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1 IntrodutionSine 2002 when for the �rst time a bosoni gas was loaded into an optial lattie [1℄, the interestin suh systems of strongly orrelated partiles has immensely inreased. The underlying physis islosely related to the phenomenon of super�uidity, whih is a muh older topi. Super�uidity wasdisovered in the 30s of the last entury, as a property of ool 4He liquids [2,3℄.1.1 Helium IISurely, one of the most urious phenomena in ondensed matter physis is the behavior of 4He at lowtemperature. Cooling it down at normal pressure, this noble gas beomes liquid only at temperaturesbelow 6 K and never reahes a solid state, as shown in the phase diagram in Fig. 1.1(a). Instead, a moreexiting phase transition takes plae at a temperature about 2.2 K, whih is diretly observable: Fortemperatures above this ritial value, the old liquid looks like boiling water with the harateristibubbles. These bubbles are due to a temperature gradient within the liquid whih is aused byevaporative ooling at the surfae of the liquid. As a onsequene, the vapor pressure within the liquidis higher than at its surfae, allowing for the formation of gas bubbles. At 2.2 K, the bubbles suddenlydisappear and the liquid beomes ompletely alm. Evaporation still takes plae, but in the newphase, alled helium II, the thermal ondutivity inreases, allowing for an immediate heat balaneand therefore a �bubblefree� evaporation only from the surfae of the liquid.Another astonishing feature an be observed, if one ools down 4He in an open vessel: Againstgravity a thin �lm of the �uid limbs up the wall of the vessel so that it �ows out of it. This behavioromes along with a vanishing visosity of the �uid. In 1938, P. Kapitza [2℄ as well as J. F. Allen andD. Misener [3℄ measured the visosity of helium by observing the �ow through thin apillaries. Belowthe ritial temperature, the visosity beame suddenly very small, possibly zero. Therefore the name�super�uidity� was given to this new phase of helium.An exiting e�et due to this vanishing visosity, is the so-alled fountain e�et or thermomehaniale�et shown in Fig. 1.1(b): Heating helium II within a thin apillary whih is in ontat with a bath,auses a rise of the liquid within the apillary.The �rst explanation for the phase transition undergone by old helium was given in 1938 by F.London [6℄. Only one deade earlier, S. N. Bose and A. Einstein had made the theoretial predition ofa new phase of matter, the so alled Bose-Einstein ondensation (BEC) [7,8℄. Now London alulatedthe ritial temperature Tc for the transition into the BEC-phase assuming an ideal gas of bosonipartiles having the same density as liquid helium and the same partile mass as 4He. His result,
Tc = 3.1 K, agrees fairly well with the ritial temperature of 4He known from experiments, so Londonbelieved that BEC and the super�uid phenomena of 4He are losely related.
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1 Introdution

(a) Phase diagram of 4He taken from [4℄. (b) Illustration of the thermome-hanial e�et, taken from [5℄.Figure 1.1: At normal pressure, there is no solid state in the phase diagram of 4He shown in (a). Aninteresting experiment with helium II is shown in (b): The liquid in the apillary rises whenit is heated.Shortly afterwards, L. Tisza proposed a two-�uid model [9℄, explaining hydrodynami properties ofsuper�ow like the fountain e�et. He therefore assumed a BE-ondensed fration of the liquid withno entropy and no visosity and a normal fration with �nite entropy and �nite visosity. The e�etshown in Fig. 1.1(b) an then be interpreted as the onsequene of an osmoti pressure between thebath and the apillary. As the super�uid fration within the apillary is destroyed by heat and thenormal omponent has no hane to �ow out of the thin apillary, the only way to equilibrate theonentration is by a �ow of super�uid helium from the bath into the apillary.The two-�uid model has been further on�rmed by Andronikashvili's experiment done a few yearslater [10℄. Instead of measuring the visosity by the �ow through a apillary, he observed the dampingof a rotating disk within the liquid. What he found was a non-zero visosity even in the super�uidphase on�rming the idea of the two-�uid model: The damping is due to the normal omponent of theliquid whih is supposed to have a �nite visosity. This experiment therefore allows for determiningthe temperature-dependent ratio of the normal density to the super�uid density. One result is thatthe whole liquid beomes super�uid if one approahes zero temperature. This does not agree withPenrose's predition [11℄ of a BE-ondensed fration at T = 0, whih is, due to interations, less than10% .
6



1.1 Helium II

Figure 1.2: Spei� heat of 4He and of an ideal Bose gas with the same density and partile mass:
λ-transition versus seond-order phase transition. Taken from [4℄.Negleting interations and treating a liquid as a non-interating gas, however, did not allow forexplaining all the properties of helium II. Comparing the spei� heat urves of an ideal Bose gas and

4He, both shown in Fig. 1.2, we an �nd two main di�erenes:
• The transition from the normal helium I to the super�uid helium II shows an ostentatious loga-rithmi divergene resembling the Greek letter λ. Therefore it is referred to as the λ-transition.The spei� heat of the ideal Bose gas, however, is �nite at the ritial point. This indiates thatfor a proper omprehension of the phase transition, interations annot be negleted. Strong-oupling �eld theory onsidering a Φ4-interation is able to give a preise explanation of themeasured spei� heat urve near the transition point. The universal ritial exponents whihhave been measured with high preision by spae shuttle experiments [12℄ agree best with the�eld-theoreti preditions in Refs. [13,14℄.
• A seond di�erene in the spei� heat of an ideal Bose gas and 4He, respetively, onerns theregion where the temperature approahes zero. While the spei� heat of helium is proportionalto T 3, like the spei� heat of a solid at low temperature, the ideal gas heat obeys a di�erentpower law, being proportional to T 3/2.In order to irumvent this latter inonsisteny, L. Landau proposed another desription of super�u-idity [15,16℄. Instead of onsidering the ondensation of free partiles into the ground-state, he assumedthat helium II was made up of ondensed atoms and exitations. For the latter, he postulated a dis-persion relation as shown in Fig. 1.3: The energetially lowest exitations have a quasi-partile-like
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1 Introdution

Figure 1.3: The exitation spetrum of helium II, measured via neutron sattering, on�rms Landau'spredition of phonons and rotons. Taken from [17℄.harater like the aousti phonons of a solid:
ǫph(p) = c|p|, (1.1)where the energy ǫph of these exitations is related to their momentum p by their veloity c. Suh adispersion relation explains the solid-like T 3-dependene of the spei� heat for T → 0. But other thana solid, a liquid is not expeted to sustain transversal optial modes, therefore the degrees of freedommust be exhausted with other exitations. Landau postulated their dispersion relation as

ǫr(p) = ∆ +
p2

2m
, (1.2)where ∆ is an energy gap and m the e�etive mass of the exitations. These exitations are alledrotons as they are onsidered to be the quanta of vortex motion. Both, phonons and rotons are bosoni.What is ruial about this dispersion relation is the fat that it always has a �nite group veloity

ǫ/|p|. Fritionless �ow an then be understood from the energy balane. Let us therefore onsidersuper�uid helium at T = 0 �owing through a tube from two di�erent referene frames. In the laboratoryframe where the tube does not move all atoms �ow fritionless with a veloity v, eah of them havingthe momentum q. The total momentum is Q0 =
∑

i qi, the total energy of the system is E0. In therest frame of the liquid, eah atom has the momentum q′ = 0, i.e. Q′
0 = 0. The total energy E′

0 isrelated to the energy in the laboratory frame by the Galilei transform [17℄:
E′

0 = E0 + Q′
0 · v − 1

2
Mv2, (1.3)
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1.2 Bragg Spetrosopywhere M is the total mass. If there is frition between the wall and the liquid, there should beexitations �moving� with the wall, i.e. the total momentum in the rest frame of the liquid is non-zero,say Q′ = p for an exitation with momentum p. The total energy in the rest frame of the liquid nowis inreased by the energy ǫ(p) of the exitation: E′ = E′
0 + ǫ(p). From the laboratory frame, the totalenergy therefore reads, aording to Eq. (1.3):

E = E′ − Q′ · v +
1

2
Mv2 = E0 + ǫ(p) − p · v. (1.4)This means that the energy di�erene assoiated with an exitation is ∆E = E − E0 = ǫ(p) − p · v.To be energetially favorable, i.e. ∆E < 0, the exitations must ful�ll the ondition:

ǫ(p)

|p| < |v|. (1.5)Beause a dispersion relation like the one shown in Fig. 1.3 has the property that ǫ(p)
|p| is �nite for any

p, there exists a ritial veloity vc up to whih exitations are energetially unfavored and the liquidtherefore �ows fritionless. So Landau's theory does not only explain super�uidity from the exitationspetrum, but also predits a ritial veloity at whih super�uidity breaks down. And indeed, suh aritial veloity ould be observed in experiments, but it turned out to be muh smaller that the onepredited by Landau [18℄. This deviation is due to turbulenes whih have not been onsidered in ourargumentation.The above explanation was restrited to T = 0, beause only exitations from the ground-state areonsidered. But the idea an be generalized to �nite temperatures by applying a two-�uid model.Other than in Tisza's model, where both the super�uid and the normal omponent are partile-like,Landau's model assumes a quasi-partile behavior of the normal omponent. This seemed to disagreewith London's and Tisza's point of view relating super�uidity to BEC, but the disrepany was solvedin 1947 by N. N. Bogoliubov who gave the mirosopi arguments for Landau's dispersion relation. Healulated the exitation spetrum for weakly interating Bose gases [19℄ and showed that
• the depletion of the ground state an be negleted, allowing for BEC even in non-ideal gases,
• the exitations an be desribed by a phonon dispersion.In this way Bogoliubov's alulation reoniles the two di�erent points of view. The assumption ofweak interation, however, hinders a good quantitative agreement of Bogoliubov's theory with thestrong interating helium. Weakly interating Bose gases have only been ondensed sine 1995 [20,21℄.We will therefore further disuss Bogoliubov's theory at a later stage in this thesis.What we have seen in this setion is the important role that dispersion relations play for the under-standing of super�uidity. In the following setion we will shortly sketh how an experiment may testthe theoreti predition.1.2 Bragg SpetrosopyThe dispersion relation of helium II postulated by Landau and predited by Bogoliubov had beenon�rmed experimentally by neutron sattering [22℄. A more preise tehnique whih was reently9



1 Introdution

(a) (b)Figure 1.4: The piture is taken from Ref. [25℄ explaining Bragg spetrosopy with bosons in an optiallattie. The two-photon transition (b) is indued by two laser beams shining on the probe(a). The angle θ between the beams and the energy di�erene ~(ω1−ω2) allow for measuringthe band struture of the system.applied to BEC [23,24℄ and also Bose gases in optial latties [25,26℄ is Bragg spetrosopy.It is based on a two-photon transition whih is indued by two laser beams as shown in Fig. 1.4(a):The photon of one beam is absorbed and exites the system from the initial state (= the groundstate) to an intermediate state. A seond photon from the other beam stimulates the transition to the�nal state. The energy and momentum related to this exited state is known from the experimentalparameters de�ning the lasers: their wave vetors k1 and k2 as well as their frequenies ω1 and ω2.The momentum transfer of the Bragg proess is ~kBragg = ~(k1 − k2). For |k1| ≈ |k2| = k, thetransferred momentum an be freely tuned by the laser angle θ:
~kBragg ≈ 2~k sin

(

θ

2

)(

k1

|k1|
− k2

|k2|

)

. (1.6)Thus, by varying the angle the whole Brillouin zone an be reahed.The energy balane ǫ of the two-photon proess is given by the frequenies: ǫ = ~(ω1 − ω2). Ittherefore an be tuned independently from the momentum transfer by modifying one laser frequeny.For a given momentum, the whole energy range an be sanned.What is measured, is the response of the system to a given on�guration, i.e. whether transitionstake plae or not. The probability of a Bragg proess is basially given by the stati struture fator
Sk [27℄, whih is the Fourier transform of the density orrelation:

Sk ∼ 〈0|ρ̂†(k)ρ̂(k)|0〉, (1.7)where 〈0| · |0〉 denotes the ground-state expetation value and ρ̂(k) is the Fourier transform of thedensity. The transitions rate Γk(ω) is proportional to the dynami struture fator Sk(ω) = Skδ(~ω−
ǫk). The peaks of this funtion determine the exitation spetra. The heights of the peaks are related10



1.3 Outline of the Thesis

Figure 1.5: Exitation spetra of about 150.000 harmonially trapped 87Rb atoms within a ubi optiallattie. The lattie depth is 7 ER for the blue urve and 11 ER for the purple urve. Thedashed lines with the quadrati shape for small k show the single-partile band struture.The solid lines with the linear shape show the results of a Bogoliubov alulation. Obviously,the single-partile band struture does not desribe well the exitations of the system. TheBogoliubov band struture, however, is quite good and fails only at the edges of the Brillouinzone.to the spetral weights of eah exitation.All experiments [23�26℄ on�rm the linear shape of the super�uid dispersion relation for small k.As an example Fig. 1.5 shows the reent results of Ref. [25℄ for a 87Rb gas in a ubi optial lattie.Bosoni gases in suh latties are the topi of the present thesis whih is outlined in the next setion.1.3 Outline of the ThesisThe linear dispersion relation of helium II has turned out to be ruial for the understanding of itssuper�uid property. In the following we want to have a lose look at another system whih undergoesa transition into a super�uid phase, namely bosoni atoms in optial latties, i.e. in periodi potentialsreated by laser beams. The experimental data ited in the previous setion suggests that a similardispersion relation haraterizes suh systems. Understanding these exitation spetra theoretiallymight allow for interpreting them as a trademark of super�uidity. Many theories for this problem,however, are hindered by the fat that they are either good in the super�uid phase as, for instane,the weak-oupling Bogoliubov approah in Ref. [28℄, or in the opposite regime of an insulating system,whih an be well desribed by a strong-oupling theory as in Ref. [29℄. The goal of this thesis isto derive a theory whih produes good results on both sides of the phase transition, where speialattention is direted on the spetra of the system.Common to most theoretial approahes is the Bose-Hubbard Hamiltonian, whih we thereforeintrodue only brie�y in Setion 2.1. We will disuss its validity for our problem at �nite temperaturesand put some detail on the derivation of a useful formula for the hopping parameter.As a guideline for our further approah, we will pik the Ginzburg-Landau theory of phase transitionsin Setion 2.2. One important ingredient of this theory is the spontaneous symmetry breaking disussedin Setion 2.3. Then the goal will be to �nd an appropriate Ginzburg-Landau funtional desribingthis e�et. The proper andidate is the e�etive ation of the system. But we will reah this only in11



