4 − t3)θ(t3 − t1)θ(t1 − t2)

〈[

[

[

â†(t4), â
†(t3)

]

, â(t1)

]

, â(t2)

]〉

0

+ θ(t4 − t1)θ(t1 − t2)θ(t2 − t3)

〈[

[

[

â†(t4), â(t1)
]

, â(t2)

]

, â†(t3)

]〉

0

}

t1↔t2

.Coming ba
k to the relation between this 
umulant and the the 
umulant from Eq. (6.33), we mustre
ognize that (ÂB̂)† = B̂†Â†. Thus a 
omplex 
onjugation a
ting on a 
ommutator yields a minussign, [Â, B̂]† = −[Â†, B̂†]. Be
ause of the fa
tor −i in Eq. (6.35) its 
omplex 
onjugate will maintainthe same sign. Therefore the only e�e
t of a 
omplex 
onjugation is an inter
hange of annihilation and
reation operators. If we then 
hange in addition the time variables t1 ↔ t4, t2 ↔ t3, we get ba
k tothe same expression as in Eq. (6.33). Therefore we have
(

Cq,cl
q,q (t4, t3; t2, t1)

)∗
= Ccl,q

q,q (t1, t2; t3, t4). (6.36)Note that a similar relation holds for the 2-point fun
tions. There we have
GR(t1, t2) =

(

GA(t2, t1)
)∗
. (6.37)In analogy we will 
all 2Cq,cl

q,q (t1, t2; t3, t4) ≡ CA(t1, t2; t3, t4) the advan
ed 4-point 
umulant. Whathas to be done next, is to take either the retarded or the advan
ed fun
tion and 
al
ulate it. Weare espe
ially interested in its Fourier transform. This is a straightforward task very similar to the
al
ulation for the 2-point fun
tion, but many di�erent 
ombinations have to be 
onsidered. Due tothe length of this 
al
ulation, we put it into the appendix.6.2.2 Equilibrium Con�gurationLet's now 
ome ba
k to the equations of motion (6.21) and (6.22). Using the de�nition of the Fouriertransformation into k-spa
e from Eq. (5.41), the summation over the site index 
an be eliminatedfrom them. If we still make the equilibrium ansatz of a time-independent, homogeneous order �eld,i.e. Ψk,cl(ω) = Ψeqδk,0δ(ω), so that the ω-integrals be
ome trivial. We have
2πΨ∗

eq

(

1

gA(0)
− J0

~

)

−
[

Cq,cl
q,q (0, 0; 0, 0) + Cq,q

q,cl(0, 0; 0, 0)
] ~

2Ψ∗
eqΨ

∗
eqΨeq

4gA(0)gA(0)gR(0)gA(0)

!
= 0, (6.38)

2πΨeq

(

1

gR(0)
− J0

~

)

−
[

Ccl,q
q,q (0, 0; 0, 0) + Cq,q

cl,q(0, 0; 0, 0)
] ~

2Ψ∗
eqΨeqΨeq

4gR(0)gA(0)gR(0)gR(0)

!
= 0. (6.39)From these equations, the equilibrium values of the order �eld Ψeq 
an be read o�:

~
2|Ψeq|2 = 2π

4gA(0)gA(0)gR(0)gA(0)

Cq,cl
q,q (0, 0; 0, 0) + Cq,q

q,cl(0, 0; 0, 0)

(

1

gA(0)
− J0

~

)

. (6.40)
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6 E�e
tive A
tion in the SF PhaseWe note that all Green's fun
tions be
ome real in the limit ω → 0, whi
h makes the right side of Eq.(6.40) real too, as it must be. The phase φ of the equilibrium order �eld 
an be 
hosen arbitrarily, so weset it to zero without loss of generality. Then the solution of the four equations of motion (6.19)�(6.22)in the stationary 
ase reads:
Ψk,eq(ω) =

(

Ψeq

0

)

δ(ω)δk,0 and Ψ
∗
k,eq(ω) = (Ψeq, 0) δ(ω)δk,0. (6.41)It should be mentioned that in our basis, ~Ψcl is not the expe
tation value 〈â〉, but (1/

√
2)〈â+ +â−〉 =√

2〈â〉.6.2.3 Linearization of Equation of MotionIn the previous se
tion we have found time-independent order �elds in Eq. (6.41), whi
h solve theequations of motion (6.19)�(6.22). But as one main goal is the des
ription of the dynami
s of theorder parameter, we have to 
onsider time-dependent solutions as well. The problem, however, is thefa
t that Γ from Eq. (6.18) 
ontains non-lo
al terms. The non-lo
ality in spa
e is asso
iated withthe Ψ2 terms only. Given a homogeneous system, it 
an be handled by a Fourier transformation intothe wave ve
tor spa
e. The non-lo
ality in time, however, also 
on
erns the Ψ4 term, su
h that evenin frequen
y spa
e, three non-trivial integrals remain. One thing that helps us out, is a linearizationof the equations of motion by assuming a 
on�guration near equilibrium and Taylor expanding thee�e
tive a
tion around this equilibrium position. Up to se
ond order, all terms will then be lo
al inFourier spa
e.To do that expansion, we �rst refer to the normalization 
ondition (5.13): Due to the vanishing ofthe �all q� 
omponents of the Green's fun
tions, the whole e�e
tive a
tion Γ vanishes, if the quantum�elds are zero. Thus we have no zeroth order term. Furthermore, all �rst-order derivatives of Γ withrespe
t to the �elds evaluated at Ψeq vanish a

ording to Eqs. (6.38) and (6.39). So the only termsthat we have to 
onsider are the se
ond derivatives. With the de�nitions Ψcl(ω) ≡ Ψcl(ω) − Ψeq and
Ψq(ω) ≡ Ψq(ω), the e�e
tive a
tion reads

Γ[Ψq, Ψ
∗
q , Ψcl, Ψ

∗
cl] ≈

1

2

∑

ij

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

×
{

δ2Γ

δΨi,cl(ω1)δΨ∗
j,q(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,q(ω2)Ψi,cl(ω1) +

δ2Γ

δΨ∗
i,cl(ω1)δΨj,q(ω2)

∣

∣

∣

∣

∣

eq

Ψj,q(ω2)Ψ
∗
i,cl(ω1)

+
δ2Γ

δΨi,cl(ω1)δΨj,q(ω2)

∣

∣

∣

∣

∣

eq

Ψj,q(ω2)Ψi,cl(ω1) +
δ2Γ

δΨ∗
i,cl(ω1)δΨ∗

j,q(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,q(ω2)Ψ

∗
i,cl(ω1)

+ 2
δ2Γ

δΨi,q(ω1)δΨj,q(ω2)

∣

∣

∣

∣

∣

eq

Ψj,q(ω2)Ψi,q(ω1) + 2
δ2Γ

δΨ∗
i,q(ω1)δΨ∗

j,q(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,q(ω2)Ψ

∗
i,q(ω1)

+ 2
δ2Γ

δΨi,q(ω1)δΨ∗
j,q(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,q(ω2)Ψi,q(ω1) + 2

δ2Γ

δΨi,cl(ω1)δΨ∗
j,cl(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,cl(ω2)Ψi,cl(ω1)
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6.2 Equations of Motion
+ 2

δ2Γ

δΨi,cl(ω1)δΨj,cl(ω2)

∣

∣

∣

∣

∣

eq

Ψj,cl(ω2)Ψi,cl(ω1) + 2
δ2Γ

δΨ∗
i,cl(ω1)δΨ∗

j,cl(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,cl(ω2)Ψ

∗
i,cl(ω1)

}

. (6.42)The last six terms appear twi
e, as we have assumed the symmetry i↔ j of a homogeneous system inorder to save writing spa
e. A
tually, this assumption is no restri
tion here, be
ause we have writtendown these six terms only for 
ompleteness. The last three terms, however, vanish as a 
onsequen
e ofEq. (5.13) and the other three terms are quadrati
 in quantum 
omponent �elds. So when we derivethe equations of motion from the expanded e�e
tive a
tion in Eq. (6.42) and insert Ψq = Ψ∗
q = 0, alsothese terms do not 
ontribute.The remaining four terms are 
al
ulated straightforwardly. The �rst term reads

δ2Γ

δΨi,cl(ω1)δΨ∗
j,q(ω2)

∣

∣

∣

∣

∣

eq

=
~

2

(2π)4

{

[ 1

gR(ω1)
δij −

Jij
~

]

2πδ(ω1 − ω2) (6.43)
− ~

2

2
|Ψeq|2

δijC
R(ω2, 0; 0, ω1)

gA(0)gR(0)gR(ω1)gR(ω2)
.Note that CR(ω2, 0; 0, ω1) in
ludes a fun
tion δ(ω1 − ω2) as well. The se
ond term with the derivative

δ2Γ
δΨ∗

i,cl
(ω1)δΨj,q(ω2)

∣

∣

eq
is the 
omplex 
onjugate of Eq. (6.43), therefore we only have to inter
hange theadvan
ed fun
tions with the retarded ones. Still the derivative δ2Γ

δΨi,cl(ω1)δΨj,q(ω2)

∣

∣

eq
and its 
omplex
onjugate must be 
al
ulated. Thus, we have

δ2Γ

δΨi,cl(ω1)δΨj,q(ω2)

∣

∣

∣

∣

∣

eq

= − ~
4

4(2π)4
|Ψeq|2

δijC
R(ω1, ω2; 0, 0)

gR(0)gR(0)gR(ω1)gA(ω2)
, (6.44)and its 
omplex 
onjugated expression.Now it is important to note that CR(ω1, ω2; 0, 0) ∼ δ(ω1 + ω2) in 
ontrast to CR(ω2, 0; 0, ω1) ∼

δ(ω1 − ω2). The kernel of our Taylor expanded e�e
tive a
tion from Eq. (6.42) therefore depends onone frequen
y variable only, but at some pla
es this variable appears with a reversed sign. We mustbe 
areful with this sign, sin
e neither the 2-point fun
tions nor the 4-point fun
tions are symmetri
under a 
hange of sign, i.e. CR(ω, 0; 0, ω) 6= CR(−ω, 0; 0, ω). Nevertheless, we have CR(ω,−ω; 0, 0) =

CR(−ω, ω; 0, 0) a

ording to Eq. (6.27).Transforming the spatial variables into k-spa
e a

ording to Eq. (5.14) yields a Krone
ker-δ fortranslational invariant systems. Therefore the double sum ∑

ij redu
es to a single on ∑k. Similarly,the δ(ω1 ± ω2)-fun
tions redu
es the number of integrals from two to one. We 
an therefore write
Γ[Ψq, Ψ

∗
q , Ψcl, Ψ

∗
cl] =

1

2

∑

k

∫ ∞

−∞
dω

{

δ2Γ

δΨk,cl(ω)δΨ∗
k,q(ω)

∣

∣

∣

∣

∣

eq

Ψ∗
k,q(ω)Ψk,cl(ω)

+
δ2Γ

δΨ∗
k,cl(ω1)δΨk,q(ω)

∣

∣

∣

∣

∣

eq

Ψ∗
k,q(ω2)Ψ

∗
k,cl(ω) +

δ2Γ

δΨk,cl(−ω)δΨk,q(ω)

∣

∣

∣

∣

∣

eq

Ψk,q(ω)Ψk,cl(−ω)

+
δ2Γ

δΨ∗
k,cl(−ω)δΨ∗

k,q(ω)

∣

∣

∣

∣

∣

eq

Ψ∗
k,q(ω)Ψ∗

k,cl(−ω) +O(|Ψq|2) +O(|Ψ |3)
}

. (6.45)
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6 E�e
tive A
tion in the SF PhaseThe remaining sum and integral are removed when taking the fun
tional derivative. Then the twonon-trivial equations of motion (6.21) and (6.22), whi
h are integral equations, now appear as simplealgebrai
 equations. Writing Ψk,cl ≡ Ψ and inserting Eqs. (6.43) and (6.44), we have
0

!
=

δΓ

δΨq(ω)
=

1

2

{

δ2Γ

δΨk,cl(ω)δΨ∗
k,q(ω)

∣

∣

∣

∣

∣

eq

Ψ∗
k,cl(ω) +

δ2Γ

δΨk,cl(−ω)δΨk,q(ω)

∣

∣

∣

∣

∣

eq

Ψk,cl(−ω)

}

=
~

2

2(2π)3

{[

1

gA(ω)
− Jk

~
− ~

2

2
|Ψeq|2

CA(ω, 0; 0, ω)

2πgR(0)gA(0)gA(ω)gA(ω)

]

Ψ∗(ω)

−
[

~
2

4
|Ψeq|2

CA(0, 0;−ω, ω)

2πgR(−ω)gA(0)gA(ω)gA(0)

]

Ψ(−ω)

}

, (6.46)and
0

!
=

δΓ

δΨ∗
q (ω)

=
1

2

{

δ2Γ

δΨ∗
k,cl(ω)δΨk,q(ω)

∣

∣

∣

∣

∣

eq

Ψk,cl(ω) +
δ2Γ

δΨ∗
k,cl(−ω)δΨ∗

k,q(ω)

∣

∣

∣

∣

∣

eq

Ψ∗
k,cl(−ω)

}

=
~

2

2(2π)3

{[

1

gR(ω)
− Jk

~
− ~

2

2
|Ψeq|2

CR(ω, 0; 0, ω)

2πgA(0)gR(0)gR(ω)gR(ω)

]

Ψ(ω)

−
[

~
2

4
|Ψeq|2

CR(ω,−ω; 0, 0)

2πgA(−ω)gR(0)gR(ω)gR(0)

]

Ψ∗(−ω)