1 IntrodutionChapter 6, beause a lot of groundwork has to be done before.For the predition of exitation spetra, the dynamis of the system plays an important role, so inthe �rst setion of Chapter 3 we will introdue the quantum-mehanial time evolution. Sine thee�etive ation is the Legendre transform of the generating funtional of the umulants, whih on itspart is the logarithm of the generating funtional of the Green's funtions, we dediate the rest of thishapter to a presentation of di�erent Green's funtion formalisms. It is possible to de�ne real-timeGreen's funtions at zero temperature or to rotate the problem to imaginary times, whih allows fora desription at �nite temperature, but real-time information is no longer diretly aessible. Afterdisussing both methods shortly in Setions 3.2 and 3.3, we will therefore introdue a third Green'sfuntion formalism, the so-alled losed-time-ontour formalism, with whih we an treat the real-timeproblem at �nite temperature. Sine this will be the formalism of our hoie, it will be presented inmore details, and important onventions for the following hapters are made in Setions 3.4 and 3.5.As the Hamiltonian is not exatly solvable, we have to rely on perturbation theory. In Chapter4 we will see how the perturbative expansion works for the generating funtional of the umulants.Its peuliarity onsists in treating the symmetry-breaking soure terms and the kineti part of theHamiltonian as a perturbation. The expansion with respet to the urrents may yield a funtional ofthe typial Ginzburg-Landau form. The hopping expansion is on the one hand obvious for pratialreasons, sine it redues the unperturbed part of the Hamiltonian to a simply solvable problem. Onthe other hand, we have good physial reasons to onsider the kineti part as a perturbation, sinewe know from Quantum Monte Carlo data [30℄ that it is small ompared to the interations in theinteresting regime, where the phase transition takes plae. We will furthermore argue with dimensionalsaling properties of the Hamiltonian, due to whih a hopping expansion solves the problem exatly inin�nite dimensions. Applying the linked-luster theorem disussed in Setion 4.3, we are then able to�nd diagrammati rules for our series expansion in Setion 4.5. To get the desired Ginzburg-Landaufuntional, we would have to trunate the series in the fourth order of the soure terms. But sinethe losed-time-ontour formalism doubles the time degrees of freedom, they grow exponentially inhigher-orders of our perturbation theory, and therefore we will write down the expansion only up tothe seond order in the urrents in Setion 4.6. This restrits the validity of this funtional to theinsulating phase, but after having seen, how to perform the Legendre transformation of this funtionalin Chapter 5, we will be well prepared to repeat the proedure up to the desired fourth order in Chapter6. One main ingredient of the Legendre transform is a resummation of the Green's funtions, whih wewill disuss in Setion 5.3. Here we will �nd that, although the perturbative part of the Hamiltonianhas entered the expansion only in �rst order, some higher-order diagrams are taken into aount, whenwe onsider the e�etive ation.The fourth-order expansion in Chapter 6 atually demands alulating sixteen further ompliatedGreen's funtions. By proving that one of them is zero, we will �nd that the equations of motion dependon only four new Green's funtions. Analyzing their symmetry properties redues the omputationaltask to only one Green's funtion in this order. The lengthy alulation of this funtion is put intothe appendix. For an analytial treatment of the equations of motion, we still have to linearize theseequations in Setion 6.2.
12



1.3 Outline of the ThesisAfter that, the theory is ready and we an apply it to get the desired results. These are presentedin Chapter 7 for zero temperature. We will �rst disuss the phase boundary and the spetra in theinsulating phase. In Setion 7.2 the spetra in the super�uid phase will be found and disussed. Theyare ompared to the Bogoliubov predition and to the spetra obtained in the insulating phase. Weare espeially interested in a mapping between both regimes. In Setion 7.3 the ritial behavior onboth sides of the phase boundary will be analyzed in the light of a saling theory. Critial exponentsfor the gap and the mass of the spetra will be obtained.In the last hapter, we will have a look at other theories in order to ompare our approah withthem. In Setion 8.1 we will point out the relation to the Gross-Pitaevskii equation in the limit of weakinterations. In Setion 8.2 we will ompare our results with those obtained by a formalism whih weatually onsider to be equivalent for problems near equilibrium, namely a Ginzburg-Landau approahin imaginary time.
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2 Models for the ProblemIn this hapter we are going to prepare our later study of bosoni partiles in an optial lattie by in-troduing and disussing the seminal Bose-Hubbard (BH) model [31,32℄ as the underlying Hamiltonianof the system. An interesting feature of this model is the possible phase transition from the so alledMott-insulator (MI) phase without any long-range orrelations between the partiles to the super�uid(SF) phase where suh orrelations exist. Therefore, we will also present the Ginzburg-Landau modelfor the free energy as a funtional of an order �eld [14℄, whih has turned out to be extremely useful forthe desription of seond-order phase transitions like, for instane, the transition from a paramagnetiinto a ferromagneti phase.At this plae, however, we should stress a fundamental di�erene between this type of phase transi-tion, whih an be understood from a lassial point of view, and the phase transition that we have todeal with: While in lassial thermodynamis phase transitions are driven by thermal �utuations ofthe system and the phase diagram therefore basially depends on the temperature, the MI-SF transi-tion might our even at zero temperature. The �utuations establishing the long-range orrelationsare of quantum nature, thus it is alled a quantum phase transition. Instead of thermodynamialquantities like temperature, parameters of the Hamiltonian like the oupling onstant determine theritiality of the system.In Ehrenfest's lassi�ation sheme for phase transitions, disontinuities in the free energy or in anyof its derivatives with respet to temperature (f. Ref. [33℄) are onsidered: If a disontinuity ours�rst in the nth derivative, the phase transition is said to be of (n+1)th order. Thus, at a seond-orderphase transition, the free energy of a system does not jump, but hanges its shape abruptly. Adaptingthis sheme to quantum phase transitions, these are said to be of seond order, if exitations from theground state have no energy gap at the phase boundary [34℄. One goal of this thesis is to show thatthe Ginzburg-Landau model originally used for desribing thermal phase transitions of seond order,an be applied as well to the quantum phase transition undergone by BH systems.2.1 Bose-Hubbard ModelThe investigation of bosoni partiles in optial latties is usually based on the Bose-Hubbard model[31,32℄. Given a perfetly periodi external potential and a short-range interation between two parti-les, e.g. a ontat interation, the model desribes the situation of partiles loalized on lattie sites
i being able to interat with other partiles on the same site and to hop to neighboring sites. Thesimplest and most ommon version of the Bose-Hubbard-Hamiltonian reads:

ĤBH =
∑

i

[

1

2
U â†i âi

(

â†i âi − 1
)

− µâ†i âi

]

− J
∑

〈i,j〉

â†i âj , (2.1)
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2 Models for the Problemwhere â†i and âi are the bosoni reation and annihilation operators and the index i denotes the lattiesite. The operators ful�ll the usual bosoni ommutation relations
[

â†i , â
†
j

]

= [âi, âj ] = 0,
[

âi, â
†
j

]

= δij . (2.2)The parameters U and J in Eq. (2.1) haraterize the on-site interation strength and the hoppingstrength, respetively. While the interation is loal, the hopping proess is desribed by a non-loalsum being proportional to the hopping strength J . The braket 〈·, ·〉 restrits this sum to nearestneighbor terms only, so it re�ets the annihilation of one partile at a site i and its re-reation at anadjaent site j. There is a third parameter µ in Eq. (2.1) whih represents the hemial potential. Weneed it as a grand-anonial desription is hosen. This means that the system is assumed to be inontat with a huge bath allowing for an exhange of both energy and partiles.In order to relate the model parameters to the ones on�guring the experiments [1℄, we note thatthe total partile number of the system N and the average partile number per site n beome �xed inthermal equilibrium via a minimization of the grand-anonial free energy. The interation parameter
U an be tuned by the s-wave sattering length of the partiles aBB via Feshbah resonanes [35℄.Besides, U is in�uened by the partile mass m and the lattie potential V (x). These two parametersalso determine the hopping strength J . This thesis is restrited to the most ommon ase of a ubilattie potential

Vext(x) =
3
∑

j=1

V0 sin2
(π

a
xj

)

, (2.3)whih an be realized by six ounter-propagating lasers. Here V0 denotes the intensity of the laser.The lattie onstant is a = λ/2, where λ is the wavelength of the laser light.The interation potential is usually spei�ed to a delta-potential desribing ontat interation
Vint(x1,x2) =

4πaBB~
2

m
δ(x1 − x2). (2.4)While the experimentalists have the onvention to measure all parameters having the dimension ofenergies (like J,U, V0, µ) in units of the reoil energy ER = ~

2π2/(2a2m), from the theoretial pointof view, it is more omfortable to use one of the model's parameters as a basi energy unit. We willmostly measure all energies in units of U .2.1.1 Model ParametersIn order to express U and J in terms of the experimental parameters, the Bose-Hubbard Hamiltoniangiven by Eq. (2.1) has to be derived from the general many-body Hamiltonian, whih is done, forinstane, in Ref. [36℄. We only present the main results here and derive an alternative formula for J .The interation parameter U is found to be
U = Ui =

4πaBB~
2

m

∫

d3x |w(x − xi)|4, (2.5)where w(x − xi) is the energetially lowest Wannier funtion [37℄. The argument of this funtion16



2.1 Bose-Hubbard Modeldepends on the oordinates xi of the lattie site i, where the partile is loalized. The Wannierfuntions are also needed for de�ning the hopping parameter J :
J = Jij = −

∫

d3x w∗(x − xi)

[

− ~
2

2m
∇2 + Vext(x)

]

w(x − xj). (2.6)To derive Eqs. (2.5) and (2.6), two fundamental assumptions have to be made:1. Other than the �rst-band Wannier funtion need not to be taken into aount.2. The overlap between neighboring Wannier funtions an be negleted in the interation term. Sowe end up with a loal interation. Consequently, we apply this restrition also to the kineti term
Jij and restrit it to the �rst non-trivial ontribution, whih is the overlap of nearest neighbors.We will brie�y disuss the validity of these assumptions in the next subsetion.The Wannier funtions, whose knowledge is required in the above expressions, ome from solid-statephysis. This onnetion is no surprise, sine the situation here is basially the same as in a solid:There are partiles moving in a periodi potential. Thus the Bloh theorem an be applied, whih tellsus that the aessible states form energy bands. The determination of the Bloh states Φn,k, where

n is the band number and ~k the momentum, demands solving the Shrödinger equation for a singlepartile in a periodi potential, i.e.:


− ~
2

2m
∇2 + V0

3
∑

j=1

sin2
(π

a
xj

)



Φn,k(x) = En,kΦn,k(x). (2.7)As the Bloh states desribe deloalized partiles in the lattie with �xed wave vetor k, one has tomake a Fourier transformation in order to deal with loalized partiles, i.e. partiles with �xed siteindex and inde�nite momentum. This gives us the Wannier funtions:
w(x − xi) = N−1/2

∑

k

e−ikxiΦ0,k(x), (2.8)where N is the number of lattie sites and the sum runs over all k's in the �rst Brillouin zone. Herewe have restrited ourselves to the lowest Bloh band, beause there is no Pauli priniple for bosons,so at low temperature the oupation of higher bands an be negleted.In Ref. [36℄ a numerial approah for alulating the Wannier funtions is ompared with a har-moni approximation whih beomes exat in the limit of an in�nite strong lattie potential. In thisapproximation, the Wannier funtion of an one-dimensional system reads
w(x) =

(

π2V0

a4ER

)1/8

exp

[

−π
2

2

√

V0

ER

(x

a

)2
]

. (2.9)The Wannier funtions in higher dimensions an easily be onstruted by multipliation of one-dimensional funtions. In three dimensions we therefore have:
w(x − xi) = w(x− xi)w(y − yi)w(z − zi). (2.10)17



2 Models for the ProblemInserting this into Eq. (2.5) yields the on-site potential in harmoni approximation. One �nds thatthis expression depends on the dimensionality of the lattie. In three dimension it reads
U

ER
=

√
8π
aBB

a

(

V0

ER

)3/4

. (2.11)Exept for very small lattie potentials, this harmoni approximation produes values of U similar tothe ones obtained by the numerial method.For the hopping parameter J a useful formula an be found from the theory of Mathieu's equationwhih agrees better with the numerial results than the harmoni approximation (see Ref. [38℄) andrequires no knowledge of the Wannier funtions. It reads:
J

ER
=

4√
π

(V0/ER)3/4e−2
√
V0/ER . (2.12)To derive it, we �rst must separate the spae oordinates. To this end, we insert the separationansatz (2.10) in Eq. (2.6) and note that aording to Eq. (2.3) the operator ĥ ≡ − ~2

2m∇2 + Vext(x)an be written as a sum of operators ating on one spatial oordinate only: ĥ = ĥx + ĥy + ĥz. ThenEq. (2.6) reads
Jij = −

{

∫ ∞

−∞
dx w∗(x− xi)ĥxw(x− xj)

∫ ∞

−∞
dy w∗(y − yi)w(y − yj)

∫ ∞

−∞
dz w∗(z − zi)w(z − zj)

+

∫ ∞

−∞
dx w∗(x− xi)w(x− xj)

∫ ∞

−∞
dy w∗(y − yi)ĥyw(y − yj)

∫ ∞

−∞
dz w∗(z − zi)w(z − zj)

+

∫ ∞

−∞
dx w∗(x− xi)w(x− xj)

∫ ∞

−∞
dy w∗(y − yi)w(y − yj)

∫ ∞

−∞
dz w∗(z − zi)ĥzw(z − zj)

}

.(2.13)In the following, we will need the orthonormality of the Wannier funtions
∫ ∞

−∞
dx w∗(x− xi)w(x− xj) = δ(xi − xj). (2.14)Now we onentrate on the fat that Jij should desribe nearest neighbor hopping only, so in one spatialdiretion, say x, we have xi−xj = a, while in all the other diretions, say y and z, the spatial distaneis zero. From this we see that the hopping matrix element does not depend on the dimensionality ofsystem. There is always only one term on the right-hand side of Eq. (2.13) whih survives. The wholeexpression redues to

Jij = −δ<i,j>
∫ ∞

−∞
dx w∗(x− xi)ĥxw(x− xj) ≡ δ<i,j>J. (2.15)The matrix element δ<i,j> should make sure, that i and j are nearest neighbors. It is equivalent towrite

Jij =

{

J, if i, j nearest neighbors
0, otherwise (2.16)
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2.1 Bose-Hubbard ModelIf we express the Wannier funtions in terms of the Bloh funtions by inserting Eq. (2.8), we an stilluse the orthogonality of the Bloh funtions, i.e.:
∫ ∞

−∞
dx Φ∗

0,k′(x) Φ0,k(x) = δk,k′ . (2.17)With this we obtain
Jij = −δ<i,j>

1

Nx

∑

kx

eikx(xi−xj)E0,kx
= −δ<i,j>

1

Nx

∑

kx

eikxaE0,kx
. (2.18)From the Bloh theorem we know that the energy bands have the periodiity of the reiproal lattie,i.e.

En,k = En,k+2π/a. (2.19)Due to the inversion symmetry of the external potential from Eq. (2.3), we furthermore have theKramer's theorem (see e.g. Ref. [39℄)
En,k = En,−k. (2.20)Aording to Eqs. (2.19) and (2.20), all the sine-terms in the Fourier series of E0,k are zero:

E0,k =
e0
2

+

∞
∑

m=1

em cos(kma), (2.21)with the oe�ients
ei =

a

π

∑

k∈1.BZ

E0,k cos(kma). (2.22)We insert this in Eq. (2.18) and transform the sum into an integral, aording to the rule 1/N
∑

k →
L/2π
L/a

∫ π/a
−π/a dk. These integrals then read

∫ π/a

−π/a
cos(ka) cos(mka)dk = δm,1

π

a
, (2.23)

∫ π/a

−π/a
sin(ka) cos(mka)dk = 0. (2.24)This means that J redues to minus half of the �rst Fourier oe�ient of E0,k:

J = −e1
2
. (2.25)Now we must relate the �rst Fourier oe�ient to the bandwidth B of E0,k. Sine cos(2nπ) = cos(0)with n ∈ N, even Fourier oe�ients do not ontribute to the bandwidth. When we furthermoresuppose that E0,k has a shape similar to the osine, the third and higher Fourier oe�ients have tobe muh smaller than the �rst one. Thus, the bandwidth of E0,k is almost idential with two timesthe absolute value of the �rst Fourier oe�ient. With Eq. (2.25) we get J = B/4. 19



2 Models for the ProblemNow we onsider the Shrödinger equation (2.7) and use the trigonometri relation sin2 α = (1 −
cos 2α)/2 in order to transform it into the one-dimensional Mathieu equation

[

− ∂2

∂x′2
+
Ṽ0

2
(1 − cos 2x′)

]

Φn,k = Ẽn,kΦn,k(x
′), (2.26)where we substituted the energies E → Ẽ ≡ E/ER and lengths x → x′ ≡ (π/a)x to dimensionlessvariables. From the literature on this equation [40℄, we know that there are stable solutions for a giveneigenvalue Ẽn,k only within stability regions depending on V0. The energetially lowest stability regionhas a bandwidth whih is known to be given by four times the right side of Eq. (2.12) for large Ṽ0.With the relation between J and B derived above follows Eq.(2.12).2.1.2 Assumptions Made in the Bose-Hubbard ModelObviously, the model Hamiltonian (2.1) idealizes the experimental situation, as it ontains the followingfour assumptions:1. The system is translationally invariant.2. Only one state is onsidered on eah lattie state.3. No interation between partiles on distint sites is inluded in the model.4. Hopping to other than nearest neighbor sites is exluded.To justify the �rst assumption, we must reognize that the system is assumed to be large omparedwith the lattie spaing and the trap, whih is neessary to on�ne the gas, represents a very smoothpotential. Nevertheless, there are some e�ets like the amplitude damping of the order parameter inollapse and revival experiments [41,42℄ or a visibility smaller than one even deep in the super�uidphase whih annot be understood from the point of view of an in�nitely large, homogeneous system[43℄. The inhomogeneity of the trap ould be taken into aount by letting the hemial potentialdepend on the lattie site, but we will not do that, beause the equations of motion, that we will derivelater, beome loal in Fourier spae if spatial homogeneity is assumed.Let's take a look on the justi�ation of the other assumptions: The seond one restrits the modelto systems of only one type of partiles. Furthermore, partiles with degenerate spin states annotbe desribed by suh a Hamiltonian. In many ases, however, the system is magnetially trapped,suh that all spins are aligned. Then it depends basially on the temperature of the system, if we anrestrit ourselves to the lowest energy band and the orresponding Wannier funtion w(x − xi), or ifhigher bands are important, too. In a few moments we will rudely estimate the oupation of higherbands for a realisti temperature, in order to see that higher bands do not play an important role.The third assumption at �rst depends on the interation between the partiles, whih must be veryshort-range. Whether this is the ase, depends very muh on the partiles under onsideration. Forthe most frequent experimental ase of alkali atoms, the magneti dipole moment is relatively smalland the eletri dipole moment is zero, thus in a good approximation, only ontat interation mustbe taken into aount. This alone is still not su�ient to restrit the interation to the form given in20



2.2 Phase TransitionsEq. (2.5), sine a partile at site i, desribed by the nth Wannier funtion wn(x − xi), has a �niteprobability to be in ontat with a partile at a di�erent site j desribed by wm(x′ − xj). However,if the seond assumption is true, i.e. n = m = 0, the overlap of the lowest nearest neighbor Wannierfuntions is very small [44℄, whih then justi�es the third and also the fourth assumption. Exitedbands, however, are less loalized, so if the seond assumption fails, the others may not hold. Thusthe basi question is, whether we really an restrit ourselves to the lowest single-partile band.As we deal with �nite temperatures, the goodness of the seond assumption has to be put intoquestion. By a Taylor expansion of the lattie potential (2.3), we �nd that in the �rst non-vanishingorder a harmoni potential V (x) = (π/a)2V0x
2 desribes the system. In this approximation, the energyof the nth exited state is En = (n+1/2)~

√

(2π2V0)/(ma2) = (2n+1)
√
V0ER, where m is the partilemass.Taking the value for ER from Ref. [25℄, whih is about 1 · 10−11 eV, and a typial value for V0,say 20 ER, we have E1 ≈ 1, 5 · 10−10 eV while E0 ≈ 0, 5 · 10−10 eV. Now we have to ompare thesevalues with the thermal energy kBT . As there is still no method of measuring the temperature, werely on theoretial onsiderations in order to �nd a suitable guess of it. In Ref. [36℄, for instane,the temperature of the gas is alulated by omparing the theoretial with the experimental visibilitywhere the data is taken from Ref. [25℄. For V0 = 20 ER, a temperature about 600 nK is found. Thisgives a ratio E1/(kBT ) of about 3, while E0/(kBT ) is about one. Inserting this in the Bose-Einsteinstatisti, where the medium oupation number is given by 〈n〉 = 1/ {exp[E/(kBT )] − 1}, we �nd

〈n0〉/〈n1〉 ≈ 10. So the �rst exited band does not play a very important role and the �rst assumptionan be justi�ed not only for zero but as well for more realisti temperatures. Nevertheless, there seemto be ases where the oupation of higher Bloh bands has to be onsidered in order to ahieve a goodagreement with experiments. An example are Bose-Fermi gas mixtures [45,46℄.2.2 Phase TransitionsAs already mentioned above, our main interest is related to the phase transition between the MI andthe SF phase whih may our in a lattie �lled with bosons. Experimentally, this transition beomesmanifest in the time-of-�ight absorption pitures of the gas taken after swithing o� both the trap,whih has on�ned the system, and the optial lattie. Then the initial momenta of the atoms makethe loud expand in spae, leading to a density distribution that reprodues the momenta distributionintegrated in one spatial diretion. Sine in the super�uid phase the bosons are deloalized overthe whole lattie, they have, by Heisenberg's unertainty priniple, a de�nite momentum. Therefore,sharp absorption peaks are measured in the SF phase while in the MIt phase the opposite is the ase:Loalized atoms have no de�nite momentum and the time-of-�ight absorption pitures show a fuzzyloud (see Figure 2.1).In order to quantify this e�et, the visibility V is de�ned as
V ≡ nmax − nmin

nmax + nmin
, (2.27)where nmax is the highest and nmin the lowest density on a irle through the �rst side maximumaround the enter peak as shown in the inset of Fig. 2.2. In this �gure the data from an experiment21



2 Models for the Problem

Figure 2.1: Time-of-�ight absorption pitures taken from [1℄: When the lattie potential is inreasedfrom zero (a) to 20 reoil energies (h), the phase oherene between the atoms on di�erentsites gets lost. In between the system arries out a phase transition from the SF into theMI phase.measuring the visibility is shown [47℄. Although the ourrene of a phase transition is evident fromFigs. 2.1 and 2.2, both �gures do not allow for determining the position of the phase transition. It thuswould be nie to �nd other riteria marking the phase transition. We will later see that the exitationspetra an do that job.From the theoretial point of view, the Bose-Hubbard model allows for prediting this phase tran-sition and alulating the phase boundary or even the time-of-�ight absorption pitures. For under-standing suh a seond order phase transition, we introdue now the onept of an order parameter byGinzburg and Landau.2.2.1 Order Field and Ginzburg-Landau ModelThe basi idea related to the order parameter is that we have a quantity whih vanishes on thedisordered side of the transition and takes �nite values on the ordered side. In the following we denotethis parameter by Ψ. The dependene of the free energy F on this parameter is assumed to be:
F = F0 + (λ2/2) |Ψ|2 + (λ4/4!) |Ψ|4 +O(|Ψ|5), (2.28)with λ2 and λ4 being phenomenologial parameters to be determined. It is important not to haveodd terms in this expansion, as otherwise the transition would be of �rst order, i.e. the energy wouldhange disontinuously in the ritial regime [14℄. For systems whih exhibit a seond-order phasetransition, haraterized by the vanishing of the harateristi energy sale in the exitation spetrum[34℄, the existene of a ubi term is forbidden by symmetry arguments. In our ase, the symmetry inonsideration is the phase-rotational invariane of the Bose-Hubbard Hamiltonian (2.1).The desription in Eq. (2.28) whih was invented by Landau an be generalized to the so alledGinzburg-Landau model by letting Ψ vary in spae. The free energy F an then be written as a22



2.2 Phase Transitions

Figure 2.2: For N = 3.6 105 (gray irles) and N = 5.9 105 (blak irles) 87Rb atoms the visibility wasmeasured as a funtion of the latties potential by Ref. [47℄. The inset marks the regionof the time-of-�ight pitures whih were used in order to de�ne the visibility.funtional of the order �eld Ψ(x) and its gradient:
F [Ψ] =

∫

d3x

(

F0(x) +
1

2
|∇Ψ(x)|2 +

λ2

2
|Ψ(x)|2 +

λ4

4!
|Ψ(x)|4

)

, (2.29)where F0(x) is the free energy in the disordered phase. As it depends on the sign of λ2, whether a zeroor nonzero Ψ(x) minimizes F , phase transitions are expeted when the sign of λ2 hanges. Originallyapplied to thermal phase transitions, the Landau oe�ients λi were supposed to depend basially onthe temperature of the system. For λ2 one has λ2 ∼ T
Tc

− 1, where Tc is the ritial temperature [14℄.Our goal, however, is the desription of a quantum phase transition, so we wish to �nd oe�ientswhih depend on a parameter given by the Hamiltonian of the system [34℄. In our system, the ritialregime is determined by the relative value of the hopping parameter J to the on-site potential U .In the theory of super�uidity [4℄, the transition to the super�uid phase is attended by a marosopioupation of the ground state. So as an order parameter or order �eld, a quantity should be hosen,whih is proportional to the ondensate amplitude. In the latter, the expetation value of the anni-hilation operator will de�ne the disrete order �eld: ~Ψi ≡ 〈âi〉. We will see in the next setion thata transition to non-vanishing order �elds is related to a breakdown of the phase-rotational symmetry.The di�erene between the normal and the super�uid phase is illustrated in the plot of the free energy
F [Ψ] (see Figure 2.3), whih has a paraboloid shape in the normal phase and a wine-bottle shape inthe super�uid phase. So there is only one minimum in the normal phase at Ψ = 0, but in the super�uidphase, for any ontinuous phase angle γ, the system has a global minimum at a �nite Ψ0.2.2.2 Spontaneous Symmetry BreakingWhen the Hamiltonian is invariant under a symmetry operation, but the ground state is not, it hasto be degenerate [48℄. The degenerate ground states are denoted by a label α whih orresponds toan observable distinguishing the di�erent states. There is no reason that a speial α is preferred by23