}

. (6.47)With (6.36) we 
an 
he
k that one equation is the 
omplex 
onjugate of the other. We will deal withthe solution of these equations in the next 
hapter. For a 
ompa
t referen
e to them, we introdu
e thefollowing shorthand notations:
A(ω,k)Ψ∗

k(ω) +B(ω,k)Ψk(−ω) = 0, (6.48)
A∗(ω,k)Ψk(ω) +B∗(ω,k)Ψ∗

k(−ω) = 0, (6.49)where A,B and its 
onjugates represent the di�erent fun
tional derivatives in Eqs. (6.46) and (6.47).6.2.4 Super�uid Resummed Green's Fun
tionWith the linearization from the subse
tion above, we 
an �nd a 2-point fun
tion, whi
h des
ribesthe 
orrelations near equilibrium in the symmetry-broken phase. This fun
tion will be the super�uidanalog of the resummed retarded fun
tion in the MI phase given by the inverse of Eq. (5.39). We willshow that this super�uid retarded/advan
ed 2-point fun
tion 
an be 
ompletely 
onstru
ted by thesame terms A,A∗, B and B∗, whi
h appear in Eqs. (6.48) and (6.49). Therefore, we need to know howto derive the retarded/advan
ed 2-point fun
tion from our generating fun
tionals.We begin with the fun
tional F [j, j∗] de�ned in Eq. (3.59). However, we should not argue with theexpansion from Eq. (4.35), where the relation between F and the retarded/advan
ed Green's fun
tionsis obvious, sin
e this expansion is valid only for a system without broken symmetry. Then expe
tationvalues like 〈Ψcl〉 whi
h in prin
iple may 
ontribute to the Green's fun
tion are zero. Instead, we willstay more general and 
onsider the sour
e term spe
i�ed in Eq. (4.5). There we still had worked in the
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6.2 Equations of Motion
±-basis. Making use of the rotation matrix Q de�ned in Eq. (3.51), we transform it into the 
l,q-basis:

ji,+â†i+ − ji,−â†i,− =
(

â†i,+, â
†
i,−

)

(

ji,+

−ji,−

)

=
(

â†i,+, â
†
i,−

)

QQ

(

ji,+

−ji,−

)

=
(

â†i,cl, â
†
i,q

)

(

ji,q

ji,cl

)

= ji,qâ
†
i,cl + ji,clâ

†
i,q. (6.50)Here the index i should be interpreted as a set of variables, in
luding site index and time. Thus witha sum over this index, we denote at the same time a sum over the dis
rete variables and an integralover the 
ontinuous ones. Now we need the following relation:

〈

T̂c

(

âi,qâ
†
j,cl

)〉

=
〈

T̂
(

âi,+â†j,−

)

+ ˆ̃T
(

âi,−â†j,−

)

− âi,−â†j,+ − â†j,−âi,+

〉

= GR
ij . (6.51)The last equality is found by making use of the Heaviside step fun
tion. It 
an be used in order tosubstitute T̂ and ˆ̃T . Then it is easy to see that this is exa
tly the de�nition of the retarded Green'sfun
tion given in Eq. (3.54). Similarly, we have 〈T̂c

(

âi,clâ
†
j,q

)

〉 = GA
ij . From this we 
an see that

δ2F [j, j∗]

δj∗i,qδjj,cl

∣

∣

∣

j=j∗=0
= GA

ij and
δ2F [j, j∗]

δj∗i,clδjj,q

∣

∣

∣

j=j∗=0
= GR

ij . (6.52)We stress that these equations hold as long as 〈Ψq〉 = 0, sin
e the derivatives de
ompose into vanishingprodu
ts 〈âi,cl〉〈âj,q〉. If we had to take derivatives with respe
t to two quantum sour
es, however, westill would get a de
omposition term to Eq. (6.52). For the retarded/advan
ed Green's fun
tions,however, this is not the 
ase.Now we have to �nd out how the se
ond derivative of F [j, j∗] is related to the e�e
tive a
tion
Γ[Ψ,Ψ∗]. Making use of the produ
t rule for fun
tional derivatives, we �nd the following identity

δij =
δji,q
δjj,q

=
∑

k

(

δji,q
δΨk,q

δΨk,q

δjj,q
+

δji,q
δΨ∗

k,q

δΨ∗
k,q

δjj,q
+

δji,q
δΨk,cl

δΨk,cl

δjj,q
+

δji,q
δΨ∗

k,cl

δΨ∗
k,cl

δjj,q

) (6.53)With the de�nition of the Legendre transform in (5.3), we 
an express Ψ as the derivative of F withrespe
t to j∗. In our basis, one must note that the derivative with respe
t to the quantum 
omponentof the 
urrents brings down the 
lassi
al 
omponent of the 
orresponding operator. Therefore we have,e.g.,
Ψi,cl =

δF
δj∗i,q

. (6.54)From (5.4), the inverse relations 
an be found:
ji,cl =

δΓ

δΨ∗
i,q

. (6.55)
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6 E�e
tive A
tion in the SF PhaseInserting this in Eq. (6.53) yields
δij =

∑

k

(

δ2Γ

δΨk,qδΨ
∗
i,cl

δ2F
δjj,qδj∗k,cl

+
δ2Γ

δΨk,clδΨ
∗
i,cl

δ2F
δjj,qδj∗k,q

+
δ2Γ

δΨ∗
k,qδΨ

∗
i,cl

δ2F
δjj,qδjk,cl

+
δ2Γ

δΨ∗
k,clδΨ

∗
i,cl

δ2F
δjj,qδjk,q

)

. (6.56)We should note that the se
ond and the last term vanish when evaluated at Ψq = Ψ∗
q = 0, as they 
on-tain derivatives of Γ with respe
t to 
lassi
al 
omponents only. In order to eliminate δ2F/(δjj,qδjk,cl),we perform similar manipulations on another intrinsi
 equation, for instan
e:

0 =
δj∗i,q
δjj,q

=
∑

k

(

δ2Γ

δΨk,qδΨi,cl

δ2F
δjj,qδj∗k,cl

+
δ2Γ

δΨ∗
k,qδΨi,cl

δ2F
δjj,qδjk,cl

)

. (6.57)Without the sum over k, we 
ould dire
tly inverse this equation and eliminate δ2F/(δjj,qδjk,cl) fromEq. (6.56). We 
an get rid of this sum by the expansion whi
h was used for the linearization of theequations of motion in the subse
tion above. Taking the expanded e�e
tive a
tion from Eq. (6.45)and swit
hing into Fourier spa
e, Eqs. (6.56) and (6.57) appear without sum. But we have to take
are with the sign of the frequen
ies, sin
e the se
ond derivatives with respe
t to two �eld or two
onjugate �elds imply a fun
tion δ(ω + ω′), while the se
ond derivatives with respe
t to one �eld andone 
onjugate �eld implies the fun
tion δ(ω − ω′). Combining Eqs. (6.56) and (6.57), we 
an write:
1 =

δ2F
δjk,q(ω)δj∗

k,cl(ω)

{

δ2Γ

δΨk,q(ω)δΨ∗
k,cl(ω)

−
(

δ2Γ

δΨ∗
k,q(−ω)δΨk,cl(−ω)

)−1

× δ2Γ

δΨk,q(−ω)δΨk,cl(ω)

δ2Γ

δΨ∗
k,q(ω)δΨ∗

k,cl(−ω)

}

. (6.58)A

ording to Eq. (6.52), the �rst term 
an be interpreted as the Fourier transform of the retardedGreen's fun
tion in the super�uid system, GR
k(ω) =

∑

ij G
R
ij(ω) exp [−i(ri − rj) · k], thus the termwithin the 
urly bra
es must be the inverse of it. Therefore we have

GR
k (ω) =

δ2Γ
δΨ∗

k,q
(−ω)δΨk,cl(−ω)

δ2Γ
δΨ∗

k,q
(−ω)δΨk,cl(−ω)

δ2Γ
δΨk,q(ω)δΨ∗

k,cl
(ω) − δ2Γ

δΨk,q(−ω)δΨk,cl(ω)
δ2Γ

δΨ∗

k,q
(ω)δΨ∗

k,cl
(−ω)

, (6.59)and the 
omplex 
onjugate expression for the retarded Green's fun
tion.Now we should note that the equations of motion, (6.48) and (6.49) are solved, if
0

!
= A(−ω,k)A∗(ω,k) −B∗(−ω,k)B(ω,k). (6.60)This is exa
tly the denominator of the super�uid Green's fun
tion (6.59), i.e. the equations of motionsare solved when the retarded/advan
ed Green's fun
tions diverge.
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7 Ex
itation Spe
traUp to now a lot of work has been done in order to derive a theory for the dynami
s of bosons inopti
al latti
es, but still we have said nothing about what is really going on in su
h systems. Thiswill 
hange in this 
hapter, sin
e now we are in a position to 
al
ulate both the phase diagram andthe ex
itation spe
tra. The spe
tra are given by a fun
tion ω(k) whi
h relates the frequen
y of anex
itation to its 
orresponding momentum. As already stated in the beginning, due to the Goldstonetheorem we expe
t one gapless mode with ω(k) ∼ |k| for small |k| in the super�uid phase. Thisexpe
tation will be 
on�rmed in this 
hapter, when we solve the equations of motion in the super�uidphase. Comparing our spe
trum with the Bogoliubov result we will �nd a good agreement for weakintera
tions, but in 
ontrast to that theory, our equations yield also a se
ond solution, whi
h is gappedand quadrati
 in k. From the point of view of Bogoliubov theory, this �nding is quite surprising. Butif we 
onsider the ex
itations in the Mott phase, su
h a mode seems to be ne
essary, sin
e we �nd twokinds of MI ex
itations, too. Thus, again we start our 
al
ulations in the MI phase and present the SF
al
ulations later. Of spe
ial interest is the behavior of the spe
tra near the phase boundary, wherethey are found to map onto ea
h other. Moreover, 
riti
al exponents should quantitatively des
ribethe system properties in this regime.7.1 Spe
tra in the MI PhaseTo see how things work, we �rst 
onsider the easiest 
ase, namely a system without hopping. Alreadythis limit will give us some insight into the physi
s of the MI phase.7.1.1 Zeroth Hopping OrderThe MI equations of motion are given in Eq. (5.49). Setting J = 0 redu
es the Green's fun
tion GR(1)
ijto the unperturbed one, whi
h is lo
al. This leaves us with

1

gR(ω)
Ψj,cl(ω) = 0. (7.1)Using Eq. (5.20) the 
ondition for non-trivial solutions therefore reads

1

gR(ω)
=

Z(0)

∑∞
n=0 e−βEn

(

n+1
En+1−En

~
−ω−iǫ

− n
En−En−1

~
−ω−iǫ

) = 0, (7.2)i.e. we must look for divergen
es in gR(ω). As this is a 
omplex fun
tion, it would be helpful to havethe real part separated from the imaginary part. This is done by multiplying both denominators in75



7 Ex
itation Spe
traEq. (5.20) with their 
omplex 
onjugates, leading to
gR(ω) =

1

Z(0)

∑

n

e−βEn

[

(n + 1)(∆n+1 − ω + iǫ)

(∆n+1 − ω)2 + ǫ2
− n(∆n − ω + iǫ)

(∆n − ω)2 + ǫ2

]

=
−1

Z(0)

∞
∑

n=0

e−βEn

×
{

(n+ 1)(∆n+1 − ω)

(∆n+1 − ω)2 + ǫ2
− n(∆n − ω)

(∆n − ω)2 + ǫ2
+ i

[

(n+ 1)ǫ

(∆n+1 − ω)2 + ǫ2
− nǫ

(∆n − ω)2 + ǫ2

]}

, (7.3)where we have de�ned ∆n ≡ En−En−1

~
. With the identity

lim
ǫ→0

ǫ

x2 + ǫ2
= πδ(x), (7.4)we 
an take the limit ǫ→ 0. This gives us

gR(ω) =
1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1

∆n+1 − ω
− n

∆n − ω
+ iπ

[

(n+ 1)δ(∆n+1 − ω) − nδ(∆n − ω)
]

) (7.5)We observe that a diverging term appears in the real part if
ω = ∆n for any n ∈ N. (7.6)At these frequen
ies ∆n, the argument of the δ-fun
tions in the imaginary part be
omes zero, too. Thusthe imaginary part diverges as well. Therefore an order �eld Ψj(ω) being proportional to δ(ω − ∆n)with arbitrary n solves the equation of motion. The general solution 
an be written as:

Ψj,cl(ω) =

∞
∑

n=1

Anδ(ω − ∆n). (7.7)Note that this sum does not have a term with n = 0, sin
e Eq. (7.5) does not diverge for ω = ∆0.The 
oe�
ients An of this solution have to be 
hosen in a

ordan
e with the initial 
onditions. These
oe�
ients still might depend on the site index and espe
ially on temperature. We note that, althoughthe temperature appears in the equation of motion, it in�uen
es the dynami
s of the system onlyindire
tly via the initial 
ondition.Going ba
k to time spa
e, we �nd
Ψj,cl(t) =

∫ ∞

−∞
dω

∞
∑

n=1

Anδ(ω − ∆n)e
−iωt =

∞
∑

n=1

Ane
−i∆nt. (7.8)Thus, the dynami
s of the 
lassi
al 
omponent of the order �eld 
onsists of os
illations with thefrequen
ies ∆n. They 
orrespond to the energies for 
hanging the number of parti
les on a site by one.We should note that the information about the ex
itation frequen
ies is 
ontained in the real partas well as in the imaginary part of the retarded Green's fun
tion. This will help us a lot later in the
al
ulation of the SF spe
tra. To see what kind of information is en
oded in the retarded/advan
ed
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7.1 Spe
tra in the MI PhaseGreen's fun
tions, we 
onsider the following spe
tral representation [66℄ :
GR/A(ω) =

∫ ∞

−∞
dω′ρ(ω′)

( P
ω − ω′

± iπδ(ω − ω′)

)

, (7.9)where P denotes the prin
ipal value of the integration a
ross the singularity and ρ(ω) denotes thespe
tral fun
tion. This fun
tion does not only 
ontain the ex
itation frequen
ies, but also informationabout their spe
tral weights, i.e. about how mu
h of the total ex
itation energy is stored in ea
hex
itation. The spe
tral fun
tion obeys the so-
alled sum rule [66℄:
∫ ∞

−∞
dω ρ(ω) = 1. (7.10)From the spe
tral representation in Eq. (7.9), we 
an further see that ρ(ω) 
an be obtained from theimaginary part of the advan
ed and retarded Green's fun
tion: 2πρ(ω) = GR(ω)−GA(ω) = 2ImGR(ω).In our 
ase, we �nd from Eq. (7.5):

ρ(ω) =
−1

Z(0)

∞
∑

n=0

nδ(ω − ∆n)
(

e−βEn − e−βEn−1

)

=
1

Z(0)

∞
∑

n=0

ne−βEnδ(ω − ∆n)
(

eβ∆n − 1
)

. (7.11)Let us still 
he
k if this expression satis�es the sum rule. The ω-integration is trivial, so we immediately�nd
∫ ∞

−∞
dω ρ(ω) =

1

Z(0)

∞
∑

n=0

n
(

e−βEn − e−βEn−1

)

=
1

Z(0)