2 Models for the Problem

Figure 2.3: The Landau free energy F as a funtion of the order parameters: In the normal phaseonly one minimum exists at the origin, in the super�uid phase gauge invariane leads toin�nitely many degenerate minima.nature, so its expetation value 〈α〉 should simply be the average of all possible α, whih an be setzero without loss of generality.A phase transition takes plae when the invariane of the Hamiltonian breaks down and the degen-eray is lifted. Then one of the states |α〉 beomes the unique ground state and 〈α〉 is no longer zero.The physial reason for this is a breakdown of ergodiity [49℄. It might be aused, e.g., by a potentialbarrier between the di�erent states |α〉, suh that the system gets stuk in one arbitrary state forever.In order to desribe phase transitions, it is a useful method to add external soures to the Hamiltonianwhih are linearly oupled to the order �eld. The symmetry of the system is destroyed by these objetswhih besides might have no further physial meaning and be arti�ial.The broken symmetry in our ase of the transition to a super�uid phase is gauge invariane [4℄: TheBose-Hubbard Hamiltonian (2.1) remains unhanged under a global phase rotation with a onstantphase angle γ for all reation and annihilation operators, i.e. âi → âie
iγ and â†i → â†ie

−iγ . This meansthat the expetation value of the reation and annihilation operators must not depend on the phaseangle γ, whih is only possible if 〈âi〉 = 〈â†i 〉 = 0. It is found that in this normal phase at T = 0 theoupation number ni = 〈â†i âi〉 is pinned to integer values depending on µ/U [34℄.With an inreasing hopping parameter J , however, the oupling of neighboring sites beomes moreimportant. At some ritial value J/U , it ours that states with a broken symmetry are preferred[34℄. Then we are in the super�uid phase with a non-zero 〈âi〉. This means that from the in�nitelymany minima in Fig. 2.3 the system has to hoose one.As the broken symmetry is ontinuous, the phase of the order parameter an �utuate withoutexiting it energetially. These zero-energy-exitations are alled Nambu-Goldstone modes [50,51℄.There is a famous theorem, the so-alled Goldstone theorem, whih predits one massless exitationmode for eah broken ontinuous symmetry. Flutuations of the amplitude, in ontrast, amongst themall the �utuations in the normal phase, have to go �uphill� against the free energy. Thus, the oherenelength of the phase �utuations are in�nite, while the amplitude �utuations have a �nite oherenelength [4℄.One of our later goals will be the study of the exitation spetra for bosons in optial latties. Wewill �nd what the Goldstone theorem predits, namely one massless mode in the super�uid phase.24



3 Green's Funtions FormalismsThe partition funtion of a quantum system, desribed by a time-independent Hamilton operator Ĥ,is given by
Z ≡ Tr

(

e−βĤ
)

, (3.1)with β = 1/(kBT ) being the inverse of the temperature T times the Boltzmann's onstant kB. Itdetermines all thermodynami quantities, like the free energy, the entropy or the spei� heat of thesystem. On the other hand, no information on loal properties of the system, whih for instane areneeded for alulating time-of-�ight absorption pitures, an be extrated from this expression. Thisinformation is ontained in the so alled orrelation funtions [14℄. We will soon get to know a lot ofdi�erent formalisms in whih orrelation or Green's funtions appear. So we are not going to give apreise de�nition yet, but only a preview of what is meant by them:
G(i1, · · · , in; in+1, · · · , im) ∼ 〈âi1 · · · âin â†in+1

· · · â†in+m
〉, (3.2)where n,m ∈ N. The operators âi and â†i are the bosoni annihilation and reation operators whihhave already appeared in the de�nition of the Bose-Hubbard Hamiltonian (2.1) and ful�ll the usualommutation relations (2.2). The meaning of the braket 〈· 〉 depends on the applied formalism. In a

T 6= 0 - theory it is de�ned by the following trae
〈· 〉 ≡ 1

Z Tr(· e−βĤ), (3.3)whih is the thermal average. For a pure quantum-dynami theory at T = 0, however, 〈· 〉 means thequantum-mehanial expetation value with respet to the ground state. After a short presentationof the orrelation funtions in this zero-temperature formalism in Setion 3.2, we will deal with �nitetemperatures and then always have the de�nition (3.3).One feature, that is ommon to all the presented formalisms, is some kind of time dependene ofthe orrelation funtions. So �rst we have to give an introdution to the time evolution of quantum-mehanial systems.3.1 Quantum Mehanial PituresAs in lassial physis, the time evolution of a quantum mehanial system is generated by the Hamil-tonian. But while in lassial physis it is lear on whih objets the time evolution has to at, as nodisrepany between the observables and the orresponding funtions exists, the situation in quantumtheory is not that obvious. Of ourse, the theory has to reprodue the measurable quantities, but itdeals with theoretial onstruts like states and operators, whih are not per se observable. Only some25



3 Green's Funtions Formalismsspeial ombinations of them, e.g. salar produts, expetation values or transition amplitudes, an bemeasured diretly. For this reason, a freedom of hoie remains: the time evolution of an observablean either be onstruted by letting the states evolve with time (Shrödinger piture) or the operators(Heisenberg pitures) or both (Dira piture).3.1.1 Shrödinger and Heisenberg PitureFor the perturbative alulations done later in this thesis, the Dira piture will be used. Nevertheless,a short de�nition of the Shrödinger and the Heisenberg pitures is helpful, sine the Dira pitureis a mixture of both. Moreover, it's in the Heisenberg piture, where the de�nition of the orrelationfuntions (3.2) holds as well in the time-dependent ase.There is one time, say t = 0, when the Shrödinger and the Heisenberg piture oinide. Then theonstant Heisenberg states |φ〉H, an be identi�ed with the Shrödinger states |φ(0)〉S:
|φ(0)〉S ≡ |φ〉H. (3.4)The time evolution of the Shrödinger states is generated by the total Hamiltonian ĤS(t). This oper-ator, although in the Shrödinger piture, might have an expliit time dependene, e.g. beause of atime-dependent potential. By solving the time-dependent Shrödinger equation

i~
∂

∂t
|φ(t)〉S = ĤS(t)|φ(t)〉S (3.5)we an �nd out how a state evolves with time [48℄:

|φ(t)〉S = T̂
{

e−
i
~

R t

0
dt′ĤS(t′)

}

|φ(0)〉S. (3.6)Here the time-ordering operator T̂ is introdued. It ats on an operator produt by bringing it intohronologial order from the right to the left. Eq. (3.6) holds for the most general ase. Simpli�ationsare possible, if ĤS(t) has no expliit time-dependene or if Hamiltonians at di�erent time argumentsommute, i.e. [ĤS(t), ĤS(t′)] = 0. In the latter ase, one an drop the time-ordering operator in Eq.(3.6), in the �rst ase the integration in the exponent yields trivially exp
(

− i
~
ĤSt

).In ontrast to the states, the operators Ô, if not expliitly time-dependent, are onstant in theShrödinger piture. The opposite is the ase in the Heisenberg piture where the states are onstant.As the expetation values have to be the same in both pitures, the relation between Heisenberg andShrödinger operators is found to be:
ÔH(t) ≡ T̂

[

e
i
~

R t

0
dt′ĤS(t′)

]

ÔS(t)T̂
[

e−
i
~

R t

0
dt′ĤS(t′)

]

. (3.7)From this, we �nd the famous Heisenberg equation of motion by di�erentiation:
dÔH(t)

dt
=
i

~

[

ĤH(t), ÔH(t)
]

+

(

∂ÔS(t)

∂t

)

H

. (3.8)
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3.1 Quantum Mehanial Pitures3.1.2 Dira PitureThe Dira piture will be introdued now in a little bit more detail, as the perturbation theory thatwe will perform later works in this piture. The idea is to split the Hamiltonian in a �free� part Ĥ0that an be solved exatly and a small perturbative term λĤ1(t) whose in�uene on the system is tobe alulated in a power series of λ. So λ might be only a formal devie whih an be set to 1 at theend. Usually Ĥ0 is hosen to be time-independent, while expliit time-dependenies of the Hamiltonoperator appear as the perturbation. Although it is not essential, let us take suh a splitting foronveniene.The Dira states |φ(t)〉D and operators ÔD(t) are de�ned by the following relations to their equiva-lents in the Shrödinger piture [48,49℄:
|φ(t)〉D ≡ exp

(

i

~
Ĥ0St

)

|φ(t)〉S, (3.9)
ÔD(t) ≡ exp

(

i

~
Ĥ0St

)

ÔS(t) exp

(

− i

~
Ĥ0St

)

. (3.10)It is important to note that for the unperturbed system, where Ĥ0 is the full Hamiltonian, the Dirapiture oinides with the Heisenberg piture.By inserting Eq. (3.9) into the Shrödinger equation Eq. (3.5), we get a Shrödinger-like equationfor the time evolution of the Dira states, whih is driven by Ĥ1D(t). Correspondingly, we obtain from(3.10) a Heisenberg-like equation of motion for the time evolution of the Dira operators, whih isdriven by Ĥ0S = Ĥ0D ≡ Ĥ0:
i~
∂

∂t
|φ(t)〉D = Ĥ1D(t)|φ(t)〉D, (3.11)

d

dt
ÔD(t) =

i

~

[

Ĥ0, ÔD

]

+

(

∂ÔH(t)

∂t

)

D

. (3.12)We de�ne a unitary operator Û(t, t0), alled evolution operator, with the property:
|φ(t)〉D = Û(t, t0)|φ(t0)〉D. (3.13)Then we get from Eq. (3.11)

i~
∂

∂t
Û(t, t0) = Ĥ1D(t)Û(t, t0), (3.14)whih has to be solved with the initial ondition

Û(t0, t0) = 1. (3.15)Integrating Eq. (3.14) with Eq. (3.15) iteratively, yields a formal solution for the time-evolution
27



3 Green's Funtions Formalismsoperator [49℄:
Û(t, t0) = 1 +

(−i
~

)∫ t

t0

dt1 Ĥ1D(t1) +

(−i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 Ĥ1D(t1)Ĥ1D(t2) + · · ·+

+ (
−i
~

)n
∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnĤ1D(t1) · · · Ĥ1D(tn) + · · · . (3.16)This expression is alled Dyson series. With the help of the time-ordering operator T̂ it an bewritten more ompatly aording to:
Û(t, t0) =

∞
∑

n=0

(−i/~)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT̂
{

Ĥ1D(t1) · · · Ĥ1D(tn)
}

, (3.17)where the fator 1/n! arises from the fat that there are exatly n! permutations in the expression onthe right side. Noting that this is the power expansion of the exponential funtion, Eq. (3.17) reduesto:
Û(t, t0) = T̂ exp

(−i
~

∫ t

t0

dt1Ĥ1D(t1)

)

. (3.18)By omparing Eqs. (3.7), (3.10), and (3.18), we �nd the following useful relation between theHeisenberg and the Dira operators:
ÔH(t) = Û(t0, t)ÔD(t)Û(t, t0). (3.19)3.2 Correlation Funtions at T = 0Now that the time evolution is de�ned, we an adapt the de�nition (3.2) of the orrelation funtionsto the time-dependent ase. All we have to do is to inlude a time-ordering operator T̂ and write downthe operators in the Heisenberg piture [49℄:

G(x1, · · · , xn;xn+1, · · · , xn+m) ≡
〈

T̂
(

âH(x1) · · · âH(xn)â
†
H(xn+1) · · · â†H(xn+m)

)〉

. (3.20)Here the olletive index xj ≡ {ij , tj} ontains the time variable as well as the spatial oordinates, i.e.site indies. It still might be useful to take prefators into the de�nition, but we will struggle with themlater. Remember that in this de�nition the brakets mean the expetation value with respet to the fullground-state |Ω〉. For T 6= 0, we will have to modify the de�nition by introduing a thermal averaging.This leads either to the imaginary-time formalism (ITF) or to the losed-time-path formalism (CTPF)being introdued later.But let us �rst sketh the manipulations that an be performed on Eq. (3.20) in order to derivean expression appropriate for a perturbative expansion. Using Eq. (3.19) we an swith to the Dirapiture. This leaves us with evolution operators between all the operators in (3.20). Beause of thetime-ordering operator in front of them and the group property of Û, i.e. Û(t, t′)Û(t′, t′′) = Û(t, t′′), theyan be ombined. Then the Gell-Mann-Low theorem [52℄ states that the ground state of the perturbedsystem |Ω〉 is, up to a possible phase whih is aneled by a denominator, related to the ground stateof the unperturbed system |0〉 by a time evolution from the in�nite past, where the perturbation was28



3.3 Wik Rotation and Thermal Green's Funtionsompletely swithed o�, to a �nite time when the perturbation is ompletely swithed on. Analogously,a time evolution to the in�nite future relates 〈Ω| to 〈0|. So instead of taking the expetation valuewith respet to the full ground state, we an take it with respet to the unperturbed ground state
|0〉 only, if we simultaneously extend the time evolution to times in the in�nite past and future. Thisallows for alulating the whole orrelation funtion by a straight time evolution from −∞ to ∞. Forthe 2-point orrelation funtion at T = 0, one gets for example [49℄:

G(x1;x2) = 〈Ω|T̂
{

âH(x1)â
†
H(x2)

}

|Ω〉 = lim
t→∞

〈0|T̂
{

âD(x1)â
†
D(x2)Û(t,−t)

}

|0〉
〈0|Û(t,−t)|0〉

. (3.21)This expression paths the way for a perturbative alulation in whih Û is replaed by the Dysonseries (3.16). This formalism, however, does not hold for �nite temperature. Therefore, we refer to itas zero-temperature formalism (ZTF). For �nite temperatures a thermal average, i.e. a trae over allstates, must replae the ground state expetation value. But then the Gell-Mann-Low theorem annotbe applied any longer. We will see in the next setion how to irumvent this by rotating the problemto imaginary times.3.3 Wik Rotation and Thermal Green's FuntionsFor problems in thermal equilibrium a onnetion between quantum dynamis to statistial mehanisan be exploited, whih stems from the formal similarity between time evolution and thermal averaging.To see this relation, we assume a Hamiltonian without any expliit time dependene. Then the Dirapiture evolution operator (3.18) is found to be given in terms of Shrödinger operators:
Û(t, 0) = e

i
~
Ĥ0te−

i
~
ĤSt. (3.22)Comparing this with the partition funtion (3.1), we write down the following equation and notie thatit beomes true for τ̃ = −i~β:

Z = Tr
{

e−βĤ0Û(τ̃ , 0)
}

= Z(0)〈Û(τ̃ , 0)〉0, (3.23)where 〈·〉0 is the thermal average with respet to Ĥ0 aording to de�nition (3.3), and Z(0) = Tre−βĤ0is the partition funtion of the unperturbed system. Note that the operator Ĥ0 is the same in theDira as in the Shrödinger piture.This analytial ontinuation to a omplex time variable is alled Wik rotation [53℄. The fator
i appearing in the new �time� variable τ̃ an be absorbed by the i whih omes along with the timeevolution. This delivers a time evolution without any i's. The Wik rotated time evolution operatorin the Dira piture then reads:̂

U(τ, τ0) = T̂ exp

(

−1

~

∫ τ

τ0

dτ1Ĥ1D(τ1)

)

, (3.24)where τ is a real number, though it is often alled imaginary time. 29



3 Green's Funtions FormalismsWhat has been said about evolution in real time, remains true in the ITF. In the Dira piture wehave for the evolution of the states:
|φ(τ)〉D = Û(τ, τ0)|φ(τ0)〉D. (3.25)The relation between time-independent Shrödinger operators and Dira operators depending on imag-inary time is in analogy to Eq. (3.10):̂
OD(τ) ≡ eĤ0τ/~ÔSe

−Ĥ0τ/~. (3.26)Correspondingly, instead of Eq. (3.19) we �nd for the Heisenberg operators:
ÔH(τ) = Û(τ0, τ)ÔD(τ)Û(τ, τ0). (3.27)We an now take the de�nition of the orrelation funtions (3.20) and modify it by letting theoperators depend on imaginary time instead of real time. We still replae the quantum mehanialexpetation value by a thermal average. We then get funtions whih are usually referred to as thermalor imaginary-time Green's funtions or, in order to stress the number N of operators, N -point funtions:

G(x1, · · · , xn;xn+1, · · · , xn+m) ≡
Tr
{

e−βĤT̂
(

âH(x1) · · · âH(xn)â
†
H(xn+1) · · · â†H(xn+m)

)}

Tr
{

e−βĤ
} . (3.28)We now have de�ned the olletive variable x ≡ {i, τ}. Most often, the number of annihilators equalsthe number of reators, i.e. n = m and N = 2n.De�nition (3.28) an be brought to a form similar to Eq. (3.21). To this end we have to transform theHeisenberg operators in the Dira piture using Eq. (3.27) and note that taking the thermal averagewith respet to the total Hamiltonian (whih does not depend on real time) is the same as an evolutionin imaginary time from 0 to ~β given by Eq. (3.24) and taking the thermal average with respet tothe unperturbed Hamiltonian Ĥ0. To this end we rewrite Eq. (3.22) as

e−βĤ = e−βĤ0Û(~β, 0). (3.29)We then �nd:
G(x1, · · · , xn;xn+1, · · · , xn+m) =

Tr
{

e−βĤ0Û(~β, 0)T̂
(

âD(x1) · · · âD(xn)â
†
D(xn+1) · · · â†D(xn+m)

)}

Tr
{

e−βĤ0Û(~β, 0)
} .(3.30)Despite of many analogies between evolution in real time and in imaginary time, two di�erenesshould be mentioned here. The �rst one is quite a formal one: Whereas the real-time evolutionoperator Û(t, t0) de�ned in Eq. (3.18) is unitary, i.e. Û(t, t0)Û

†(t, t0) = 1, its imaginary-time analog
Û(τ, τ0) from Eq. (3.24) is not. This would mean that Ô†(τ) 6=

(

Ô(τ)
)†. To bypass this inonsisteny,we have to remind that τ should be treated like an imaginary variable, i.e. apart from ating on theoperator itself, omplex onjugation should also hange the sign of τ . Thus instead of Û†(τ, τ0), we30



3.4 Closed-Time-Path Formalism (CTPF)take as the omplex onjugated imaginary-time evolution operator:
Û(τ, τ0) ≡ Û†(−τ,−τ0). (3.31)With this de�nition, Û is unitary even in the ITF.The seond and very important di�erene between real and imaginary time omes along with theinterpretation of the imaginary time as something like an inverse temperature. Thus, the evolutionalong the imaginary-time axis makes sense only in the interval [0,~β]. As Eq. (3.28) is a funtion ofimaginary-time di�erenes, all of its time arguments lie within the interval [−~β,~β]. In Ref. [54℄ itis shown for the 2-point funtion G(τ1, τ2) that it an be interpreted as a funtion G̃(τ) of one timevariable τ = τ1 − τ2 with the property
G̃(τ) = ±G̃(τ + ~β), (3.32)where the upper sign holds for bosoni partiles whereas for fermions the anti-ommutation relationsimply a minus sign. Respeting this property, we an periodially extend the imaginary-time funtionsto times of any absolute value. This ~β-periodiity (anti-periodiity) beomes espeially importantwhen one transforms the funtions into frequeny spae. While the real-time orrelation funtionsdepend on ontinuous frequenies, their imaginary-times analogs depend on disrete frequenies alledMatsubara frequenies

ωn =
nπ

~β
, (3.33)where n is an integer. Eq. (3.32) implies that for bosons only frequenies with even n an survive inthe Fourier transformation, while for fermions n has to be odd.3.4 Closed-Time-Path Formalism (CTPF)When using imaginary times, no e�ets appearing in real time like exitation spetra an be desribed,unless one re-rotates bak to the real-time axis. This is usually done in frequeny spae, where thereal-time funtions appear as funtions of ontinuous frequenies, while the imaginary-time funtionstransform into funtions of a disrete set of Matsubara frequenies lying on the imaginary axis. There-fore, an analyti ontinuation from imaginary time to real time is uniquely possible only under theadditional ondition that we have in�nitely many oiniding points with a limit point in the region ofanalytiity. In Ref. [54℄ it is shown how this proedure works for the 2-point funtion by replaing

iωn → −ω± iǫ. For more ompliated funtions depending on more than one frequeny, however, thisanalyti ontinuation beomes very di�ult. For the 3-point and 4-point funtions, this problem isdisussed in detail in Refs. [55�57℄.If the Hamiltonian has an expliit dependene on real times, then the ITF is not appliable anylonger, sine it performs no time evolution along the real-time axis.Therefore we would like to have a formalism keeping real times, but sine our system is very large,the thermodynami limit should also be taken into aount, i.e. it should not be restrited to zero
31



3 Green's Funtions Formalisms
Figure 3.1: Contours of time evolution: a) Shwinger ontour, b) interation ontour, ) Keldysh on-tour.temperature. The CTPF presented now promises a desription at both real time and �nite temperature.The Green's funtions, whih we want to alulate now, are again thermal averages with respet toa given initial density matrix ρ̂, but now of a produt of real-time-dependent Heisenberg operators.Instead of diretly giving the de�nition, it is useful to see where it omes from. So let's have a look atthe following operator produt whih has not any time-ordering:

〈âH(t1)â
†
H(t2)〉ρ ≡

Tr
{

ρ̂âH(t1)â
†
H(t2)

}

Tr {ρ̂} . (3.34)We have suppressed spatial oordinates here. Inserting the relation (3.19) between the Heisenberg andthe Dira piture yields
〈âH(t1)â

†
H(t2)〉ρ =

Tr
{

ρ̂ Û(t0, t1)âD(t1)Û(t1, t2)â
†
D(t2)Û(t2, t0)

}

Tr {ρ̂} , (3.35)where Û is the Dira time evolution operator de�ned in Eq. (3.18). We see that the time evolutiongoes forward from an initial time t0 to the largest time (t1 or t2) and bak to t0, i.e. the time evolvesalong a losed path. Suh a ontour, whih is shown in Fig. 3.1a), is sometimes alled Shwingerontour as he �rst introdued it [58℄.But we still have to onsider the proedure of thermal averaging: If the system is initially in equi-librium, the density matrix in Eq. (3.35) reads
ρ̂ = e−βĤ =

∑

X

e−βEX |X〉〈X| (3.36)with |X〉 being an eigenbasis to Ĥ with eigenvalues EX . The formalism, however, is not neessarilyrestrited to suh a speial initial ondition.Sine we have no eigenbasis for the full Hamiltonian Ĥ, we are not able to alulate the Green'sfuntion in Eq. (3.35) perturbatively by only expanding the real-time evolution operator Û. A possibleway out would therefore be a mix between evolution in real and imaginary time [59℄. This would leadto a ontour shown in Fig. 3.1b). Instead we an also push the starting point of our time evolutionin the in�nite past. Then the part of the ontour from t0 to t0 − i~β is in�nitely far away fromanything happening at �nite times, so that it should make no di�erene, if the system was perturbedor unperturbed at the beginning. This means that we an substitute ρ̂ by the density matrix ρ̂0 ofthe unperturbed system [60,61℄. This density matrix will ause no di�ulties, as a diagonal basis for32



3.4 Closed-Time-Path Formalism (CTPF)the unperturbed problem should be known. Sine the time-evolution operator is unitary, we an alsoextend the ontour from the largest time t1 to the in�nite future and end up with ontour in Fig. 3.1),whih was �rst introdued by L. V. Keldysh [62℄. Instead of Eq. (3.35), we now have orrelations like
〈âH(t1)â

†
H(t2)〉0 ≡

Tr
{

e−βĤ0 âH(t1)â
†
H(t2)

}

Tr
{

e−βĤ0

} , (3.37)whih yields, when translated into the Dira piture,
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0Û(−∞, t1)âD(t1)Û(t1, t2)â
†
D(t2)Û(t2,−∞)

}

Tr
{

e−βĤ0

} . (3.38)The index 0 at the braket means a thermal averaging with respet to the unperturbed Hamiltonian
Ĥ0. Note that this does not mean that it is the orrelation of the unperturbed system, beause thein�uene of the perturbation is inluded in the time evolution.We will now try to ollet the di�erent piees of the time evolution into a single operator whihperforms a time evolution along the ontour indiated in Fig. 3.1). For this purpose, we introduethe identity 1 = Û(t2,∞)Û(∞, t2) in front of the seond operator if t1 > t2 or the identity 1 =

Û(t1,∞)Û(∞, t1) behind the �rst operator if t1 < t2. We �nd for t1 > t2:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0

(

Û(−∞, t1)âD(t1)Û(t1, t2)Û(t2,∞)
)(

Û(∞, t2)â
†
D(t2)Û(t2,−∞)

)}

Tr
{

e−βĤ0

} ,(3.39)and for t1 < t2:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0

(

Û(−∞, t1)âD(t1)Û(t1,∞)
)(

Û(∞, t1)Û(t1, t2)â
†
D(t2)Û(t2,−∞)

)}

Tr
{

e−βĤ0

} .(3.40)In both equations the parentheses signalize that the operator produt an be split into two parts.The right part an be interpreted as a time evolution from −∞ to∞ with the operator â†D(t2) appearingduring the evolution, while the part on the left side evolves bak from ∞ to −∞ with âD(t1) lyingon this path. We an write the evolution in the forward diretion ompatly by introduing the time-ordering operator T̂. For the bakward path the diretion is inverted requiring the anti-time-orderingoperator ˆ̃T for a ompat writing. This allows for reduing both Eq. (3.39) and Eq. (3.40) to:
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0 ˆ̃T
(

Û(−∞,∞)âD(t1)
)

T̂
(

Û(∞,−∞)â†D(t2)
)}

Tr
{

e−βĤ0

} . (3.41)Now we de�ne an operator Ŝ†Ŝ where Ŝ ≡ Û(∞,−∞), whih performs a time evolution along the
33



3 Green's Funtions Formalismsontour of Fig. 3.1), i.e.
Ŝ†Ŝ = exp

{

− i

~

∫

c
dt Ĥ1D(t)

}

, (3.42)and a ontour-ordering operator T̂c olloating �rst the operators on the forward path in time-orderwhile the bakward ones are plaed further left and brought to anti-time-order. This, however, requiresthat eah operator is provided with an additional information about its path. Therefore we will denoteoperators that should appear on the forward path by the index + and the operators on the bakwardpath with the index -. This enables us to transform the ontour integration in (3.42) into a singleintegration from t = −∞ to ∞. We only need to hange the sign of the operators on the bakwardpath, e.g.:
Ŝ†Ŝ = exp

{

− i

~

∫ ∞

−∞
dt
[

Ĥ1+D(t) − Ĥ1−D(t)
]

}

. (3.43)The advantage of introduing path indies should beome lear by using (3.42) in order to re-write Eq.(3.41). We simply get
〈âH(t1)â

†
H(t2)〉0 =

Tr
{

e−βĤ0T̂c

(

Ŝ†Ŝâ−D(t1)â
†
+D(t2)

)}

Tr
{

e−βĤ0

} . (3.44)This shows us that the onsidered orrelation 〈âH(t1)â
†
H(t2)〉0 an be alulated by going into theDira piture and performing a time evolution along a losed path with the seond operator lyingon the forward and the �rst operator lying on the bakward part of the ontour. We will disussother path-orderings of two operators in the next setion. We will �nd that any physially relevant2-point orrelation an be expressed in terms of path-ordered Green's funtions. This motivates us togeneralize the de�nition to higher orders. We therefore de�ne the CTPF Green's funtions as thermalaverages (with respet to Ĥ0) of path-ordered operators in the Dira piture. Furthermore, we multiplywith the onvenient prefator in+m−1. Then we have with the abbreviation x ≡ {i, t}:

G±···±(x1, · · · , xn;xn+1, · · · , xn+m)

≡ in+m−1
〈

T̂c

{

Ŝ†Ŝâ±D(x1) · · · â±D(xn)â
†
±D(xn+1) · · · â†±D(xn+m)