∞
∑

n=0

e−βEn (n− n+ 1) = 1. (7.12)The transformation from the se
ond to the third expression 
an be done by shifting the summationindex in the se
ond term. Then n is 
an
eled from the sum and the whole expression redu
es to 1.Let's still investigate the zero-temperature limit of Eq. (7.2). Note that we have a Boltzmann sumof the form
lim
β→∞

1

Z

∞
∑

m=0

e−βEmfm = lim
β→∞

e−βEn
∑∞

m=0 e−β(Em−En)fm

e−βEn
∑∞

m=0 e−β(Em−En)
= fn, (7.13)where fm is an arbitrary expression whi
h does not depend on β and the summation index m denotesthe o

upation number. The �nal n in Eq. (7.13) now denotes the ground-state o

upation number,i.e. a number whi
h is �xed by µ/U [31℄. For the last step, we need to note that with our standardBose-Hubbard Hamiltonian from Eq. (2.1), degenerate ground-states 
an be ex
luded, so we have

Em > En for any m 6= n, thus for β → ∞ all terms in both sums be
ome zero ex
ept the one with theground-state o

upation number n. The Green's fun
tion (7.2) then redu
es to:
1

gR(ω)
=

(

n+ 1

ωn+1 − ω + iǫ
− n

ωn − ω + iǫ

)−1

= 0. (7.14)This means that at T = 0, the system 
an be ex
ited only at two frequen
ies whi
h 
orrespond tothe 
reation of an additional parti
le or taking away one parti
le from the ground-state 
on�guration.Taking away one parti
le 
an also be 
onsidered as the 
reation of a hole. This interpretation of the77



7 Ex
itation Spe
tratwo modes already gives us a good pi
ture of the Mott-insulator physi
s, where the parti
le numberper site is �xed and the system is ex
ited by taking away or adding parti
les.7.1.2 First Hopping OrderAfter having seen how the pro
edure of �nding the spe
tra works for the quite easy 
ase of a systemwithout hopping, we 
an now go ahead and try the same for the 
ase of mu
h greater interest, the MIsystem with non-zero hopping. Let us �rst write down the equation of motion (5.49):
[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) =

∑

j

1

gR(ω)

[

δij −
Jij
~
gR(ω)

]

Ψj,cl(ω) = 0. (7.15)Here we have plugged in the inverse Green's fun
tion from Eq. (5.39), whi
h is no longer lo
al, sin
eit 
ontains the hopping matrix element Jij . Thus it is advantageous to transform the equation into
k-spa
e. Our solutions will then depend on a wave ve
tor k, and non-
onstant dispersion relations ω(k)should arise. With the assumption of spatial homogeneity, Eq. (7.15) is a 
onvolution. Transforminginto wave ve
tor spa
e yields

1

gR(ω)

[

1 − Jk

~
gR(ω)

]

Ψk,cl(ω)
!
= 0. (7.16)The 
ondition for non-trivial solutions seems to be

1 − Jk

~
gR(ω) = 0, (7.17)where for a 
ubi
 latti
e the hopping matrix Jij from Eq. (2.16) transforms into Jk = 2J [cos(kxa) +

cos(kya) + cos(kza)]. But if we remember the form of gR(ω) given by Eq. (7.5), we see that we mighthave a problem with the imaginary part: Sin
e 1 is a real number and Jk is real as well, the imaginarypart, being non-zero for ω = ∆n, 
annot 
an
el. At these frequen
ies, the 
ondition (7.17) 
annot beful�lled, whi
h, however, does not mean that neither Eq. (7.16) is ful�lled.Nevertheless, Eq. (7.17) 
an be used to 
al
ulate the phase boundary. In equilibrium the order �eldshould be 
onstant in time and spa
e, as a homogeneous systems is assumed. The �elds thereforeshould be of the form Ψi(t) = Ψieq = Ψeq. After a Fourier transformation in the spatial and temporalvariables, they read Ψk(ω) = Ψeqδk,0δ(ω). This ansatz might solve Eq. (7.17), be
ause at ω = 0 theGreen's fun
tion is real, and thus the problem with the imaginary part 
annot o

ur. In equilibrium,the 
ondition for a non-vanishing 
lassi
al order �eld therefore reads
1 − gR(0)

J0

~
= 0. (7.18)This equation determines the phase boundary in terms of a 
riti
al hopping parameter. Up to this
riti
al value, the equilibrium order parameter must vanish in order to ful�ll the equations of motion.For larger J , the order parameter might, for the �rst time, be
ome �nite, whi
h means that the SFphase is rea
hed. To go further, higher-order terms in Ψ must be taken into a

ount. We have alreadydone this in Chapter 6, where we found the equilibrium order �eld in Eq. (6.40). Inserting the 
riti
al
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Figure 7.1: The phase boundary between the MI phase and the SF phase at T=0 shows lobes dependingon the ground-state o

upation number n.parameters from Eq. (7.18) into Eq. (6.40), we �nd that Ψeq vanishes at the phase boundary.For a hopping matrix like the one given in Eq. (2.16), we have J0 = zJ , where z = 2d denotes the
oordination number, i.e. the number of nearest neighbors in a d-dimensional latti
e. We therefore
an dire
tly determine the phase boundary JPB = ~

zgR(0) . One 
an divide both sides by the on-siteintera
tion parameter U and thus gets the 
riti
al J/U ≡ J̃ as a fun
tion of the 
hemi
al potential
µ/U ≡ µ̃. This fun
tion has a well-known lobe stru
ture [31,36,69,73℄. Its analyti
al expression reads

JPB

U
= −(n− µ̃− 1)(n − µ̃)

6(µ̃+ 1)
. (7.19)The �rst three lobes are plotted in Fig. (7.1). The tips will turn out to be the physi
ally mostinteresting part of the lobes. By setting the derivative of the lobe equation (7.19) with respe
t to µ̃equal to zero, we �nd the lo
ation of the lobe tips at

µ̃cr =
√

n(n+ 1) − 1 and J̃cr =
(
√

n(n+ 1) − n)(n−
√

n(n+ 1) + 1)

6
√

n(n+ 1)
(7.20)This phase diagram agrees qualitatively with other theoreti
al predi
tions. It is exa
tly the sameas the one obtained by mean-�eld theory [31℄. However, in 
omparison with the most exa
t results,whi
h are believed to be given by the Monte-Carlo data in Ref. [30℄, the n = 1 tip of our lobe is mu
htoo low. But in Ref. [69℄ it is shown for a similar hopping expansion that taking into a

ount these
ond hopping order improves the result from about 20% error to 2% error. It is one great advantageof our perturbative approa
h, that it o�ers a way to go systemati
ally beyond mean-�eld results, ifthis is desired. It should be mentioned, however, that 
al
ulating higher-order diagrams is a huge
omputational task. However, by making use of a 
omputer algorithm, the e�e
tive potential of thesystem was 
al
ulated up to the 8th order [76,77℄. In Ref. [76℄ it 
an be seen, how the 
al
ulated phaseboundary gets 
loser to the Monte-Carlo data in ea
h hopping order.
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7 Ex
itation Spe
traComing ba
k to the ex
itations of the system, we might be tempted to modify Eq. (7.17) anddemand that only its real part vanishes, Re[1 − Jk

~
gR(ω)] = 0. Then this formula is exa
tly the sameas in Ref. [73℄, where the imaginary parts have been negle
ted from the beginning. A more 
onvin
ingsolution of this problem, however, is to take the resummed Green's fun
tions as a whole and performthe limit ǫ → 0, instead of splitting it, as has been done in Eq. (7.17). Surely, taking the limit ofthe whole expression will be quite more 
ompli
ated, but doing so is not only the more 
orre
t way,moreover we will get a

ess to an additional information about the spe
tral weights.From now on, it appears to be ne
essary to take the β → ∞ limit for any analyti
al treatment. Asthe limit limβ→∞ gR(ω) is well-de�ned by Eq. (7.14), we 
an take the limit for the resummed fun
tion

GR(1)(ω) from Eq. (5.39) by taking limβ→∞ gR(ω) wherever gR(ω) appears in Eq. (5.39). This leavesus with the following expression
GR

k (ω) =

n−1
∆n+1−ω−iǫ

− n
∆n−ω−iǫ

1 − Jk

~

(

n−1
∆n+1−ω−iǫ

− n
∆n−ω−iǫ

) ≡ a(ω) − iǫ

bk(ω) − ǫ2 + ick(ω)
, (7.21)where the three fun
tions a, b and c are de�ned as

a(ω) = −ω + (n+ 1)∆n − n∆n+1, (7.22)
bk(ω) = (ω − ∆n)(ω − ∆n+1) +

Jk

~
[ω − (n+ 1)∆n + n∆n+1] , (7.23)

ck(ω) = 2ω +
Jk

~
− ∆n − ∆n+ 1. (7.24)Separating real and imaginary parts yields

GR =
ab− ǫ2(a+ c)

b2 + ǫ2(c2 − 2b) + ǫ4
− i

ǫ(b− ac) − ǫ3

b2 + ǫ2(c2 − 2b) + ǫ4
. (7.25)The limit ǫ → 0 
an be taken immediately for the real part, yielding Re[GR

k(ω)] = a(ω)
bk(ω) with adivergen
e for bk(ω) = 0, where we expe
t the ex
itation frequen
ies. For the imaginary part, we tryto apply the formula (7.4) again by negle
ting the term ǫ3 in the numerator and the term ǫ4 in thedenominator. Without having a mathemati
al proof, we expe
t that in the limit ǫ → 0 they shouldnot play a role. Then we have

Im(GR) = −π b+ ac

c2 − 2b
δ

(
√

b2

c2 − 2b

)

. (7.26)This shows that the imaginary part is non-zero only for b = 0. We 
he
k that c2 − 2b 6= 0 when b = 0,so we 
an take out the denominator from the δ-fun
tion a

ording to the formula δ(kx) = 1
|k|δ(x).Furthermore we 
an set b = 0 in the term in front of the δ-fun
tion. Thus, the imaginary part redu
esto:

Im(GR) = −πac · |c|
c2

δ(|b|). (7.27)
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7.1 Spe
tra in the MI PhaseWe still employ the formula
δ(f(x)) =

∑

i

1

|f ′(xi)|
δ(x− xi), (7.28)where the sum is over all xi with f(xi) = 0. Noting that Eq.(7.23) 
an be written as

bk(ω) = [ω − Ω+(k)] [ω − Ω−(k)] , (7.29)with
Ω±(k) =

1

2

(

− Jk

~
+ ∆n + ∆n+1

±
√

[

Jk

~
− ∆n − ∆n+1

]2

− 4

{

Jk

~
[n∆n+1 − (n+ 1)∆n] + ∆n∆n+1

}

)

, (7.30)we get the result:
Im[GR

k(ω)] = − π

[

|ck(Ω−(k))|
ck(Ω−(k))

a(Ω−(k))

|Ω+(k) − Ω−(k)|δ (ω − Ω−(k))

+
|ck(Ω+(k))|
ck(Ω+(k))

a(Ω+(k))

|Ω+(k) − Ω−(k)|δ (ω − Ω+(k))

]

. (7.31)Furthermore, 
he
king that Ω+(k) ≥ Ω−(k) and |ck(Ω−(k))|/ck(Ω−(k)) = −1 while |ck(Ω+(k))|/ck(Ω+(k)) =

+1 for any k, the whole expression redu
es to
Im(GR

k(ω)) =π
[ a(ω)

Ω+(k) − ω
δ (ω − Ω−(k)) − a(ω)

ω − Ω−(k)
δ (ω − Ω+(k))

]

= πρ(ω,k). (7.32)Thus we have two dispersion modes Ω+(k) and Ω−(k) with the weights
w±(k) = − ±a(Ω±(k))

Ω+(k) − Ω−(k)
. (7.33)First we should 
he
k whether this result satis�es the sum rule (7.10). We �nd for any wave ve
tor k

1

π

∫ ∞

−∞
dω Im(GR

k (ω)) =
a(Ω−(k))

Ω+(k) − Ω−(k)
− a(Ω+(k))

Ω+(k) − Ω−(k)
= 1. (7.34)This is very en
ouraging, as it is not obvious from the beginning that the �rst-order approximation ofthe full Green's fun
tion ful�lls this rule. Furthermore, this result justi�es a posteriori the negle
tionof the higher ǫ-terms in Eq. (7.25).The fun
tions Ω±(k) from Eq. (7.30) yield the pairs of frequen
ies and wave ve
tors, at whi
h thereal and the imaginary part of the Green's fun
tion diverge for T = 0, i.e. whi
h solve the equation ofmotion (7.15). These dispersion relations are the same as in Ref. [73℄. Inserting ∆n = U(n − 1) − µ
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) holesFigure 7.2: Parti
le spe
trum (b) and hole spe
trum (
) of the �rst Mott lobe for three di�erent µ/Uat 
onstant hopping J/U . Note the reversed sign of the ordinate in the hole spe
trum.
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(
) Spe
tral weights at J
U

= 0.02Figure 7.3: At the lobe tip the dispersion relation gets linear (a), and the spe
tral weights (b) divergeat k = 0. The spe
tral weights of the spe
tra from Fig. 7.2 are plotted in (
). Note thatthere is no µ-dependen
e.into Eq. (7.30), we get
Ω±(k) =

1

2~

[

U(2n − 1) − 2µ− Jk ±
√

U2 − 2JkU(2n + 1) + J2
k

]

. (7.35)The spe
tral weights w±(k) de�ned by Eq. (7.33) expli
itly read
w±(k) =

1

2



1 ± U(1 + 2n) − Jk
√

U2 − 2JkU(2n + 1) + J2
k



 . (7.36)They do not depend on the 
hemi
al potential. At the tip of the lobe, both weights diverge at k = 0,as 
an be found by inserting J̃cr from Eq. (7.20) in Eq. (7.36).To illustrate the result, we plot the spe
tra and their weights given by Eqs. (7.35) and (7.36). Tothis end we spe
ialize the latti
e dispersion Jk = 2J
∑d

i=1 cos(kia) to the 
ase of an ex
itation alongone arbitrary latti
e ve
tor dire
tion ki ≡ k in a three-dimensional latti
e, i.e. the other 
omponentsare set to zero. Then the latti
e dispersion reads
Jk = 2J [2 + cos(ka)] . (7.37)
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7.1 Spe
tra in the MI PhaseQualitatively, it makes no di�eren
e, whi
h dire
tion we 
hoose, so no interesting information is lostby this restri
tion to only one k-
omponent. The plotted spe
tra and their weights 
an be found inFigs. 7.2 and 7.3 for di�erent parameters within the MI phase.For small k, we still would like to bring the dispersion relations Ω±(k) to the following form
~Ω±(k) = ∆± +