}〉

0
. (3.45)These 2n+m funtions for any n,m represent the basis of our further onsiderations.3.5 Keldysh RotationSine the path index introdued in the setion above doubles the time degrees of freedom, the CTPFGreen's funtions rapidly beome very omplex. A helpful simpli�ation is the Keldysh rotationpresented in this setion. To this end we will �rst examine the easiest Green's funtions of only oneannihilation and one reation operator. By rotating them we �nd how to extrat useful informationout of them. The same an and will be done later for higher Green's funtions. Taking the de�nition34



3.5 Keldysh Rotation(3.45) and translating bak into the Heisenberg piture, we �nd the following four 2-point funtions:
G++
ij (t, t′) = i

〈

T̂
{

âi,H(t)â†j,H(t′)
}〉

0
,

G+−
ij (t, t′) = i

〈

â†j,H(t′)âi,H(t)
〉

0
,

G−+
ij (t, t′) = i

〈

âi,H(t)â†j,H(t′)
〉

0
,

G−−
ij (t, t′) = i

〈

ˆ̃T
{

âi,H(t)â†j,H(t′)
}〉

0
. (3.46)These are the time-ordered Green's funtion, two Green's funtions with a �xed order and the anti-time-ordered Green's funtion. They an be used to form a 2x2 matrix

G̃ij(t, t
′) ≡

(

G++
ij (t, t′) G+−

ij (t, t′)

G−+
ij (t, t′) G−−

ij (t, t′)

)

. (3.47)Later we will reognize the meaning of the matrix (3.47) as a bilinear form ating on two urrents,where eah of them is a two-omponent vetor.For the onrete alulation of these funtions we will have to apply a perturbative expansion.Therefore the funtions in Eq. (3.46) will be expressed in the Dira piture whih allows for a powerseries expansion of the evolution operator (3.42) in a small parameter. To any expansion order n, we will�nd orretions to the Green's funtions of the unperturbed system G
(0)±±
ij (t, t′) where âD(t) = âH(t).These orreted Green's funtions will be denoted by G(n)±±

ij (t, t′). This perturbative proedure will bedisussed in detail in the next hapter. But we should be aware of the fat that the relations betweenthe di�erent path-ordered Green's funtions, whih will be disussed now, do not only hold for theunperturbed or the full Green's funtions, but also for any order of the later perturbative expansion[63℄.If we use the the Heaviside step funtion θ(t), the time-ordered and the anti-time-ordered Green'sfuntions de�ned in Eq. (3.46) an be expressed in terms of the other two funtions:
G++
ij (t, t′) = θ(t− t′)G−+

ij (t, t′) + θ(t′ − t)G+−
ij (t, t′), (3.48)

G−−
ij (t, t′) = θ(t− t′)G+−

ij (t, t′) + θ(t′ − t)G−+
ij (t, t′). (3.49)From this follows the important equation

G++
ij (t, t′) +G−−

ij (t, t′) = G+−
ij (t, t′) +G−+

ij (t, t′). (3.50)This means that, without making use of the Heaviside funtion, we an always eliminate one of thefour funtions in Eq. (3.46) by expressing it in terms of the others. Therefore, the matrix (3.47) anbe rotated in suh a way that one matrix element vanishes. A rotation matrix whih does this is:
Q ≡ 1√

2

(

1 1

1 −1

)

. (3.51)This is alled the Keldysh rotation whih will be very useful for all our alulations. Note that35



3 Green's Funtions Formalisms
QQ−1 = 1. Let us still see what the rotation does on a vetor:

Q

(

A

B

)

=
1√
2

(

A+B

A−B

)

. (3.52)If the upper omponent of the original vetor represents a quantity whih depends on a time lying onthe forward time path, while the lower omponent represents the same quantity at the same time buton the bakward time path, the omponents of the rotated vetor are alled lassial and quantumomponent:
Ocl(t) ≡

1√
2

[O+(t) +O−(t)] , Oq(t) ≡
1√
2

[O+(t) −O−(t)] . (3.53)There are other hoies of a onvenient basis to handle the doubled time degrees of freedom in theCTPF. A disussion of them an be found in Ref. [64℄. But let us stay in the Keldysh basis and seewhat happens to the Green's funtion matrix (3.47) when we rotate it: The non-vanishing elementsare the following ombinations:
1

2

(

G++
ij (t, t′) −G+−

ij (t, t′) +G−+
ij (t, t′) −G−−

ij (t, t′)
)

= iθ(t− t′)
〈 [

âi,H(t), â†j,H(t′)
] 〉

0
≡ GR

ij(t, t
′),

1

2

(

G++
ij (t, t′) −G−+

ij (t, t′) +G+−
ij (t, t′) −G−−

ij (t, t′)
)

= −iθ(t′ − t)
〈 [

âi,H(t), â†j,H(t′)
] 〉

0
≡ GA

ij(t, t
′),

1

2

(

G++
ij (t, t′) +G−−

ij (t, t′) +G−+
ij (t, t′) +G+−

ij (t, t′)
)

= i
〈 [

âi,H(t), â†j,H(t′)
]

+

〉

0
≡ Aij(t, t

′).(3.54)We were able to write down two elements of the rotated matrix as a Heaviside step funtion timesthe thermal average of a ommutator. The third non-vanishing element is the expetation value ofan antiommutator [·, ·]+. We �nd that these ommutator funtions GR,A are the retarded/advanedGreen's funtions [65,66℄. They appear, e.g., in linear response theory, where the in�uene of a smalltime-dependent perturbation on a system in equilibrium is given by the retarded Green's funtion GRof the unperturbed system.The rotated matrix reads
Gij(t, t

′) ≡ QG̃ij(t, t
′)Q−1 =

(

Aij(t, t
′) GR

ij(t, t
′)

GA
ij(t, t

′) 0

)

. (3.55)In the following we refer to the struture of the matrix in Eq. (3.55) as the Keldysh struture. We willlater expliitly see that the �rst hopping-orreted matrix turns out to have the same struture.3.6 Generating FuntionalsFor all formalisms presented in the above setion, there exist orresponding generating funtionals fromwhih the Green's funtions an be derived. Their de�nition is quite similar to the partition funtion
Z from Eq. (3.1) in equilibrium. In the ITF whih deals with equilibrium system it is basially thesame. The only di�erene is the inlusion of a so alled soure term in the Hamiltonian. It onsists36



3.6 Generating Funtionalsof auxiliary external �elds ji(t) and j∗i (t) oupled to a reation or annihilation operator. For bosonisystems, the ji(t)'s and j∗i (t)'s are omplex funtions alled urrents [67℄. Of ourse, the urrents in theITF depend on imaginary time instead of real time. But from now on, let's speialize on the CTPF.In the Heisenberg piture the soure term ĤQ(t) whih is oupled to the Hamiltonian Ĥ of theoriginal system expliitly readŝ
HQ,H(t) =

∑

i

[

ji(t)â
†
i,H(t) + j∗i (t)âi,H(t)

]

. (3.56)Sine the atual physial situation is desribed when the urrents are set to zero, one may ask whatit is needed for. Atually, there are two answers: First, this term allows for the onstrution ofthe Green's funtions by taking funtional derivatives with respet to the soures. We will see howthis works in a few moments. Seond we should remember from Chapter 2 that phase transitionsinvolve symmetry breaking. Sine a linear term in the Ginzburg-Landau free energy (2.29) destroys itssymmetrial behavior (see Fig. 2.3), a standard method to deal with phase transitions is to add a soalled onjugate or symmetry breaking �eld whih is linearly oupled to the variable whose expetationvalue is taken as an order �eld [67℄. So the physial reason for introduing urrents is to break thesymmetry of the Hamiltonian. Note that for an in�nitely large system it remains broken even if weset the urrents equal zero at the end.In the CTPF the generating funtional Z[j, j∗] for the Green's funtions is usually de�ned in theDira piture, sine the ontour has been de�ned via the Dira evolution operator Ŝ†Ŝ from Eq. (3.42).Then the de�nition reads
Z [j, j∗] ≡

〈

T̂c

{

Ŝ†Ŝe−
i
~

R

c
dtĤQ,D(t)

}〉

0
=

〈

T̂c

{

Ŝ†Ŝ exp
[

− i

~

∫ ∞

−∞
dt
∑

i

(

ji,+(t)â†i+,D(t) (3.57)
+ j∗i,+(t)âi+,D(t) − ji,−(t)â†i−,D(t) − j∗i,−(t)âi−,D(t)

)]}

〉

0

.As mentioned above, we an derive the ontour-ordered Green's funtions from Z[j, j∗]. To this endwe must take the funtional derivatives with respet to the urrents and set the urrents to zero:
G±···±(i1t1, · · · , i2nt2n) ∼

δ

δj∗i1,±(t1)
· · · δ

δj∗in,±(tn)

δ

δjin+1,±(tn+1)
· · · δ

δji2n,±(t2n)
Z[j, j∗]

∣

∣

∣

∣

j=j∗=0

. (3.58)To see that this is true we only have to ompare the result of the funtional derivatives with thede�nitions of the Green's funtions in the Dira piture given by Eq. (3.45). If we take are with theprefator, we an exhange the proportionality sign in Eq. (3.58) by an equality sign: Eah derivativewith respet to j+, j∗+ gives a fator −i/~, while the derivatives with respet to j−, j∗− give a fator
+i/~.With the generating funtional of the Green's funtions de�ned, we an now go a step further andonstrut the generating funtional of the onneted Green's funtions. This is ahieved by taking thelogarithm of Z[j, j∗] and multiplying this with a onvenient prefator:

F [j, j∗] ≡ −i lnZ[j, j∗]. (3.59)37



3 Green's Funtions FormalismsThis funtional is alled F as in the ITF it is equal to the free energy, when the urrents are set to zero.What is meant by onneted Green's funtions will get learer in the next setion, when we present amethod to perturbatively alulate the quantity F [j, j∗].A third generating funtional that is to be mentioned is the Legendre transform of F [j, j∗] withrespet to the urrents. This funtional is alled the e�etive ation and our �nal goal is to �nd anexpliit expression for it. The e�etive ation will no longer be a funtional of the urrents, but of itsonjugates, the order �elds. For this reason, it is an appropriate andidate for the Ginzburg-Landaudesription of the phase transition. Yet, we do not give a detailed de�nition of this funtional, as wewill extensively disuss it later.At �rst we have to �nd a way how to alulate the generating funtional Z, whih we annot doexatly, sine the Bose-Hubbard Hamiltonian from Eq. (2.1) annot be diagonalized. Thus we rely onperturbation theory in order to be able to proeed.
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4 Perturbation ExpansionSummarizing our previous onsiderations, we found three di�erent time-dependent formalisms in whihGreen's funtions or orrelation funtions are used to desribe the system. As we would like to inludeboth temperature and real-time dynamis in the desription, we onentrate on the CTPF. Withinthis formalism we would like to derive the e�etive ation as a Ginzburg-Landau funtional, but tothis end we �rst must have expressions for the funtionals Z[j, j∗] from Eq. (3.57) and F [j, j∗] fromEq. (3.59). If we knew the Green's funtions of the system, we ould expand Z[j, j∗] in terms of them.But we have no basis in whih the full Hamiltonian ĤBH is diagonal, so it's not possible to alulatethe Green's funtions straightforwardly. With the introdution of the Dira piture, however, we havealready prepared the method whih will allow for approximating them. To this end we must expandEq. (3.57) not only in the urrents, but also in the time evolution operator Ŝ†Ŝ.4.1 Speifying the PerturbationTo proeed, we now must beome more onrete and deide how to split the Bose-Hubbard Hamiltonian
ĤBH from Eq. (2.1). It is natural to take the loal interation as the solved part and the non-loalhopping as a perturbation. With the de�nition of the oupation number operator n̂i ≡ â†i âi, the loalHamiltonian Ĥ0 an be written as

Ĥ0 ≡
∑

i

Ĥi ≡
∑

i

(

U

2
n̂i (n̂i − 1) − µn̂i

)

. (4.1)This means that the Fok states |N ;n1, · · · , ni, · · ·〉 from seond quantization provide a diagonal basisfor Ĥ0, i.e. they solve the Ĥ0 eigenvalue problem. Here N represents the total partile number and nidenotes an eigenvalue for n̂i, i.e. the number of partiles on site i.Note that in our treatment, we an even generalize the loal Hamiltonian to any Hamiltonian beinga funtion f of n̂i. So we ould also write:
Ĥ0 ≡

∑

i

fi(n̂i). (4.2)Suh a generalization would be important if an external trap is onsidered. In our simple model,however, Ĥi does not depend on the site index and on eah lattie site we have:
Ĥi|N ;n1, · · · , ni, · · ·〉 = Eni

|N ;n1, · · · , ni, · · ·〉, (4.3)
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4 Perturbation Expansionwith the energy eigenvalues given by
Eni

=
U

2
ni(ni − 1) − µni. (4.4)In the ground-state, all sites are oupied by the same number of partiles. We refer to suh a statein the short-hand notation |n〉 with eigenenergy En per site.In the de�nition of Z in Eq. (3.57), a soure term is oupled to the system. Although these soureterms are loal, we annot inlude them in Ĥ0, beause they are linear in the reation or annihilationoperators, so the Fok basis doesn't diagonalize them. We therefore inlude them in the perturbation.The whole perturbative part then reads in the Dira piture:

Ĥ1(t) ≡
∑

P=±

P





∑

i

∫ ∞

−∞
dt



ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t) −
∑

j

Jij â
†
i,P(t)âj,P(t)







 . (4.5)Here and in the following the index D has been dropped as we will exlusively work within the Dirapiture. Then the evolution operator Ŝ†Ŝ is de�ned by inserting Eq. (4.5) into Eq. (3.42). With thatde�nition, we an write:
Z[j, j∗] = 〈T̂cŜ