1

2m±
~

2k2 +O(k4). (7.38)Then the gap of the spe
trum is expli
itly given by ∆±, and m± denotes the e�e
tive mass of theex
itation. Su
h a form is a
hieved by a Taylor expansion of Eq. (7.35) in k. If we again 
hoose
k = (k, 0, 0), we �nd

∆± =
1

2

(

−6J − U + 2nU ±
√

36J2 + U2 − 12J(U + 2nU) − 2µ
)

, (7.39)
~

2

m±
= J ± J(−6J + U + 2nU)

√

36J2 + U2 − 12J(U + 2nU)
. (7.40)With this we 
an 
he
k that within all the Mott lobes, we have ∆± 6= 0, i.e. gapped ex
itations. Itturns out that the masses of both bran
hes have di�erent shapes: We always have m− < 0, while

m+ > 0. Furthermore, the bran
h with negative masses has negative energies, too, while the 
onvexbran
h 
onsists of positive energies. We therefore interpret the ex
itation of the Ω−-bran
h as holes,i.e. ex
itations 
reated by taking away one parti
le with momentum −k. Correspondingly, Ω+ isasso
iated with parti
le ex
itations by adding one parti
le with momentum k. This interpretation 
anbe 
he
ked by setting J = 0 in Eq. (7.39). We �nd that ∆+ → Un − µ = ∆n 
orresponds to theenergy needed for adding one parti
le to system without hopping, while |∆−| → U(n− 1)−µ = ∆n−1is the energy needed for the 
reation of a hole.For the 
reation of a parti
le and a hole at k = 0, the energy di�eren
e between the two gaps hasto be 
onsidered Epair = ∆+ − ∆− =
√

36J2 + U2 − 12J(U + 2nU). We �nd that this is exa
tly thewidth W (n, J̃) of the lobes [31℄. To see that, we must invert Eq. (7.19), yielding:
µ̃PB± =

1

2

(

−1 + 2n− 6J̃ ±
√

1 − 12J̃ − 24nJ̃ + 36J̃2
)

, (7.41)from whi
h follows the width of the lobe
W (n, J̃) = µPB+(n, J̃) − µPB−(n, J̃) =

√

1 − 12J̃ − 24nJ̃ + 36J̃2 =
∆+ − ∆−

U
. (7.42)The behavior be
omes more interesting at the phase boundary: By evaluating ∆± in Eq. (7.39) onthe phase boundary given by Eq. (7.19), we �nd that the gap of the hole ex
itation vanishes in theinterval µ̃ ∈ (n − 1,

√

n(n+ 1) − 1], i.e. on the left side of the lobe tip. The opposite is true for theparti
le ex
itation, where the gap vanishes in the interval µ̃ ∈ [
√

n(n+ 1) − 1, n). At the tip of thelobe, whi
h is 
hara
terized by Eq. (7.20), both modes be
ome gap- and massless. This means thathere and only here, we have an exa
t symmetry between parti
les and holes.Sin
e 1/m± diverges at the lobe tips, Eq.(7.38) is not appropriate to des
ribe the spe
tra there.
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(a) ~ω
U

= −0.28 (b) ~ω
U

= −0.37 (
) ~ω
U

= −0.40Figure 7.4: For three di�erent energies, the surfa
es of 
onstant energy in k-spa
e are plotted. Theparameters µ/U and J/U have been 
hosen as in Fig. 7.2 II. We 
onsider hole ex
itations.When the ex
itation energy ex
eeds the gap, we get spheri
al surfa
es as in a). For largerenergies the sphere blows up, until the the upper bound of the energy band is rea
hed.The isotropy gets lost and the symmetry of the latti
e emerges, as 
an be seen in b). Foreven higher energies, no more ex
itations along the latti
e dire
tions exist, su
h that the
onstant energy surfa
es look like in 
).Instead we �nd for small k
~Ω(k) = ±U

√

−2n2 +
√

n(1 + n) + 2n
(

−1 +
√

n(1 + n)
)

√
6

k +O(k2). (7.43)We will 
ome ba
k to the pe
uliarities at the tip in Se
tion 7.3 when we dis
uss 
riti
al behavior.One additional information that, in prin
iple, 
ould be extra
ted from the spe
tral fun
tion ρ(ω,k)is the density of states. It is given by a k-integration of ρ(ω,k) over the �rst Brillouin zone. However,this integral turns out to be very 
ompli
ated, be
ause of the cos(k) and √cos(k) terms within the
δ-fun
tion. So let's 
ontent ourselves with some plots of the 
onstant energy surfa
es in the k-spa
eshown in Fig. 7.4. There we see how the symmetry of the latti
e emerges, when we in
rease theex
itation energy.7.2 Spe
tra in the SF PhaseThe pro
edure to �nd the spe
tral fun
tion in the SF phase is exa
tly the same as before in the MIphase, i.e. we must take the Green's fun
tion, whi
h now is given by Eq. (6.59), separate it in its realand its imaginary part and take the ǫ→ 0 limit. But now, this limiting pro
edure turns out to be very
ompli
ated, as the lengthy 4-point 
umulant enters the super�uid Green's fun
tion (6.59) at variouspla
es. It does not seem feasible to follow this way.Instead we argue in the following way: The limiting pro
edure is di�erent from setting ǫ = 0 onlyfor those frequen
ies where the Green's fun
tion diverges, i.e. at the resonan
e frequen
ies that weare looking for. But this also means that these frequen
ies 
an be found by setting ǫ = 0 in Eq.84



7.2 Spe
tra in the SF Phase(6.59) instead of taking the limit. This immediately yields a real fun
tion of ω and k. By �ndingits divergen
es, the ex
itation spe
tra are determined. Doing this, however, we loose all informationabout the spe
tral weights, whi
h is en
oded in the imaginary part of the Green's fun
tion.Another way of �nding the dispersion relations without making use of the Green's fun
tion is solvingthe equations of motion (6.46) and (6.47). Sin
e the 
oe�
ients in these equations require a similarlimiting pro
edure as the Green's fun
tion, we are 
onfronted there with the same te
hni
al problem.But again we argue, that the real part is obtained by setting ǫ = 0, while the ǫ→ 0 limit would yieldan imaginary part proportional to δ-fun
tions 
oin
iding with the divergen
es of the real parts. But asdiverging 
oe�
ients do not solve the equations of motion, we will not 
onsider these 
ases and restri
tus to the 
ase ǫ = 0. We are then left with real 
oe�
ients only. In terms of Eqs. (6.48) and (6.49),this means that A(ω,k) = A∗(ω,k) and B(ω,k) = B∗(ω,k).With the se
ond equation of motion (6.49),
Ψk(−ω) = −B

∗(−ω,k)

A∗(−ω,k)
Ψ∗

k(ω), (7.44)we 
an eliminate one �eld from the �rst equation of motion (6.48), leading to
[

A(ω,k) −B(ω,k)
B∗(−ω,k)

A∗(−ω,k)

]

Ψ∗
k(ω) = 0, (7.45)where all fun
tional derivatives are evaluated at the equilibrium solution. The resonan
e 
ondition fornon-trivial solutions therefore reads:

δ2Γ

δΨ∗
k,q(−ω)δΨk,cl(−ω)

δ2Γ

δΨk,q(ω)δΨ∗
k,cl(ω)

− δ2Γ

δΨ∗
k,q(−ω)δΨ∗

k,cl(ω)

δ2Γ

δΨk,q(ω)δΨk,cl(−ω)
!
= 0. (7.46)This is the same as the equation one would obtain by looking for a vanishing denominator of theGreen's fun
tion (6.59). The fun
tional derivatives in Eq. (7.46) have already been taken in Eqs.(6.46) and (6.47). Eq. (7.46) represents an impli
it equation for ω(k), but it is too 
ompli
ated tobe solved analyti
ally. We will later dis
uss some expansions that we 
an make or limits that we 
antake in order to get analyti
 expressions, but at �rst we 
an take a look at solutions, whi
h have beendetermined numeri
ally. We make the following observations:

• O� the tip, we �nd all in all four SF dispersion bran
hes. There are two bran
hes with positiveenergy and two with negative energies. We �nd that the positive bran
hes di�er from the negativebran
hes only by the sign. Remember that in the MI phase we had one mode with ω ≥ 0, thatwe interpreted as an ex
itation by adding one parti
le, and a se
ond mode with ω ≤ 0, whi
h wasinterpreted as an ex
itation by taking away one parti
le. But of 
ourse, in both 
ases, a positiveenergy is needed in order to ex
ite the system. The di�erent sign for the ex
itation frequen
yrepresents solely the fa
t that, when we add a parti
le, energy is 
ollo
ated within the system,while energy is taken away from the system, when a hole is 
reated. However, if we are interestedin the ex
itation energy, we should rather 
onsider ~|ω(k)| than ~ω(k). With this reasoning inmind we end up with two dispersion modes in the Mott phase and also two modes in the SFphase. 85
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itation Spe
tra
• One of the SF dispersion relation is gapped and quadrati
 for small k, the other SF mode isgapless and linear. For small k, we 
an therefore approximate both SF dispersion relations by

ω1(k) = ∆ +
1

2m
k2 + · · · , (7.47)

ω2(k) = ck + · · · , (7.48)where ∆ denotes the gap, m the e�e
tive mass of the massive ex
itations, and c the sound velo
ityof the massless mode.
• When we approa
h the phase boundary, the SF spe
tra be
ome identi
al to the MI spe
tra.Depending on whether the 
hemi
al potential µ is smaller (larger) than at the top of the Mottlobe, the parti
le (hole) mode from the MI phase survives as a massive ex
itation in the SF phase.To see this, we have plotted the two super�uid spe
tra (red), together with the parti
le/hole spe
tra inthe MI phase (green) and the spe
tra at the phase boundary (blue) in the upper part of Fig. 7.5. Thegraph in the middle shows the situation around the tip of the �rst Mott lobe, on the left and right sidewe have plotted the spe
tra for smaller and larger µ. The latter resemble ea
h other, but one mustdistinguish parti
le and hole ex
itations, in order to see the qualitative di�eren
e.The mapping of the SF spe
tra onto the MI spe
tra be
omes even 
learer in the other plots of Fig.7.5: In the se
ond and the third row, the gap and the mass of ea
h mode are plotted as a fun
tion of

J/U . We see that o� the tip the gapped SF mode ends up at the phase boundary with exa
tly thesame gap as one of the MI modes. The same is true for its mass. The massless SF mode, however,gains mass near the phase boundary in a sudden, but 
ontinuous way. At the tip, both modes be
omemass- and gapless, no matter whether we 
ome from the SF side or from the MI side. Finally thesound velo
ity of the massless SF mode is plotted in Fig. 7.5. While it remains �nite at the tip of thelobe, it falls o� 
ontinuously, if the phase boundary is approa
hed o� the tip.Even without solving the resonan
e 
ondition (7.46), we 
an show that our theory ne
essarily allowsfor this mapping: We only have to 
ompare the retarded SF Green's fun
tion given by Eq. (6.59) withthe retarded MI Green's fun
tion in Eq. (5.39). If we re
ognize that the equilibrium order �eld |Ψeq|2given by Eq. (6.40) vanishes 
ontinuously, when the phase boundary is approa
hed, it is easy to seethat the SF Green's fun
tion redu
es to the MI Green's fun
tion. Therefore it is a 
onsequen
e of ourGinzburg-Landau ansatz that the phase transition takes a smooth 
ourse, as it should be in 
ase of ase
ond-order phase transition.7.2.1 Interpretation of the Spe
traStill the question arises, how the SF modes 
an be interpreted. Therefore we should remember thatthe massless ex
itations are expe
ted from many points of view:
• Already in the introdu
tion we have stated that su
h a dispersion relation is 
ru
ial for theunderstanding of super�uidity [15,16℄.
• In Bogoliubov's approa
h to weakly intera
ting Bose gases, a linear spe
trum is obtained as a
onsequen
e of the intera
tions [19℄.86
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(a) µ̃ = 0.3 (b) µ̃ =
√

2 − 1 (
) µ̃ = 0.6Figure 7.5: The ex
itation spe
tra in both the MI and the SF phase are examined for three di�erent
µ̃: The graphs in the middle 
onsider the situation around the n = 1 lobe tip; Figs. (a)and (
) show the situation o� the tip. The upper plots show the spe
tra ω(k) in the SFphase (red), at the phase boundary (blue) and in the MI phase (green). The MI ex
itations
an be interpreted as parti
le modes (dotted lines) and hole modes (dashed lines). In these
ond and the third row we examine the gap ∆ and the mass m of the ex
itations asfun
tions of J/U . We �nd that the MI spe
tra map onto the SF spe
tra. The last rowshows the sound velo
ity of the massless mode in the SF phase. 87
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itation Spe
tra
• In the light of symmetry-breaking, su
h a dispersion relation is expe
ted from the Goldstonetheorem [50℄.In the ordered phase, the Landau free energy depi
ted in Fig. 2.3 is 
hara
terized by a minimum fora �nite absolute value of the order parameter. In this pi
ture, it is obvious that 
hanging the phaseof the order �eld should 
ost no energy. Thus, we would like to interpret the linear mode, at least for

ω → 0, as a pure phase ex
itation. In this limit, the equations of motion (6.48) and (6.49) 
oin
ide:
A(0,0)Ψ∗

0(0) +B(0,0)Ψ0(0) = 0, (7.49)Splitting the order �eld in its real and its imaginary part, we get the equations
[B(0,0) −A(0,0)] Im[Ψk(0)] = 0, (7.50)
[B(0,0) +A(0,0)] Re[Ψk(0)] = 0. (7.51)Now we have to note that at ω = 0 and k = 0 the terms A and B get very simple, sin
e |Ψeq| givenby Eq. (6.40) 
an
els partially the fun
tional derivatives. Thus we have

A(0,0) = −
(

1

gA(0)
− J0

~

)

= B(0,0). (7.52)But this means that Eq. (7.50) allows for non-trivial solutions, while Eq. (7.51) does not. Thus theex
itations with ω = 0 are purely imaginary, i.e. only the phase of the order �eld may 
hange. Hen
ethey must be interpreted as phase ex
itations in agreement with the pi
ture of a wine-bottle shapedfree-energy fun
tional in Fig. 2.3.Unfortunately, our argumentation holds only for the zero-energy 
ase. For any other ex
itations onthe massless bran
h and on the massive bran
h, we are not able to �nd su
h a unique 
lassi�
ation.To gain further insight, we rely on the results of other authors:
• In Ref. [78℄ a slave-boson method yields two modes very similar to ours. It is shown thatwithin the sound mode, phase ex
itations are dominant leading to a density modulation of thesystem. Within the gapped mode, however, amplitude variations are mu
h stronger than phasevariations and the density stays 
onstant within the gapped mode. This mode is interpreted asan inter
hange between 
ondensate and non-
ondensate.
• In Ref. [79℄, both modes are further dis
ussed from the point of view of a quantum phase modelwhi
h is very similar to the super�uid regime of the BH model. Again, the sound mode is shownto re�e
t the phase degrees of freedom, while the gapped mode is interpreted as an amplitudemode.
• In Ref. [80℄ a random-phase approximation does not only �nd two, but several modes. Amongstthem, a se
ond gapped mode appears, whi
h is symmetri
al in energy to the gapped mode arisingfrom the MI spe
tra. Remember that our theory has yielded su
h a mode as well, but we haveargued that only the absolute value of the ex
itation energy has a physi
al meaning. In Ref.[80℄, however, the authors 
al
ulate the spe
tral weights of ea
h mode and �nd that the mirroredmode has zero strength.88



7.2 Spe
tra in the SF PhaseCon
erning the sound mode, all 
ited publi
ations 
laim good agreement with the ex
itation spe
trumpredi
ted by Bogoliubov theory whi
h is 
onsidered to des
ribe very well the sound mode ex
itations.Also the experimental data presented in Ref. [25℄ 
on�rms this. More questionable, however, is thegapped mode, sin
e neither does Bogoliubov's theory predi
t su
h an ex
itation nor has there yet beenany experimental dete
tion.From our point of view, however, it is quite natural to have a gapped mode in the SF phase, sin
ewe have seen that it dire
tly takes up one of the MI mode. If we look at the weight of this mode at thephase boundary, we �nd from Fig. 7.3(
) in agreement with Ref. [80℄, that it is of the same order asthe gapless mode. Thus this mode must be present also in the SF phase. Unfortunately, we have notbeen able to 
al
ulate the weights within the SF phase, so we 
annot ex
lude that the weight of thegapped mode de
ays very fast, when we go away from the lobe. In Ref. [78℄, the weight is 
al
ulatedat J = 1.2 Jc above the tip. Here, the authors �nd that it be
omes signi�
ant only for large k.This might be one reason for the failure of the experimental dete
tion, but Ref. [78℄ still givesanother argument: Due to missing density modulations in the gapped mode, it is not sensitive toBragg spe
tros
opy. We 
an try to understand this by 
onsidering the physi
al situation at the phaseboundary: Depending on the position on the lobe, it still 
osts some energy ∆ to 
reate a parti
le(hole), while the 
reation of a hole (parti
le) is for free. If we simultaneously 
reate a parti
le and ahole, we have to pay this amount of energy ∆. Obviously, we have not 
hanged the lo
al density, butthe lo
al density of parti
le/hole pairs has in
reased. It is proportional to |Ψi,cl|2 ∼ 〈âi〉〈â†i 〉. Thus itseems to make sense interpreting the gapped mode as an amplitude mode at 
onstant density.Refs. [78,79℄ therefore propose measurements via latti
e modulation. Sin
e |Ψeq| is a fun
tion of
J and U , an ex
hange between 
ondensed and non-
ondensed parti
les should be stimulated via amodulation of those two parameters. This te
hnique has already been applied by the group of T.Esslinger [81℄ and indeed a �nite energy absorption has been found. This 
an probably be interpretedas a �rst experimental eviden
e of the gapped mode.7.2.2 Sound ModeIn this se
tion, we will further analyze the SF sound mode. Before we dis
uss our own results, webrie�y sket
h the way, how this mode is des
ribed within the Bogoliubov approximation.Bogoliubov Spe
trumThe Bogoliubov approa
h [19℄ as well as the Gross-Pitaevskii (GP) approa
h [82,83℄ on 
old bosoni
gases is based on the idea that due to weak intera
tions the bosoni
 operators âi and â†i 
an be repla
edby their 
-number 
lassi
al expe
tation values φi and φ∗i . Bogoliubov's approa
h still 
onsiders quantum�u
tuations ˆ̃ai, i.e. âi = φi + ˆ̃ai and â†i = φ∗i + ˆ̃a†i .Within in the GP ansatz, the Bose-Hubbard HHamiltonian from Eq. (2.1) takes the following
lassi
al form [84℄

HGP =
∑

i



−J
∑

j∈n.n.

φ∗iφj − µ|φi|2 −
U

2
|φi|4



 , (7.53)
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7 Ex
itation Spe
traleading to the equation of motion
i~
∂φi
∂t

= −
∑

j

Jijφj − µφi − Uφi|φi|2. (7.54)Assuming a homogeneous 
ondensate, i.e. φi = φ, and negle
ting third and higher order �u
tuationterms, the Bogoliubov approa
h for the BH model [28,80℄ yields the Hamilton operator
ĤB =

∑

i

{

U

2
|φ|4 − µ|φ|2 − 6J |φ|2 +

[

ˆ̃a†i
(

|φ|2U − µ− 6J
)

φ+ h.c.
]

+
U

2

(

φ2ˆ̃a†2i + 4|φ|2ˆ̃a†i ˆ̃ai + φ∗2ˆ̃a2
i

)

− µˆ̃a†i
ˆ̃ai

}

− J
∑

〈i,j〉

ˆ̃a†i
ˆ̃aj. (7.55)The energy is minimized by setting the �rst order �u
tuation terms to zero, U |φ|2 − µ− 6J = 0. Thesolution of this equation is also the solution of the time-independent, homogeneous GP equation. Wetherefore denote it by φGP:

φGP =

√

µ+ 6J

U
. (7.56)A transformation into k-spa
e a

ording to Eq. (5.41) yields

ĤB = N

(

−6J − µ+
U

2
n0

)

n0 +
∑

k

(−Jk − µ) ˆ̃a†k
ˆ̃ak +

U

2
n0

∑

k

(

ˆ̃ak
ˆ̃a−k + 4ˆ̃a†k

ˆ̃ak + ˆ̃a†−k
ˆ̃a†k

)

, (7.57)where n0 = |φGP|2. Using the bosoni
 
ommutation rule [ˆ̃ak, ˆ̃a
†
k
] = 1, this Hamiltonian 
an bediagonalized by the so-
alled Bogoliubov transformation

(

ˆ̃ak

ˆ̃a†k

)

=

(

ukb̂k + v∗−kb̂†
−k

u∗−kb̂†
−k + vkb̂†

k

)

. (7.58)Here the normalization |uk|2 − |v−k|2 = 1 guarantees the bosoni
 
hara
ter of the new operators b̂kand b̂†
k
. After this transformation the Hamiltonian reads

ĤB = −U
2
n2

0N +
1

2

∑

k

(~ωk − Un0 − ǫk) +
∑

k

~ωkb̂†
k
b̂k, (7.59)where ǫk denotes the free dispersion

ǫk = 2J

(

3 −
3
∑

ν=1

cos (kνa)

)

= 4J

3
∑

ν=1

sin2

(

kνa

2

)

, (7.60)while the Bogoliubov dispersion is given by
~ωk =

√

ǫ2k + 2Un0ǫk. (7.61)
90



7.2 Spe
tra in the SF PhaseFurthermore, one �nds for the Bogoliubov parameters
|vk|2 = |uk|2 − 1 =

1

2

(

ǫk + Un0

~ωk

− 1

)

. (7.62)A self-
onsisten
y 
he
k 
an be made by 
al
ulating the total parti
le number n(k) = n0δk,0 + |v−k|2.Sin
e in the Gross-Pitaevskii limit, n0 already equals the total parti
le number, the Bogoliubov ap-proa
h is good as long as |v−k| is small.In the next subse
tion, we will 
ompare our spe
trum with the Bogoliubov spe
trum given by Eq.(7.61). For small k, this fun
tion 
an be linearized, and we 
an extra
t a sound velo
ity from Eq.(7.61). It is given by
c

a/~
=
√

2J(µ+ 6J). (7.63)But now let's see how good our theory agrees with these famous results.Sound Mode from E�e
tive A
tionBe
ause of the 
ompli
ated ω-dependen
e in the resonan
e 
ondition (7.45), we have been at �rst
ontent with a numeri
al solution plotted in Fig. 7.5. But as the sound mode is gapless for |k| = 0, itssmall-k behavior 
an be well approximated, if we Taylor expand the equations of motion in ω and karound ω = 0 and |k| = 0. In that 
ase the resonan
e 
ondition (7.45) be
omes analyti
ally solvable.For more simpli
ity we 
hoose without loss of generality k = (k, 0, 0) again and get:
α1(n, µ, J, U)k2 + α2(n, µ, J, U)ω2 + α3(n, µ, J, U)k2ω2 +O(ω3) +O(k2) = 0, (7.64)where the 
oe�
ients αi are 
ompli
ated fun
tions, whi
h we do not want to write down expli
itly. Aslong as α1 and α2 have non-zero values, the solution of (7.64) yields a non-zero sound velo
ity

c(n, µ, J, U) =

√

−α1(n, µ, J, U)

α2(n, µ, J, U)
. (7.65)We 
an redu
e the number of variables by measuring all energies in units of U , i.e. J̃ = J/U and

µ̃ = µ/U . We then de�ne the dimensionless quantity
c̃(n, µ̃, J̃) =

c(n, µ, J, U)

aU/~
. (7.66)
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(a) Coe�
ients α1 = 0 and α2 = 0 from Eq. (7.64).
SFMI

0.02 0.04 0.06 0.08 0.10

J

U

0.1

0.2

0.3

0.4

c

a U � Ñ

(b) Sound velo
ityFigure 7.6: (a) In the �gure on the left-hand side the 
oe�
ients in Eq. (7.64) are investigated: On theblue line whi
h lies 
ompletely on the Mott lobe, we have α1(1, µ, J, U) = 0. On the purpleline lying within the Mott lobe and hitting the lobe at its tip, we have α2(1, µ, J, U) = 0.(b) The sound velo
ity c obtained within our approa
h (purple) is 
ompared to the Bogoli-ubov predi
tion (blue) from Eq. (7.63) for a �xed µ/U =
√

2 − 1.This fun
tion is plotted for n = 1 and 
onstant µ̃ in the right part of Fig. 7.5. Its expli
it expressionfor n = 1 reads
c̃(1, µ̃, J̃) =

[(

J̃ µ̃2(1 + µ̃)3(3 − 2µ̃)
(

− 3 + 8µ̃− 10µ̃2 + 4µ̃3 + µ̃4
)2(

(µ̃− 1)µ̃+ 6J̃(1 + µ̃)
)

)/

(

36J̃(1 − µ̃)3µ̃3(−27 + 108µ̃+ 9µ̃2 − 92µ̃3 + 3µ̃4 − 24µ̃5 + 7µ̃6) − (−1 + µ̃)3µ̃3 (7.67)
(27 − 135µ̃+ 36µ̃2 + 172µ̃3 − 210µ̃4 + 294µ̃5 − 196µ̃6 + 60µ̃7 + 15µ̃8 + µ̃9) + 18J̃2(1 + µ̃)2

(27 − 270µ̃+ 1359µ̃2 − 3860µ̃3 + 5950µ̃4 − 4512µ̃5 + 1198µ̃6 + 100µ̃7 + 135µ̃8 − 66µ̃9 + 3µ̃10)
)]1/2

.For general n the expression be
omes mu
h more lengthy, so we don't give it here.From Fig. 7.5 we suppose that the sound velo
ity vanishes at the phase boundary ex
ept for thelobe tip. Now we are able to see this expli
itly by examining the roots of α1 and α2 in Fig. 7.6(a).It 
an be seen that the sound velo
ity be
omes zero on the whole lobe ex
ept at the tip, where both
oe�
ients α1 and α2 be
ome zero resulting in a �nite sound velo
ity.For a 
omparison with Eq. (7.63) from the Bogoliubov theory, we have plotted c̃(1, µ̃, J̃) for �xed
µ̃ =

√
2 − 1 in Fig. 7.6(b) together with the Bogoliubov predi
tion. At �rst sight the agreement doesnot seem pretty good, as for large J/U the Bogoliubov result diverges, while our result tends to a
onstant value. But nevertheless, we should look at what happens, when U de
reases independentlyfrom J , as a 
ru
ial assumption in the derivation of the Bogoliubov spe
trum was the weakness ofintera
tions.
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(a) J
U

= 0.04, µ

U
= 0.34 (b) J

U
= 0.15, µ

U
= 0.22Figure 7.7: Bogoliubov spe
trum (blue) versus sound mode predi
ted by Eq. (7.45) (purple): In bothplots (a) and (b), the parameter J/U, µ/U are 
hosen su
h that n ≈ 1 a

ording to Ref.[70℄. While the system in (a) is 
lose to the phase boundary, in (b) it is deep in the SFphase.We therefore expand our result from (7.64) in U yielding

c

a/~
=
√

2J(6J + µ) +
J
[

216J3(1 + 2n) − 6J(1 + 2n)µ2 − (1 + 6n)µ3 + 36J2(µ+ 2nµ)
]

2
√

2µ3
√

J(6J + µ)
U +O(U2).(7.68)In zeroth intera
tion order, we thus obtain the Bogoliubov result. This means that our theory, whi
hwe started as a small J expansion, yields the same result as a theory for small U in the asymptoti
limit U → 0. As this is a quite remarkable �nding, we are going to study this in more details.First we 
he
k, if only the sound velo
ity or even the whole spe
trum of our theory 
oin
ides withthe Bogoliubov result in the weak intera
tion limit. Therefore, we make a Taylor expansion in U ofthe resonan
e 
ondition (7.45). To zeroth order we get

~
2ω(k)2 = 4J

3
∑

ν=1

sin2

(

kνa

2

)

[

4J
3
∑

ν=1

sin2

(

kνa

2

)

+ 2(µ+ 6J)

]

. (7.69)This is exa
tly the result from Eq. (7.61) obtained in the Bogoliubov approximation with a Gross-Pitaevskii order �eld (7.56). In Fig. 7.7 we 
ompare this spe
trum with the numeri
al solution of thefull resonan
e 
ondition. We �nd that in the left pi
ture the agreement of both spe
tra is quite good.Only for large k, our dispersion relation is �attened a little bit. Deeper in the SF phase, however, ourspe
trum strongly deviates from this result.We are thus 
onfronted with the somehow strange result, that we have a perfe
t agreement withBogoliubov for small U , but not for large J/U . So we take a look on the �rst-order term in Eq. (7.68).93



7 Ex
itation Spe
traHere we have an asymptoti
 J3 behavior. This means that the in�uen
e of this �rst-order 
orre
tiongets bigger, when we are deep in the SF phase. Unfortunately, in this regime the Bogoliubov result issupposed to be very good. This is surely a limitation of our theory. But as we started our perturbationtheory in the Mott phase with an expansion for small J , we shouldn't expe
t too mu
h. We have goodreasons to believe that at the onset of super�uidity our 
orre
tions to the Bogoliubov spe
trum arerelevant. A strong eviden
e for that is the fa
t that c(n, µ,U, J) vanishes at the phase boundary withthe ex
eption of the lobe tips.A �nal answer to the question, whether our result 
orre
ts the Bogoliubov spe
trum near the phaseboundary, 
an only be given by experiment. The sound mode of bosons in opti
al latti
e was re
entlymeasured by the group of K. Sengsto
k [25℄. This data is shown in Fig. 1.5 in the Introdu
tion. Aquantitative 
omparison with our results, however, is not possible, sin
e in the experimental setupthe atoms are 
on�ned by an additional harmoni
 trap. To des
ribe this situation theoreti
ally, onemust introdu
e a 
hemi
al potential µi whi
h depends on the latti
e site. Thus the assumption ofhomogeneity, whi
h was made in the derivation of our spe
tra, is no longer ful�lled. But qualitativelywe 
an see from Fig. 1.5, that the experimental spe
trum agrees well with the Bogoliubov spe
trumfor small k, but for large k, it is �attened a little bit. This is also the 
ase for our result as shown inFig. 7.7.7.2.3 Gapped ModeWe now have seen that our results are identi
al to Bogoliubov's predi
tions, if we trun
ate the equationof motion (7.45) in zeroth intera
tion order yielding Eq. (7.69). This equation does not allow for agapped mode. We �nd, however, that a gapped mode arises, if we take into a

ount higher orders in
U . This mode must therefore be 
onsidered as a phenomenon, whi
h is 
aused by strong intera
tions.Expanding Eq. (7.45) up �rst-order in U , however, still turns out to be too 
rude, as the e�e
tivemasses of the ex
itations have the wrong sign 
ompared to the numeri
al solution shown in Fig. 7.5.Sin
e this solution yields m ∼ 1/

√
U , these masses get big for small U . Then the wrong sign doesnot play an important role, be
ause the dispersion relation be
omes very �at. In the limit U → 0, weget ~ω(k) = 2µ. By 
omparing this with our numeri
al solutions, this 
an be 
onsidered a reasonableapproximation.Now we should note that µ is a paramter used in our theoreti
al des
ription, but not being �xed inthe real system. There the parti
le number is given and we have to 
hoose µ in su
h a way that theparti
le number is reprodu
ed. As one 
an best see from Eq. (7.56) for the 
ondensate density deepin the SF phase, a vanishing intera
tion parameter U demands for a vanishing 
hemi
al potential µ, ifthe density is to be maintained 
onstant. Thus we see again, that this mode has to disappear in thelimit U → 0.Further analysis of the gapped mode turns out to be very di�
ult. For the gapless mode, a Taylorexpansion around ω = 0 and k = 0 was possible. But solutions with ω 6= 0 
annot be properlydes
ribed in su
h a limit. So we really seem to be reliant on the numeri
al results. We will extendthem a little bit further in the next se
tion, where the 
riti
al properties are dis
ussed.

94



7.3 Criti
al Behavior7.3 Criti
al BehaviorThe fa
t that the system behaves di�erently at the lobe tip than on the rest of the lobe requires somefurther 
onsiderations. It has already been argued by Wei
hman et al. [31℄ that su
h a di�eren
e musto

ur. Their argument is based on the fa
t that, while the parti
le number per latti
e site is quantizedto integer numbers in the MI phase, in the SF phase it is not. Thus a transition into the SF phase ingeneral 
omes along with a 
hange of the density. Only at the tip of the lobe, the phase boundary ishit by a super�uid n = const. 
urve, thus only there a transition without a density 
hange is possible.So while on the whole lobe ex
ept at its tip the phase transition is driven by an addition or subtra
tionof parti
les, on the tip of the lobe it is the in
rease of the hopping parameter J , whi
h smoothly drivesthe system into the SF phase. This explains the di�erent 
riti
al behavior.7.3.1 Some S
aling IdeasTo examine this behavior a little bit 
loser, we should �rst state the 
on
ept of 
riti
al theories[14,34,85℄: When a system undergoes a phase transition, some of its properties are supposed to beuniversal. That means that they depend on the behavior of the system under s
aling transformationsrather than on mi
ros
opi
 details. Systems whi
h behave equally under the same s
aling transforma-tions belong to the same universality 
lass, whi
h means that their universal properties 
an be des
ribedby the same 
riti
al exponents in the vi
inity of the phase transition. S
aling transformations mighta
t on any relevant quantity within the theory, for example on time and length s
ales, i.e.:
x→ xe−ν (7.70)
t→ te−zν . (7.71)To see, if a system is invariant under su
h a transformation, we have to look at its Lagrangian. A
ru
ial role plays the dynami
 
riti
al exponent z. It gives the ratio of the s
aling fa
tors for time andspa
e. It is 
lear that the s
aling for a Lorentz-invariant Lagrangian, for instan
e, must have z = 1.Su
h a s
aling leaves velo
ities invariant and the 
orresponding systems have a relativisti
 ex
itationspe
trum ~ω(k) =

√

∆2 + c2k2. Galilei-invariant systems have z = 2 and their spe
trum is quadrati
in k.Another interesting property 
on
erning the ex
itation spe
tra near the phase boundary is the be-havior of an energy gap ∆. We have seen that within the BH model, the gap vanishes at least for onemode, when the phase boundary is approa
hed. This 
an be des
ribed by the power law:
∆ ∼ (J − JPB)a, (7.72)where again the exponent a is universal. As energy s
ales with the inverse of the s
aling for time, wehave a = zν.Coming ba
k to the BH model, the s
aling behavior on the tip of lobe should be di�erent of the restof the phase boundary. This 
an be seen by writing down the Lagrangian for a 
ontinuum quantum
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7 Ex
itation Spe
tra�eld theory of the Bose-Hubbard system [34℄:
L = K1Ψ

∗∂Ψ

∂t
+K2

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

2
+K3|∇Ψ|2 + (λ2/2) |Ψ|2 + (λ4/4!) |Ψ|4 , (7.73)where the K's and λ's are parameters depending on the system parameter µ,U and J . Investigating

K1, it is found in Ref. [34℄ that K1 = 0 at the tips of the lobes, resulting in a Lorentz-invariant s
alingtheory with z = 1, whereas z = 2 holds elsewhere. The universality 
lass of the transition at thetip is often referred to as the XY -model in d + 1 dimensions or the O(2) quantum rotor model. Forthis theory the mean-�eld value of the 
riti
al exponent zν is found to be 1/2 [31℄, thus ν = 1/2 inmean-�eld. Outside the tip, the systems belongs to the universality 
lass of dilute Bose gases with
zν = 1, so again we have the mean-�eld exponent ν=1/2.7.3.2 Criti
al ExponentsFrom the point of view presented in the subse
tion above, the linear shape of the dispersion relationat the tips, in 
ontrast to the quadrati
 shape elsewhere on the lobe, is a 
onsequen
e of the di�erentdynami
 
riti
al exponents. Let us still see whi
h 
riti
al exponents zν are produ
ed by our theory.We have the theoreti
al tools to study the 
riti
al exponents on both sides of the phase boundary.Due to their universality, they of 
ourse must be the same on both sides [85℄. And while we 
an 
al
ulate
zν analyti
ally in the MI phase, numeri
al methods must be applied on the SF phase. Nevertheless,we are going to examine zν in both phases in order to 
he
k our theory. Furthermore, in the SF phasewe 
an go through the lobe tip either at 
onstant density or at 
onstant hopping, whi
h should yielddi�erent exponents.Approa
hing the Phase Boundary from the MI phaseThe MI phase approa
h to the tip has already been graphi
ally investigated in Ref. [73℄ whi
h is basedon the same retarded Green's fun
tion as ours. Here we will extend the study of the 
riti
al exponentsto the whole phase boundary. In the MI phase this 
an be done analyti
ally.The gap is given by Eq. (7.35), when we set k = 0: ∆(U,µ, J) ≡ ~Ω±(0). Of 
ourse we have to
hoose the dispersion relation with a vanishing gap, i.e. a hole spe
trum for µ < µtip and the parti
lespe
trum otherwise.Next we invert the equation for the phase boundary (7.19). For more simpli
ity, we restri
t ourselvesto the �rst Mott lobe n = 1:

µ̃PB1,2
=

1

2

(

1 − 6J̃PB ±
√

1 − 36J̃PB + 36J̃2
PB

)

, (7.74)where µ̃PB and J̃PB denote the 
hemi
al potential and the hopping at the phase boundary measuredin units of U . We have two solutions, as the lobe is hit twi
e by J = const. < Jtip.Now we insert µ̃PB1,2
in ∆ whi
h leaves us with the following expression:

∆̃(µ̃, J̃) ≡ ∆(U,µ, J)

U
= 3(J̃PB − J̃) ±

(

√

1 − 36J̃PB + 36J̃2
PB −

√

1 − 36J̃ + 36J̃2

)

. (7.75)
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7.3 Criti
al BehaviorNote that this is still a fun
tion of µ̃, sin
e J̃PB depends on µ̃. If we now �x µ, we 
an �nd out howthe gap behaves, when the phase boundary is approa
hed. We still have to repla
e J = JPB − j. Wethen have
∆̃(µ̃, j̃) = 3j̃ ±

(

√

1 − 36J̃PB + 36J̃2
PB −

√

1 − 36J̃PB + 36J̃2
PB − 36j̃ − 72J̃PBj̃ + 36j̃2

)

. (7.76)For µ̃ =
√

2 − 1 the phase boundary is hit at the tip. There we have J̃PB = 1/2 −
√

2/3 and hen
e
√

1 − 36J̃PB + 36J̃2
PB = 0. Thus the gap reads

∆̃(µ̃tip, j̃) = 3j̃ ±
√

24
√

2j̃ + 36j̃2. (7.77)As j̃ vanishes at the phase boundary, the behavior near 
riti
ality is given by the lowest order in j̃, i.e.we have the result
∆̃(µ̃tip, j̃) ∼

√

j. (7.78)This means that the 
riti
al exponent is zν = 1/2.For all other µ, there remains a non-zero term 1−36J̃PB +36J̃2
PB under the square root. This meansthat the gap is not proportional to √

j, but to j. With a Taylor expansion in j, we get:
∆̃(µ̃, j̃) ≈



3 ± 36 − 72J̃PB

2
√

1 − 36J̃PB + 36J̃2
PB



 j. (7.79)Hen
e we have zν = 1 in agreement with Ref. [31℄.Approa
hing the Phase Boundary from the SF PhaseAt the tip of the lobe the gap of the SF gapped mode vanishes, so we 
an also determine the 
riti
alexponent for it on this side of the phase transition. Here we have the possibility either to approa
h thetip along the line of 
onstant density or along a tangent to the phase boundary with 
onstant hoppingparameter J̃ . As we have seen in the MI phase, this di�eren
e should 
on
ern the 
riti
al exponents,so we investigate both 
ases separately.For a study at 
onstant density we need to know the average parti
le number n in the SF phase asa fun
tion of µ̃ and J̃ . Obtaining this information within our theory is 
ompli
ated, so we revert toa thermodynami
 e�e
tive a
tion theory in imaginary time [70℄. There the derivative of the e�e
tivea
tion with respe
t to µ dire
tly yields n. It is found that n =
onst along a line hitting the lobe tip,but without being parallel to the J̃ axis. The latter has been assumed by Wei
hman et al. [31℄, butdue to the bosoni
 
ommutation relations, the BH model has, di�erent than the fermioni
 Hubbardmodel, no parti
le/hole symmetry.In Fig. 7.8(a) we plot the gap along n = 1. Noting the double-logarithmi
 axes, we 
an extra
t the
riti
al exponent from this graph: zν = 0.5. We also investigated zν for 
onstant µ̃ =
√

2 − 1 andfound the same value zν = 0.5, i.e. it makes no quantitative di�eren
e if we use the n =
onst line
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7 Ex
itation Spe
tra
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(b) J = const.Figure 7.8: The gap ∆ is examined, when the tip of the n = 1 Mott lobe is approa
hed from the SFphase at 
onstant n (a) or at 
onstant J (b). The linear shape in (b) 
orresponds to a
riti
al exponent zν = 1, while in (a) a double-logarithmi
 plot is used yielding zν = 0.5

0.005 0.010 0.050 0.100

J - Jc

Jc

1.0

10.0

5.0

2.0

3.0

1.5

7.0

m

Ñ
2�a2

U

(a) n = const. = 1

-0.4 -0.2 0.0 0.2 0.4

Μ - Μc

Μc

1

2

3

4

5

6

m

Ñ
2�a2

U

(b) J = const. = JcFigure 7.9: The e�e
tive mass m at tip of the n = 1 Mott 
on�rms the exponents from Fig. 7.8.from Ref. [70℄ or the one from Ref. [31℄. Comparing this result with the 
riti
al exponents in the MIphase, we �nd that they are the same on both sides of the phase transition, as it has to be.If we approa
h the tip of the lobe at 
onstant J/U , the situation looks 
ompletely di�erent. It isshown in Fig. 7.8(b). We �nd that ∆ ∼ µ − µc, i.e zν = 1. Thus a transition tangent to the phaseboundary has the same 
riti
al exponent zν as a transition o� the lobe. But sin
e z = 1 at the tip,also the exponent ν must be 1 for the tangent transition in agreement with Ref. [31℄.Another quantity that vanishes at the tip of the lobe is the e�e
tive mass of the ex
itations. Aswe have z = 1 at the multi
riti
al point, masses have to s
ale like energies, thus we expe
t the same
riti
al exponents as for the gap. In Fig. 7.9(a) we plot our result for 
onstant n. Noting the double-logarithmi
 s
ale of the axis, we �nd zν = 0.5. For 
onstant J , the masses de
rease linearly with µ−µcas shown in Fig. 7.9(b). We therefore have zν = 1. Thus, both 
ases are 
onsistent with the resultsfound for the gap ∆.98



8 Relation to other TheoriesIn this �nal 
hapter we would like to point out the relation of our e�e
tive a
tion theory to the theoryof Gross-Pitaevskii sket
hed in Se
tion 7.2.2 and to a similar approa
h as ours, though in imaginarytime [70℄.8.1 Gross-Pitaevskii EquationWe have already seen that the sound mode be
omes the Bogoliubov spe
trum in the limit U → 0.We want to take this up and 
onsider the Green's fun
tions in this limit. At �nite temperature thestru
ture of GR/A(ω1, ω2) and CR/A(ω1, ω2;ω3, ω4) 
an be taken from Eqs. (5.20) and (A.15):
GR/A(ω1, ω2) =

1

Z(0)

∞
∑

n=0

eβEngn(ω1, ω2), (8.1)
CR/A(ω1, ω2;ω3, ω4) =

1

Z(0)

∞
∑

n=0

eβEnCn(ω1, ω2;ω3, ω4). (8.2)We must note that the kernels gn and Cn as well as the unperturbed energies En and the partitionfun
tion Z(0) depend on the intera
tion U and must be taken into a

ount, when we expand in U . Inthe lowest, non-trivial intera
tion order, these fun
tions read:
GR/A(ω1, ω2) = −2π

1

µ+ ω
δ(ω1 − ω2) +O(U) (8.3)

CR/A(ω1, ω2;ω3, ω4) = −2π
2U

(µ+ ω1)(µ+ ω2)(µ+ ω3)(µ+ ω4)
δ(ω1 + ω2 − ω3 − ω4) +O(U2). (8.4)In this limit the Green's fun
tions do not depend on temperature, sin
e the kernels gn and Cn donot depend on n. Thus, the temperature-dependen
e from the exponential 
an be 
an
eled by thetemperature-dependen
e of the partition fun
tion. Any higher-order terms, however, are not indepen-dent from the temperature.In the previous 
hapter, we have made the limit U → 0 at T = 0. A
tually, this has not been 
orre
t,sin
e at zero temperature the Green's fun
tions redu
e to one single gn or Cn, respe
tively. Then n isthe ground-state o

upation number. But we know that this is a fun
tion of µ/U , thus it would bea�e
ted by U → 0. At �nite temperature, however, we do not have to worry about that, sin
e n is asummation index.The small U expansion of the equilibrium order �eld Ψeq from Eq. (6.40) yields

(~|Ψeq|)2 = 2
6J + µ

U
+O(U0), (8.5)99



8 Relation to other Theorieswhi
h is, apart from the fa
tor 2, identi
al to the Gross-Pitaevskii �eld in Eq. (7.56). This fa
tor isdue to our de�nition of 
lassi
al and quantum 
omponents ~Ψcl =
√

2〈â〉.Eq. (8.5) shows that the order �eld diverges for small U with U−1/2. We should note that there areterms of di�erent order in Ψ in the equation of motions (6.21) and (6.22): the term with GR/A(ω1, ω2)is multiplied with only one �eld, while the term with CR/A(ω1, ω2;ω3, ω4) is multiplied with three�elds. To have the same order in U for all the terms, we trun
ate the U -expansion of GR/A in zerothorder, while for CR/A it is trun
ated only in �rst order. The equation of motion (6.21) then reads
0

!
=
∑

j

{

[(−~ω − µ) δij − Jij ]ψ
∗
j,cl(ω) +

~
2

2
Uδij

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

∫ ∞

−∞
dω4

× δ(ω + ω2 − ω3 − ω4)ψi,cl(ω2)ψ
∗
i,cl(ω3)ψ

∗
i,cl(ω4)

}

. (8.6)This is the Fourier transform of the Gross-Pitaevskii equation given in (7.54). The fa
tor 1/2 in frontof U 
omes again from the de�nition of ~Ψcl as √
2〈â〉. The fa
t that our theory produ
es the GPlimit, is a ni
e 
ross
he
k of our results.8.2 E�e
tive A
tion in Imaginary TimeAnother possible 
he
k of our theory is the 
omparison with the ITF approa
h in Ref. [70℄. Insteadof de�ning the generating fun
tional Z by an integration along the real-time axis, an integration from

t = 0 to t = −i~β is used there. Thus, this formalism is, at �rst, a pure thermodynami
al theorywithout any signi�
an
e for real-time dynami
s. Nevertheless a 
omparison of both formalisms ispossible, as in thermal equilibrium it should play no role, whi
h integration path is 
hosen, sin
e both
an be related to ea
h other via an analyti
 
ontinuation.In order to throw some light on the relationship between those two formalisms, we �rst realizethat both en
ode all information within the 
orresponding Green's fun
tions: In the ITF, these arethe time-ordered n-point fun
tions de�ned by Eq. (3.28). In the CTPF, we have 2n path-ordered
n-point fun
tions de�ned by Eq. (3.45). Making the assumption Ψq = 0, we found that only a fewlinear 
ombinations of them are ne
essary to des
ribe the dynami
s of the system. We named thesefun
tions the advan
ed/retarded fun
tions, see Eqs. (4.31) and (6.34). So they should be 
omparedwith their imaginary-time analogs. To do that, we set ǫ = 0 in the retarded/advan
ed fun
tion from theCTPF and repla
e the real and 
ontinuous frequen
y variable ω by the dis
rete Matsubara frequen
y
iωm = iπm/(~β) or vi
e versa, where m ∈ N.

• For n = 2, we �nd that the retarded n-point fun
tion from the CTPF is exa
tly the same as thethermal Green's fun
tion from the ITF given in Ref. [70℄.
• For n = 4, however, a dis
repan
y appears. The thermal 4-point fun
tion from Ref. [70℄ di�ers
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8.2 E�e
tive A
tion in Imaginary Timefrom the retarded fun
tion CR(ω1, ω2;ω3, ω4) given in Eq. (A.15) by the following term:
1

Z(0)

∞
∑

n=0

e−βEn

{

δωm2,ωm4

( (n+ 1)2

(En+1 −En − iωm1)(En+1 −En − iωm2)

+
n2

(En −En−1 − iωm1)(En − En−1 − iωm4)
− n(n+ 1)

(En − En−1 − iωm1)(En+1 − En − iωm4)

− n(n+ 1)

(En −En−1 − iωm4)(En+1 − En − iωm1)

)

}

ωm1↔ωm2

. (8.7)At this pla
e we should remember that CR(ω1, ω2;ω3, ω4) is the retarded Green's fun
tion and at thesame time the retarded 
onne
ted Green's fun
tion. Sin
e the retarded/advan
ed fun
tions have theform 〈T̂c

{

â†qâ
†
qâqâcl

}〉

0
, any de
omposition 
onsists of an expe
tation value 〈T̂c

{

â†qâq

}〉

0
a

ordingto Eq. (4.13). Due to the fa
t that this expe
tation value is built up of quantum 
omponent operatorsonly, it must vanish, as we have proved in Se
tion 6.1. Thus the retarded/advan
ed Green's fun
tionsare equal to the 
orresponding retarded/advan
ed 
onne
ted Green's fun
tions.For the thermal Green's fun
tion this is not the 
ase. The 
onne
ted Green's fun
tion 
ontains thefollowing additional de
omposition term:

−
{

δωm2,ωm4
g2(ωm1)g2(ωm2)

}

ωm1↔ωm2

. (8.8)Now we note that for β → ∞ the expressions (8.7) and (8.8) 
an
el ea
h other, thus the 
onne
ted4-point fun
tions be
ome the same in both formalisms.Noting that the equation of motions (6.21) and (6.22) are stru
turally identi
al to the equation ofmotion obtained in the ITF, the a

ordan
e of the 
onne
ted Green's fun
tions means identi
al results
on
erning on the one hand the equilibrium order �eld Ψeq and on the other hand the dynami
s of thesystem. This saves us for T = 0.Unfortunately, for �nite temperature the expressions (8.7) and (8.8) do not 
an
el, and thus theequations of motion in both formalisms are no longer the same. We wouldn't be 
on
erned with that,if this dis
repan
y a�e
ted only the dynami
s of the system, sin
e it is far from obvious that theanalyti
 
ontinuation ωm → iω + ǫ in the thermal Green's fun
tion yields the right real-time fun
tion[55�57,66,86,87℄. Due to the de�nition of the Matsubara frequen
ies (3.33), we for example havean ambiguity 
on
erning fa
tors eiβωm = 1, with whi
h we 
ould multiply the ITF Green's fun
tionswithout 
hanging their value. For real, 
ontinuous frequen
ies, however, these terms would not be equalto 1 any longer. But even without making an analyti
 
ontinuation, we 
an 
ompare both formalismsby restri
ting ourselves to equilibrium predi
tions. We �nd dis
repan
ies 
on
erning the stati
 solutionfor the order �eld from Eq. (6.40). To obtain this time-independent quantity, all frequen
ies are setto zero. Then the ITF produ
es a unique result, whi
h is 
on�rmed by Ref. [36℄. Thus we have tosuppose that our equilibrium �eld has the wrong temperature dependen
e.Another problem, whi
h seems to be 
losely related to this one, 
on
erns thermodynami
 quantitieslike the free energy, whi
h 
ontains useful information about the o

upation number n or the 
om-pressibility κ. In the ITF, the free energy is dire
tly given by the generating fun
tional F [j, j∗] whi
hmust be evaluated at j = j∗ = 0. Then n and κ 
an immediately be gained by derivations of F with101



8 Relation to other Theoriesrespe
t to the 
hemi
al potential µ. Evaluated at j = j∗ = 0, it is the same as the e�e
tive a
tion Γevaluated at equilibrium [70℄. We therefore have in the ITF:
〈n〉 = − 1

N

∂Γ

∂µ

∣

∣

∣

∣

ψ=ψeq

, (8.9)
κ = − 1

N

∂2Γ

∂µ2

∣

∣

∣

∣

ψ=ψeq

. (8.10)In the CTPF, however, the assumption Ψq = 0 automati
ally yields F = Γ = 0. Thus the fun
tional
F 
annot be interpreted as the free energy, neither 
an we derive 〈n〉 or κ from Γ. So the questionarises, whether this thermodynami
 information is 
ontained at all in the CTPF. From the point ofview of the equations of motion, it might be possible to drop the assumption Ψq = 0, but sin
e
Ψq ∼

(

〈â†+〉 − 〈â†−〉
) this would be an unphysi
al solution, as long as the forward and the ba
kwardpaths are identi
al.If we take again a look at the integration 
ontours shown in Fig. 3.1, we see that the 
ontour in b),whi
h ends at a �nite time t− i~β, 
ertainly en
odes the same statisti
al information as the ITF andallows for an interpretation of Z as the thermodynami
 partition fun
tion. Our approa
h, however,integrates along the 
ontour depi
ted in Fig. 3.1
). Here the integration along the imaginary-time axis,whi
h is responsible for the thermal averaging, is negle
ted. We justi�ed this with the fa
t that all whathappens at �nite real times, is in�nitely far away from the imaginary part of the 
ontour, whi
h hasbeen pushed into the in�nite past [59,60℄. For a theory in thermal equilibrium, however, it now seems
ru
ial to in
lude this part. Sin
e in an equilibrium situation, energy is 
onserved during the wholetime-evolution, it must make a di�eren
e, whether we start with the perturbed or the unperturbedsystem at a given temperature β. A similar argument against the negle
tion of the imaginary part isgiven by Refs. [56,88℄, where di�erent 
ontours are dis
ussed to resolve this problem. Ref. [89℄ proposesto deal with equilibrium situations by shifting the ba
kward path from t to t− i~β. It requires furtherstudies to �nd out whether su
h a 
ontour really resolves the dis
repan
ies between the CTPF and theITF.
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9 Summary and OutlookFinally, we would like to summarize our main results and point out the open questions that we arestill left with. The goal has been the derivation of a real-time Ginzburg-Landau theory of order �eldsto des
ribe the MI-SF quantum phase transition undergone by a bosoni
 system in an opti
al latti
e.The basi
 models, whi
h have guided us, have been presented in Chapter 2.To 
onstru
t a Ginzburg-Landau fun
tional, we have 
hosen a Green's fun
tion formalism presentedin Chapter 3. Sin
e it is di�
ult to extra
t real-time information from the thermal Green's fun
tions[55,56℄, the te
hnique of 
ontour-ordered Green's fun
tions de�ned in Se
tion 3.4 has been applied.However, 2n n-point fun
tions exist in this formalism, thus the Keldysh rotation [66℄ introdu
ed inSe
tion 3.5 is a useful simpli�
ation, sin
e in this basis always one n-point fun
tion be
omes zero.The general proof of this 
an be found in Se
tion 6.1. Furthermore, the Keldysh rotation introdu
es,amongst others, the retarded/advan
ed Green's fun
tions, whi
h are more physi
al than the 
ontour-ordered Green's fun
tions. This 
an be seen in Se
tions 5.4 and 6.2, where the dynami
 equations ofthe system are ex
lusively given by the retarded/advan
ed fun
tions [75℄.In Chapter 4 we have expanded a free-energy-like fun
tional of symmetry-breaking sour
es simul-taneously in the 
urrents and in the hopping parameter. Sin
e the 
urrents have been de�ned as
onjugate variables of the order �elds, expanding in them prepares the Ginzburg-Landau fun
tionalwhere, in view of a proper des
ription of the phase transition, the dependen
e on the �elds 
an betrun
ated in fourth order [14℄. The hopping expansion is physi
ally justi�ed for large dimensions dueto the s
aling behavior of the problem [68℄.In Se
tions 4.3 � 4.5 we have shown that, due to the linked-
luster theorem [71,72℄, this expansion
an be dire
tly written down diagrammati
ally. The building blo
ks of the expansion are the 
umulantsof the system without hopping, whi
h 
an straightforwardly be 
al
ulated. Up to se
ond order in the
urrents and �rst order in the hopping, this expansion is performed in Se
tion 4.6. There we haveused the �old� basis of 
ontour-ordered fun
tions and performed the Keldysh rotation afterwards. This
areful pro
edure has shown that in the Keldysh basis, the Pauli matrix σ1 must be put in betweentwo Green's fun
tion matri
es in order to 
orre
tly des
ribe a hopping pro
ess [59℄.In Chapter 5 we have Legendre transformed the fun
tional from Se
tion 4.6. This transformationyields the e�e
tive a
tion, whi
h serves as a Ginzburg-Landau fun
tional, sin
e the arti�
ial 
urrentsare repla
ed by physi
al order �elds Ψ and Ψ∗ whi
h 
an be identi�ed with the expe
tation values ofthe annihilation/
reation operators [69,70℄. Furthermore, it resums the Green's fun
tion as is shownin detail in Se
tion 5.3. The resummation allows for good results even for a larger hopping parameter.In se
ond order in the 
urrents, however, the approa
h is restri
ted to the MI phase, thus we had torepeat the pro
edure from Se
tions 4.6 and 5.1 in order to get the higher-order terms. This is donein Se
tion 6.1, where we work in the Keldysh basis and in frequen
y spa
e from the beginning. The�nal fun
tional Γ[Ψ,Ψ∗] is given in Eq. (6.18). From this fun
tional, we get the equations of motions103



9 Summary and Outlook(6.21) and (6.22), whi
h yield the equilibrium order �eld in Eq. (6.40). To solve the equations ofmotion in the dynami
 
ase, we have linearized them around the equilibrium result in Se
tion 6.2.3.In this linear approximation, we have also been able to derive a SF retarded Green's fun
tion from thee�e
tive a
tion, whi
h is given by Eq. (6.59).With this theoreti
al groundwork we are well equipped to ta
kle the a
tual goal of our thesis, namelyto �nd 
on
rete results about the dynami
 behavior of the system. This work is done in Chapter 7,where we have found the phase boundary as well as the respe
tive ex
itation spe
tra in both theMott-insulator and the super�uid phase. For simpli
ity, we have restri
ted ourselves to T = 0. Theresult for the phase boundary shown in Fig. 7.1 is identi
al with the mean-�eld result [31℄, but we
ould go beyond it by in
luding higher-order hopping terms [69℄. This is one big advantage of oursystemati
 perturbation expansion. In the MI phase, we have been able to �nd analyti
 expressionsfor the spe
tra and their weights given by Eqs. (7.35) and (7.36). These are the usual parti
le/holeex
itations predi
ted by mean-�eld theory [73℄.In Se
tion 7.2 we have �rst solved numeri
ally the equations of motion in the SF phase. This yieldedtwo ex
itation bran
hes, where one has the linear shape expe
ted from Bogoliubov theory [28℄, whilethe other one is gapped and quadrati
. We have analyzed the gap, the mass, and the sound velo
ity ofthese spe
tra and found that they perfe
tly map onto the MI spe
tra. All this information is 
ontainedin Fig. 7.5. We have shown that this mapping is a natural 
onsequen
e of our Ginzburg-Landau ansatz.Then an analyti
 result for the sound velo
ity has been obtained in Eq. (7.67) by a Taylor expansionof the equations of motion for small ω. In the limit U → 0, the gapless spe
trum gets identi
al to theBogoliubov spe
trum, whereas the gapped mode disappears. Unlike the Bogoliubov approximation,our approa
h is also able to des
ribe the behavior in the vi
inity of the phase boundary. Therefore wehave analyzed the 
riti
al exponents in Se
tion 7.3 and reprodu
ed the mean-�eld results from Ref.[31℄.As already mentioned, the results from Chapter 7 
ould still be improved by in
luding higher-orderhopping terms. But even in the �rst order, whi
h we have examined here, the SF equations of motionare so 
ompli
ated that not all the information, whi
h is 
ontained, 
ould be extra
ted. This 
on
ernsespe
ially the spe
tral weights, whi
h 
ould give some hints for the heavily dis
ussed SF gapped mode[78�80℄. For the interpretation of this mode, whi
h has few experimental eviden
e [81℄, it would alsobe helpful to get more information about the 
hara
ter of this ex
itation.The sound mode, however, has been re
ently measured via Bragg spe
tros
opy [25℄, thus we musttry to 
ompare our result with the experimental data. To this end we must 
he
k the in�uen
e ofthe additional harmoni
 trap in the experimental setup. The theoreti
al problem with su
h a trap is,that spatial homogeneity has been 
ru
ial in our derivation of the equations of motion. It 
ould be
onsidered, for instan
e, within a Thomas-Fermi approximation [42℄.Instead of 
omparing our results with experiments, we have pointed out the relation of our approa
hto other theories on the problem. In Se
tion 8.1 we have shown that for U → 0 our equations of motionbe
ome identi
al to the Gross-Pitaevskii equation. Thus, although we have started the perturbationexpansion from the strong-
oupling limit, we are able to extra
t the right weak-
oupling limit. Thishas not been a
hieved before, as the following 
itation from the re
ently published book �Ultra
oldQuantum Fields� by H. Stoof et al. [90℄ may demonstrate: �Although these [the weak- and the strong
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oupling limit℄ should be smoothly 
onne
ted to ea
h other, at present it is not known how to formulatea mean-�eld theory that interpolates between these two extremes.�In Se
tion 8.2, our results have been 
ompared with an e�e
tive a
tion theory in imaginary timefrom Ref. [70℄. They perfe
tly agree for T = 0. For �nite temperature, however, a disagreement in the4-point fun
tion has been found.Certainly the main for
e in future works must be put into the failure of our theory in thermoequi-librium, whi
h arose very unexpe
tedly. We therefore have to 
he
k, whether a di�erent 
ontour isable to 
ir
umvent this problem. We suspe
t that an integration 
ontour like in Fig. 3.1b), whi
h
ontains an imaginary part from t to t − i~β, is able to des
ribe the equilibrium situation properly[60,88℄. Unfortunately, many feasible properties of the Keldysh 
ontour, whi
h have been used in thisthesis, do not hold for su
h a 
ontour, so this theory would have to start from the very beginning.Although we believe that out of equilibrium the Keldysh 
ontour is appropriate to des
ribe thesystem, we �rst have to 
he
k, how to handle the equilibrium situation, before we 
an go on and applythe theory to non-equilibrium situations as for example in 
ollapse and revival experiments [41℄. Thesituation found there 
ould then be des
ribed by a Bose-Hubbard Hamiltonian where the parametersdepend on time. Certainly, the CTPF would 
ome out on top in su
h a problem, sin
e the ITF wouldno longer be appli
able. In su
h a time-dependent system, however, neither frequen
y is 
onserved atthe verti
es nor a linearization of the equation of motions around equilibrium is possible. Thus wewould end up with multiple integral equations and would rely on new methods of solving them.
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A CTPF 4-Point Fun
tionHere we show how to 
al
ulate the retarded 4-point fun
tion as de�ned in Eqs. (6.33) and (6.34) andits Fourier transform. We suppose that t3 > t4, whi
h redu
es the number of time-orders that have tobe 
onsidered to only three. To 
ompensate this restri
tion, we will have to symmetrize the expressionin these variables at the end of the 
al
ulation.Writing out the triple 
ommutator in Eq. (6.33) yields eight operator produ
ts for ea
h time-order.The expe
tation values of these produ
ts 
an dire
tly be read from the de�nition of the 
reation andannihilation operators:
â|n〉 =

√
n|n − 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (A.1)We have

CR(t1, t2; t3, t4) = −i
∞
∑

n

e−βEn

Z(0)

{

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4) An+

θ(t1 − t3)θ(t3 − t4)θ(t4 − t2) Bn + θ(t1 − t3)θ(t3 − t2)θ(t2 − t4) Cn

}

t3↔t4
, (A.2)where the respe
tive 
oe�
ients are given by

An ≡ (n+ 1)(n + 2) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t2(En+1 −En+2) + t1(En − En+1)
)

]

− (n+ 1)(n + 2) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t2(En − En+1)
)

]

+ n(n− 1) exp

[

i

~

(

t4(En − En−1) + t3(En−1 − En−2) + t2(En−1 − En) + t1(En−2 − En−1)
)

]

− n(n− 1) exp

[

i

~

(

t1(En−1 − En) + t2(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t1(En − En+1) + t2(En−1 − En) + t3(En − En−1)
)

]

− n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t1(En−1 − En) + t3(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t1(En − En+1) + t2(En−1 − En) + t4(En − En−1)
)

]

− n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t2(En − En+1) + t1(En−1 − En) + t4(En − En−1)
)

]

, (A.3)
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A CTPF 4-Point Fun
tion
Bn ≡ n(n+ 1) exp

[

i

~

(

t2(En−1 −En) + t4(En − En−1) + t3(En+1 − En) + t1(En − En+1)
)

]

− n(n+ 1) exp

[

i

~

(

t1(En−1 − En) + t3(En − En−1) + t4(En+1 −En) + t2(En − En+1)
)

]

+ n(n− 1) exp

[

i

~

(

t2(En−1 − En) + t1(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

− (n + 2)(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t2(En − En+1)
)

]

+ 2(n + 1)2 exp

[

i

~

(

t4(En+1 − En) + t1(En − En+1) + t3(En+1 − En) + t2(En − En+1)
)

]

− 2n2 exp

[

i

~

(

t2(En−1 −En) + t3(En − En−1) + t1(En−1 −En) + t4(En − En−1)
)

]

, (A.4)
Cn ≡ n(n− 1) exp

[

i

~

(

t2(En−1 −En) + t1(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t1(En − En+1) + t2(En−1 −En) + t4(En − En−1)
)

]

− (n + 2)(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t4(En − En+1)
)

]

− n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t1(En−1 −En) + t3(En − En−1)
)

]

+ 2(n + 1)2 exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t3(En+1 − En) + t1(En − En+1)
)

]

− 2n2 exp

[

i

~

(

t1(En−1 −En) + t3(En − En−1) + t2(En−1 −En) + t4(En − En−1)
)

]

. (A.5)The substitution t̃i = ti−t4 
an
els one time argument in the expressions. Now we perform the Fouriertransformation. It 
an be done in exa
tly the same way as in Se
tion 5.2, where we transformed the2-point fun
tion. For ea
h step fun
tion we insert its Fourier representation from Eq. (5.17), yielding
δ-fun
tions that 
an easily be integrated out. Sin
e the variable t4 
ould be 
an
eled, the Fouriertransformation in this variable simply gives 2πδ(ω1+ω2−ω3−ω4) guaranteeing frequen
y 
onservation.We therefore introdu
e the notation

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)An → −i2πδ(ω1 + ω2 − ω3 − ω4) an, (A.6)

108



and similarly for Bn and Cn. The 
oe�
ients an, bn, and cn are given by
an ≡ (n+ 2)(n + 1)

(En − En+1 + ω1 + iǫ1)(En − En+2 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− (n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(En − En+2 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(En−2 − En + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n− 1)

(En−1 − En + ω1 + iǫ1)(En−2 − En + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

+
n(n+ 1)

(En −En+1 + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n+ 1)

(En −En+1 + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)
,(A.7)

bn ≡ −n(n+ 1)

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)

− −n(n+ 1)

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

+
−n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)

− −(n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

+
−2(n+ 1)2

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

− 2n2

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)
, (A.8)
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A CTPF 4-Point Fun
tion
cn ≡ n(n+ 1)

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− (n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
2(n+ 1)2

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− −2n2

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)
. (A.9)To take the limit iǫ→ 0, we note that all terms look like

1

(x+ iǫ1)(y + iǫ2)(z + iǫ3)
. (A.10)Applying Eq. (7.4) subsequently for ea
h ǫi leaves us with

[

1

x
− iπδ(x)

] [

1

y
− iπδ(y)

] [

1

z
− iπδ(z)

]

. (A.11)Thus, divergen
es of the real part o

ur, when xyz = 0. In this 
ase, the diverging term 1
xyz interfereswith δ-fun
tions, but they do not a�e
t the asymptoti
 behavior of the real part 
lose to these diver-gen
es. In the imaginary part, however, the δ-fun
tions play the 
ru
ial role, sin
e it is only non-zeroas long as xyz 6= 0.But in Se
tion 7.2 we have argued that the dynami
 behavior 
an be extra
ted from the real partalone, and thus we 
an negle
t the δ-fun
tions in the following. The only thing that remains to bedone now, is to join all terms from an, bn and cn, in order to get a 
ompa
t expression.First we note that ea
h term in bn has a �partner� in cn. Then we take a look at the terms in an,whi
h are proportional to n(n+ 1). Two of the four terms read

+1

(En − En+1 + ω1)(En − En+1 + ω1 + ω2 − ω3)(En−1 − En+1 + ω1 + ω2)
+

+1

(En − En+1 + ω1)(En−1 − En + ω1 + ω2 − ω3)(En−1 − En+1 + ω1 + ω2)
. (A.12)Now we mustn't forget the symmetrization that has to be performed in ω3 ↔ ω4. Then the �rst termin (A.12) plus the symmetrization of the se
ond term 
an be 
ombined to

(En−1 − En+1 + 2ω1 + 2ω2 − ω3 − ω4)

(En − En+1 + ω1)(En − En+1 + ω1 + ω2 − ω3)(En−1 − En + ω1 + ω2 − ω4)(En−1 − En+1 + ω1 + ω2)
.(A.13)
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Still noting the frequen
y 
onservation, ω1 + ω2 − ω3 − ω4 = 0, we get
1

(En − En+1 + ω1)(En − En+1 + ω3)(En−1 − En + ω4)
. (A.14)Finally we 
ombine everything and write:

Re CR(ω1, ω2;ω3, ω4) = −2πδ(ω1 + ω2 − ω3 − ω4)
∞
∑

n=0

e−βEn

Z(0)

×
{

n(n+ 1)

(En − En−1 − ω1)(En+1 − En − ω4)

(

1

En −En−1 − ω3
− 1

En+1 − En − ω2

)

+
n(n+ 1)

(En − En−1 − ω3)(En+1 −En − ω1)

(

1

En − En−1 − ω2
− 1

En+1 − En − ω4

)

+
−(n+ 2)(n + 1)

(En+1 − En − ω4)(En+2 −En − ω1 − ω2)

(

1

En+1 − En − ω1
+

1

En+1 − En − ω2

)

+
n(n− 1)

(En − En−1 − ω4)(En − En−2 − ω1 − ω2)

(

1

En − En−1 − ω1
+

1

En − En−1 − ω2

)

+
2(n + 1)2

(En+1 − En − ω1)(En+1 −En − ω2)(En+1 − En − ω4)

+
−2n2

(En − En−1 − ω1)(En − En−1 − ω2)(En − En−1 − ω4)

}

ω3↔ω4, ω2↔ω1

. (A.15)We 
he
ked this result by 
omparing it with the ITF Green's fun
tion in Se
tion 8.2. Agreement isfound for T = 0.
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