†Ŝ〉0. (4.6)This equation formally deviates from Eq. (3.57), beause we now have inluded the soure terms intothe perturbative part.We should note that the splitting introdued in Eq. (4.5) di�ers from the ommon one in quantum�eld theory, where the non-interating partiles are taken as the solved problem and the interationas a perturbation. This will have onsequenes, sine the usually applied Wik theorem holds only forsystems where Ĥ0 is quadrati in the reation and annihilation operators â†i and âi. In the followingsetions we will see how to takle this problem, but before we should disuss the validity of our ansatz.Up to now, we have justi�ed our hoie of the perturbation by pratial reasons. But we an onlyexpet good results if the Fok states approximate well the real physial states. This should be true,as long as the o�-diagonal parts that we have thrown in the perturbation Hamiltonian Ĥ1(t) fromEq. (4.5) are small ompared with Ĥ0 from Eq. (4.1). The soure term, though at �rst only atehnial tool, will gain importane after transforming from the urrents to the order parameter inthe next hapter. As disussed in Setion 2.2, the order parameter must be a quantity whih vanishesin the normal phase, thus at the onset of super�uidity it is small. However, to be able to desribesymmetry-breaking, we will have to take into aount all orders up to the fourth one.Considering the kineti part as a perturbation seems to be more problemati, sine we want todesribe a long-range orrelation e�et. But we should note that aording to well aepted Monte-Carlo data [30℄, in a three-dimensional lattie the transition from the MI phase to the SF phase takesplae at a ritial value J/U ≈ 0.03 or even lower, depending on the value of µ/U . Thus a hopping-expansion suggests itself. We an still go one step further and onsider the saling of the Bose-HubbardHamiltonian with dimension [31,68℄. Ref. [68℄ argues that one must distinguish between non-ondensedbosons sitting on one site and being able to hop to an adjaent site, and ondensed bosons, whih are40



4.2 Dyson Seriesnot loalized anymore. For the energy to remain �nite, the hopping matrix element has to be saledwith J → J/
√
z, if there is no ondensate, while in the presene of ondensed bosons the saling

J → J/z must be applied. Here z = 2d is the number of nearest neighbors in the d-dimensional lattie.Under this saling rule, however, a hopping expansion without loops, i.e. without two simultaneoushopping proesses between adjaent sites, beomes exat in the limit z → ∞. To see that, we mustreognize that there are z possibilities for a hopping from one given site to another, thus the energyfor a single hopping proess must be multiplied with z. This anels the denominator from the saledhopping strength J/z. For a loop from one given site to another and bak, there are still only zpossibilities, but sine there are two hopping proesses, we now have z2 in the denominator. Thus for
z → ∞ the loop ontribution to the total energy vanishes.In high dimensions (like d = 3), our hoie of the perturbative part in Eq. (4.5) is thus not only apratial one, but also physially justi�ed.4.2 Dyson SeriesThe following perturbative approah is based on a Taylor expansion of the generating funtional F [j, j∗]de�ned in Eq. (3.59) with respet to the urrents and to the hopping parameter. For temporal andspatial onstant order parameters at T = 0, this has been done in Ref. [69℄. In Ref. [70℄, this proedurehas been applied within the ITF.It seems to be helpful to postpone the expansion of F [j, j∗] and �rst take a look at the expansionof Z[j, j∗]. This expansion an be done straightforwardly, but it leads, as we will see, to large andonfusing formulas. But when we understand the di�erenes between the generating funtionals Z[j, j∗]and F [j, j∗], we �nd the expansion of the latter funtional by seleting speial terms from the expansionof Z [j, j∗], whih an be done in an easy graphial way.From Eq. (4.6) we see that Z[j, j∗] is nothing else than the thermal average of the time evolutionoperator along the whole ontour, so we take a look bak to the derivation of a ompat expressionfor Û(t, t′) in Eqs. (3.16), (3.17), and (3.18). Now we an do the opposite: Having a losed formulafor the CTPF evolution operator, i.e. T̂cŜ

†Ŝ, we expand it by taking the derivatives with respet tothe urrents and the hopping parameter. In Eq. (3.58) we have already seen that the derivatives of
Z [j, j∗] with respet to the urrents, evaluated at j = j∗ = 0, are the Green's funtions (times ±i/~).So we have:

Z[j, j∗](J) =
∞
∑

m=0,m′=0

1

(m!)(m′!)

∑

i1,··· ,im+m′∈ {site indices}

∑

P1,··· ,Pm+m′=±

∫ ∞

−∞
dti1 · · ·

∫ ∞

−∞
dtim+m′

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J)ji1,P1
(ti1) · · · jim,Pm(tim)j∗im+1,Pm+1

(tim+1
) · · · j∗im+m′ ,Pm+m′

(tim+m′
) (4.7)with the expansion oe�ients

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J) ≡ (4.8)
δm+m′Z [j, j∗](J)

δji1,P1
(ti1) · · · δjim,Pm(tin)δj∗im+1,Pm+1

(tim+1
) · · · δj∗im+m′ ,Pm+m′

(tim+m′
)

∣

∣

∣

∣

j=j∗=0

=
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4 Perturbation Expansion
=

〈

T̂c

{

â†i1,P1
(ti1) · · · â†im,Pm

(tim)âim+1,Pm+1
(tim+1

) · · · âim+m′ ,Pm+m′
(tim+m′

)

× exp





i

~

∑

ij

∑

P=±

P

∫ ∞

−∞
Jij â

†
i,P(t)âj,P(t)dt





}〉

0

(− i

~
P1) · · · (−

i

~
Pm+m′).Up to now we have only expanded the soure term in the evolution operator, so we still have to performan expansion of these oe�ients with respet to J around J = 0:

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J) = (4.9)
∞
∑

n=0

1

n!

∑

k1···k2n

(

∂n

∂Jk1kn+1
· · · ∂Jknk2n

α
(m+m′)
i1,P1;··· ;im+m′ ,Pm+m′

(J)

∣

∣

∣

∣

J=0

)

Jk1kn+1
· · · Jknk2n

=
∞
∑

n=0

1

n!

∑

k1···k2n

×
∑

Pk1
···Pkn=±

∫ ∞

−∞
dtk1 · · ·

∫ ∞

−∞
dtkn

Jk1kn+1
· · · Jknk2n

(
i

~
Pk1) · · · (

i

~
Pkn

)(− i

~
P1) · · · (−

i

~
Pm+m′)

〈

T̂c

{

â†i1,Pi1
(ti1) · · · âim+m′ ,Pi

m+m′

(tim+m′
)â†k1,Pk1

(tk1)âkn+1,Pk1
(tk1) · · · â†kn,Pkn

(tkn
)âk2n,Pkn

(tkn
)
}

〉

0

.Note that the thermal averages in this expression are the unperturbed Green's funtions as the operatorsare de�ned in the Dira piture. They an be easily alulated in the Fok basis. We immediatelyreognize that all the terms in the sum vanish where the numbers of annihilation operators on eahsite does not equal the number of reation operators. This automatially implies m = m′ and restritsthe sum over the originally 2m + 2n site indies in eah term to a sum over only m + n indies, e.g.those belonging to reation operators, plus all the permutations that an be done to the other m+ nindies. We �nally get
Z[j, j∗](J) =

∞
∑

m,n=0

1

(m!)2n!

∑

k1···kn,i1···im

∑

{kn+1···k2n,im+1···i2m}∈{k1···kn,i1···im}

∑

Pk1
···Pkn ,Pi1

···Pi2m
=±

∫ ∞

−∞
dti1 · · ·

∫ ∞

−∞
dt2n

∫ ∞

−∞
dtk1 · · ·

∫ ∞

−∞
dtkm

(
i

~
Pk1) · · · (

i

~
Pkn

)(− i

~
Pi1) · · · (−

i

~
Pi2m

)

×
〈

T̂c

{

â†i1,Pi1
(ti1) · · · âi2m,Pi2m

(ti2m
)â†k1,Pk1

(tk1)âkn+1,Pk1
(tk1) · · · â†kn,Pkn

(tkn
)âk2n,Pkn

(tkn
)
}

〉

0

× ji1,Pi1
(ti1) · · · jim,Pim

(tim)j∗im+1,Pim+1
(tim+1

) · · · j∗i2m,Pi2m
(ti2m

)Jk1kn+1
· · · Jknk2n

. (4.10)As this formula looks very onfusing, it would be nie to �nd diagrammati rules instead. The usualway to do this is to apply Wik's theorem for a deomposition of the Green's funtions. But as alreadymentioned above, the requirements of this theorem are not omplied. So another tehnique is neessaryin order to treat the problem diagrammatially. With the help of the linked-luster theorem, we anredue the number of terms to only those made up of onneted Green's funtions or umulants [67,71℄.It is possible to deompose them into loal umulants whih was done some time ago for the Fermi-Hubbard model [72℄ and reently adopted to the Bose-Hubbard model [73℄. We will see how this worksin the following setions.
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4.3 Linked-Cluster Theorem4.3 Linked-Cluster TheoremThe umulant deomposition is based on the idea to expand F [j, j∗] rather than Z[j, j∗]. As our �nalgoal will be the derivation of the e�etive ation, we don't even need Z[j, j∗]. The big advantage thatwe have when we expand F [j, j∗], is the fat that the linked-luster theorem an be applied [67℄.To understand the meaning of this theorem, �rst a de�nition of what a luster is seems advisable:Assoiated with a luster C is a luster Hamiltonian ĤC whih onsists of some parts of the totalHamiltonian Ĥ = Ĥ0 + Ĥ1. All terms in the perturbative expansion of a physial quantity O whihare given only by this luster Hamiltonian build a luster C. Eah luster ontributes a unique weight
W (C) to the expansion of O.Now we all a luster �linked�, if there are no disjoint hoppings and if all soure terms are onnetedby hopping terms. On the other hand, a disonneted luster is a luster that an be written asthe disjoint union of nonempty sub-lusters, e.g. A and B with the luster Hamiltonians ĤA and
ĤB, respetively. Denoting the Hilbert spaes of these Hamiltonian by εA and εB, C ≡ A

⋃

B is adisonneted luster if there are at least two nonempty sub-lusters with εA⋂ εB = ∅.Let's be more onrete: In our ase the Hamiltonian ontains sums over all site indies. If we takeonly parts of these sums, e.g. if we restrit the Hamiltonian to only a few site indies and makethe same expansion as done before in Eq. (4.10) with the whole Hamiltonian, then we get a lusterontribution to Z[j, j∗]. If we take only one single site i, we get a luster of urrents �owing in and outof site i. It is, per de�nition, linked. If we add a next neighbor site j to the expansion, the expansionwould inlude the same terms as before, with urrents on one site, but also terms with urrents onboth sites i and j. These sub-lusters an appear either aompanied by (at least) a hopping betweenboth sites, whih means they are linked, or without a hopping, whih means they are unlinked.The linked-luster theorem now states that beause of the uniqueness of the weights W (C) and theadditivity property of extensive quantities the weights of disonneted lusters in the expansion ofan extensive quantity have to be zero [71℄. From thermodynamis we know that the free energy isextensive (beause of the logarithm) while the partition funtion is not (beause of the exponential).This holds as well in our ase with the generalization of those thermodynamial quantities to generatingfuntionals, beause their mathematial struture is the same.Therefore we an, with the help of this statement, expand the free-energy-like funtional F [j, j∗] ≡
−i lnZ[j, j∗] by taking the expansion of Z[j, j∗] from Eq. (4.10) and sorting out unlinked terms. Inthe remaining terms we have to substitute the Green's funtion by the so alled onneted Green'sfuntions or umulants. We will see how to do this in the next setion.
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4 Perturbation Expansion4.4 Cumulant DeompositionTo see the relation between the onneted Green's funtions and the Green's funtions, we �rst onsidera system without hopping. In this ase, we �nd out that lnZ[j, j∗]|J=0 is a sum of loal quantities:
− i lnZ[j, j∗]

∣

∣

∣

J=0
= −i ln

〈

T̂c exp

{

−i
∑

P=±

P

∫ ∞

−∞
dt
∑

i

[

ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t)
]

}〉

0

= −i
∑

i

ln

〈

T̂c exp

{

−i
∑

P=±

P

∫ ∞

−∞
dt
[

ji,P(t)â†i,P(t) + j∗i,P(t)âi,P(t)
]

}〉

0

. (4.11)From this we an diretly see what the linked-luster theorem states: The expansion of this funtionalonsists only of linked lusters, whih in this ase are loal quantities. Funtional derivatives withrespet to urrents on di�erent sites vanish.The onneted Green's funtions making up the expansion of F [j, j∗]|J=0 are related to the Green'sfuntions by a deomposition formula that an easily be derived by taking the funtional derivativesof Z[j, j∗]|J=0 and omparing it with the same derivatives of lnZ[j, j∗]|J=0. One will �nd that aGreen's funtion of n variables (or more aurately: sets of variables {P, t, i}) deomposes into theorresponding umulant with the same n variables plus all possible produts of lower umulants havingaltogether the same n variables again.As we have set the hopping to zero, the unperturbed umulants denoted by Ci an be expressedin terms of the unperturbed Green's funtions G(0). Beause of the U(1)-symmetry, these vanish forunequal numbers of reation and annihilation operators on eah site whih redues the number of termsin the deomposition. For the 2-point funtions, we have for example:
CP1P2

i (t1, t2) = δijG
P1P2(0)
ij (t1, t2). (4.12)Apart from this, in the following we will need only one more deomposition:

CP1P2P3P4

i (t1, t2; t3, t4) =δijδjkδklG
P1P2P3P4(0)
ijkl (t1, t2; t3, t4)

− iCP1P3

i (t1, t3)C
P2P4

i (t2, t4) − iCP1P4

i (t1, t4)C
P2P3

i (t2, t3), (4.13)where GP1P2P3P4,(0)
ijkl (t1, t2; t3, t4) was de�ned in Eq. (3.45). Note the prefator in+m−1 there whih wasinluded in the de�nitions (4.12) and (4.13). This explains the appearane of the fator i in front ofthe deompositions in Eq. (4.13).4.5 Diagrammati RulesNow the expansion of the system an easily be depited diagrammatially. To this end we make thefollowing de�nitions:

• A umulant CP1···P2n

i (t1, · · · , t2n) is represented by a blak irle with n entering legs and n
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4.5 Diagrammati Rulesexiting legs. For example we have for n = 1:
t2P2 t1P1

i
= CP1P2

i (t1, t2). (4.14)
• The urrents ji,P2

(t2) or j∗i,P1
(t1) are represented by blak squares with one leg, entering orexiting, respetively. As we an see in Eq. (4.10), eah derivative with respet to a urrent onthe bakward path brings down a minus sign, so we inlude this sign into the de�nition of thegraph:

it2P2
= P2ji,P2

(t2) , it1P1
= P1j

∗
i,P1

(t1). (4.15)
• Multiplying a umulant with urrents, integrating over the ontinuous variables, i.e. the time,and summing over disrete variables, i.e. site and path indies, is represented by ombining theorresponding graphs. With this we obtain �losed� graphs with no indies, as for instane:

=
∑

ij

∑

P1,P2

P1P2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 δijC

P1P2

i (t1, t2)j
∗
i,P1

(t1)jj,P2
(t2). (4.16)This diagram makes up the expansion up to seond order in the urrents of a system withouthopping.When we now add a hopping term to the Hamiltonian and expand F [j, j∗](J) only in the urrents, weget terms whih are made up of perturbed umulants, just like the expansion of Z[j, j∗](J) only in theurrents in Eq. (4.7), was made up of perturbed Green's funtions. These perturbed umulants arenot neessarily loal and a deomposition an involve averages like 〈âH(t)〉0 (whih obviously are zerowithout hopping).However, we still have to expand the time-evolution operator with respet to the hopping and afterthat, only the unperturbed umulants will remain. These are loal, but they an be linked to eahother via a hopping.If we want to see this expliitly, we an go bak to Eq. (4.7) and replae the Green's funtionsthere by the onneted Green's funtions. They are omposed by various Green's funtions. Next weexpand the hopping. Then we get an expansion in terms of unperturbed Green's funtion. We re-writethem in terms of unperturbed umulants, and �nally �nd in eah order, what we already know fromthe linked-luster theorem without any omputation, namely that the weight of all the terms where atleast one umulant stays unlinked to the others, is zero.

• In our diagrammati approah, we therefore have to add the possibility of linking umulantsby a hopping. This is done by an internal line between two umulants. The respetive timesassoiated with the hoppings are always integrated and the path indies are always summed.45



4 Perturbation ExpansionAssoiated with the path index is a prefator ± of the hopping term. For instane we obtain:
t2P2 t1P1

j i
= J̃ij

∑

P

P

∫ ∞

−∞
dt CP1P

i (t1, t)C
PP2

j (t, t2) (4.17)Here we have de�ned the dimensionless matrix element J̃ij ≡ Jij/J where J is the hoppingstrength. This will allow us a better bookkeeping at a later stage.
• For the whole expansion of F [j, j∗], we need the sum of all topologially nonequivalent onneteddiagrams. Eah diagram must be losed. We still have to ompare the diagram with Eq. (4.10)in order to get the right number of i and ~ prefators. Finally, another prefator alled symmetryfator has to be taken into aount.The last point requires a further disussion: Let's pik one onneted diagram. If we interhange twointernal lines in the diagram, we might get either the same diagram representing the same deomposi-tion or a similar diagram whih, however, represents another term in the deomposition. The same istrue when we interhange two entering or two exiting external lines or two site indies. If we assumethat all these permutations lead to di�erent terms, the prefator 1

(n!)(m!)2 in the expansion (4.10) wouldbe aneled in the diagrammati sheme. In truth we now have overounted all diagrams whih appearrepeatedly in the deomposition. To ompensate this, we have to divide through the symmetry fatorwhih is the number of times that one permutation of internal lines, entering or exiting lines or vertiesgives the same diagram.If there are, e.g., M external lines entering (or exiting) one vertex, any of the M ! permutations ofthose lines will lead to the same diagram. This is also true for M internal lines in the same diretion.The third symmetry to be onsidered is the symmetry between equivalent verties. Equivalent meansthat the number of any type of lines (entering, exiting, internal, external) is the same at these verties.ForM verties with suh a symmetry we would get a fatorM ! as well. If we have any doubts with thesymmetry fator, we an hek it by writing down and ounting all permutations in the deomposition.4.6 Expansion in the MI PhaseAs the number of n-point funtions in the CTPF inreases exponentially with every order, we willbegin our problem slowly: We know that there is a phase transition, so the behavior of the gas shouldstrongly depend on whether we are in the MI or the SF phase. Remember that in the latter phase,the U(1)-symmetry is broken and even in equilibrium the order �elds di�er from zero. For that reasonwe have to take into aount terms of at least fourth order in the order parameter when we want todeal with the super�uid phase. The MI system, however, an be well desribed only by the knowledgeof the 2-point funtion. Therefore, we will restrit ourselves at �rst to the MI ase. When we haveseen how the formalism works in this relatively easy ase, it will be not too di�ult to extend ouronsiderations afterwards to the super�uid ase.This means, we now have to expand F [j, j∗](J) up to seond order in the urrents and to �rst order
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4.6 Expansion in the MI Phasein the hopping. We therefore denote our result F (2,1). It reads
F (2,1)[j, j∗] =

1

~2

{

+
J

~

}

. (4.18)Note that the prefator −i from the de�nition of F in Eq. (3.59) and the i's oming from the expansionin Eq. (4.10) are killed by the prefator in the de�nition of the Green's funtions in Eq. (3.45).We now have put a lot of work into �nding an easy way of obtaining and writing down this expansionin a diagrammati way. So it may seem strange to go bak from these nie graphs to big formulas, butwe still have to see how the Legendre transformation of this funtional works in detail, so we are notyet at the end.As we don't have to distinguish between the onneted Green's funtions and the Green's funtionshere due to GP1P2(0)
ij (t1, t2) = δijG

P1P2(0)
ij (t1, t2) = CP1P2

i (t1, t2), the kernel in Eq. (4.18) delivers us aformula for the �rst hopping-orreted ontour-ordered Green's funtions:
G

P1P2(1)
ij (t1, t2) ≡ G

P1P2(0)
ij (t1, t2) +

Jij
~

∑

P

P

∫ ∞

−∞
dt G

P1P(0)
ii (t1, t)G

PP2(0)
jj (t, t2). (4.19)We an interpret these Green's funtions as the elements of a 2x2 matrix G̃

(1)
ij (t1, t2) like the onede�ned in Eq. (3.47). It ats on the urrents whih are now written as 2-omponent vetors. Theorresponding signs P1,2 an be inluded in eah vetor by putting a minus sign in front of the loweromponent. We an then write:

F (2,1)[j, j∗] =

1

~2

∑
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−∞
dt1
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−∞
dt2
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j∗+,i(t1),−j∗−,i(t1)
)

(

G
++(1)
ij (t1, t2) G

+−(1)
ij (t1, t2)

G
−+(1)
ij (t1, t2) G

−−(1)
ij (t1, t2)

)(

j+,j(t2)

−j−,j(t2)

)}

≡ 1

~2

∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j̃

∗
i (t1)G̃

(1)
ij (t1, t2)j̃j(t2) (4.20)with the de�nition of the vetor urrents

j̃i(t) ≡
(

j+,i(t)

−j−,i(t)

)

, j̃
∗
i (t) ≡

(

j∗i,+(t),−j∗i,−(t)
)

. (4.21)Now we perform the Keldysh rotation (3.51), i.e. we insert 1 = QQ−1 in front and behind of thematrix. We then �nd the rotated urrents Qj and j∗Q−1, aording to (3.53):
ji(t) ≡ Qj̃i(t) =

(

jq,i(t)

jcl,i(t)

)

=
1√
2

(

j+,i(t) − j−,i(t)

j+,i(t) + j−,i(t)

)

, (4.22)
j∗i (t) ≡ j̃

∗
i (t)Q

−1 =
(

j∗q,i(t), j
∗
cl,i(t)

)

=
1√
2

(

j∗+,i(t) − j∗−,i(t), j
∗
+,i(t) + j∗−,i(t)

)

. (4.23)The question now is whether the rotated matrix QG
(1)
ij Q

−1 really has the desired Keldysh struture47



4 Perturbation Expansion(3.55). Obviously, this is true for vanishing hopping Jij = 0:
F (2,1)[j, j∗]

∣

∣

∣

J=0
=
∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

(

j∗q,i(t1), j
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)

(

A
(0)
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R(0)
ij (t1, t2)

G
A(0)
ij , (t1, t2) 0

)(

jq,j(t2)

jcl,j(t2)

)

=
∑

ij
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−∞
dt1

∫ ∞

−∞
dt2 j∗i (t1)G

(0)
ij (t1, t2)jj(t2) (4.24)Let us give, at this plae, the expliit expressions for those unperturbed matrix elements whih an beeasily alulated from the de�nition Eq. (3.54) as we know the unperturbed eigenstates |ni〉, given bythe eigenvalue problem Ĥi,0|ni〉 ≡ En|ni〉:

G
R(0)
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∞
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e−βEn

Z(0)
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(n+ 1)e
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, (4.25)
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Z(0)

[

(n+ 1)e
i
~
(En+1−En)(t2−t1) − ne

i
~
(En−En−1)(t2−t1)

]

, (4.26)
A

(0)
ij (t1, t2) = iδij
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e−βEn

Z(0)

[

ne
i
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(En−En−1)(t2−t1) + (n + 1)e

i
~
(En+1−En)(t2−t1)

]

. (4.27)Not surprisingly, the expressions in Eqs. (4.25)�(4.27) only depend on the time di�erene t1 − t2. Thisinvariane under time translations is diretly related to the onservation law of energy by the Noethertheorem [74℄. This general feature of time-independent Hamiltonians always allows us to eliminate onetime argument of the Green's funtions, e.g.:
G(t1, t2) = G(t1 − t2, 0). (4.28)But now let's go bak to our atual problem and look at the Keldysh rotation of the perturbedmatrix in Eq. (4.20). It reads expliitly:
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−−(1)
ij

)

. (4.29)The next step is straightforward, but a little bit lengthy: We have to insert the expression (4.19) intoEq. (4.29). The unperturbed part of eah matrix element an immediately be separated into a matrix
G

(0)
ij (t1, t2). The perturbed part of eah Green's funtion onsists of a sum of two produts

∑

P

P G
P1P(0)
ii (t1, t)G

PP2(0)
jj (t, t2), (4.30)so in eah matrix element we have in total 8 terms. But we an fatorize them and then exploit theidentity in Eq. (3.50) whih then allows for a further fatorization. With this we �nd, indeed, thevanishing of the lower right omponent in Eq. (4.29). Furthermore, with Eq. (3.54) we an expresseah o�-diagonal element in terms of the orresponding o�-diagonal element of the unperturbed matrix
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4.6 Expansion in the MI Phaseand obtain:
G

R(1)
ij (t1, t2) = G

R(0)
ij (t1, t2) +

Jij
~
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−∞
dt G

R(0)
ii (t1, t)G

R(0)
jj (t, t2), (4.31)

G
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ij (t1, t2) = G
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ij (t1, t2) +

Jij
~
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−∞
dt G

A(0)
ii (t1, t)G

A(0)
jj (t, t2). (4.32)This very nie sheme, whih holds for the advaned and retarded Green's funtions, does not workwith the upper left element in Eq. (4.29). As we will later see, this is not a big problem, as this matrixelement will not enter our equations of motion. Nevertheless, for the sake of ompleteness, we give theresult here:
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)

. (4.33)Now we would like to write down the perturbed Green's funtion matrix (4.29) as a matrix whihis built up of the unperturbed matries. We ould expet that the hopping orretion is given asthe produt of two unperturbed matries. But this turns out to be false. We �nd that the elements(4.31)�(4.33) are produed, when we interpose the Pauli matrix σ1 ≡
(

0 1

1 0

) between the Green'sfuntions [59℄, i.e.:
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jj (t, t2). (4.34)Finally, we an bring the whole expansion (4.18) to the following form:
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5 E�etive Ation in the MI PhaseIn the previous setion we expanded the generating funtional of onneted Green's funtions F [j, j∗]up to seond order in the urrents j and j∗. These have only been a tehnial tool to break the U(1)-symmetry of the system. In the real physial system, however, they are zero. Therefore, we wouldlike to replae them by a quantity being manifest in nature. As already mentioned, seond-orderphase transitions an be understood with the help of an order �eld. In the ase of the transition fromthe MI to the SF phase, the ondensate amplitude ~Ψi,±(t) = 〈âi,±(t)〉0 and its omplex onjugate
~Ψ∗

i,±(t) = 〈â†i,±(t)〉0 are a good hoie for an order �eld. Let us now see how we an �nd a funtionalof Ψ and Ψ∗, starting from F [j, j∗].5.1 Legendre TransformationThe way to perform suh a variable hange, is the Legendre transformation. In this setion, we wantto show the general formalism for transforming the free energy into the e�etive ation. As a result, wewill see that we have to invert the Green's funtions that we have found in the expansion of F [j, j∗] inEq. (4.18). In our speial ase of a hopping expansion, the inversion sheme that we will apply for thehopping-perturbed funtion is the �heart� of the formalism, as it impliitly inludes a resummation ofthe hopping diagrams. We will denote an own setion to see how this works in detail. In the presentsetion, however, we do not yet onsider the hopping expansion, thus we are not restrited to a ertainorder in the hopping. Instead we onentrate on the expansion in the order �elds, whih are taken intoaount up to the seond order.From the de�nition of F [j, j∗] in Eqs. (3.57) and (3.59) we know that
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δj̃
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=
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~
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)

, (5.1)where the funtional derivative is de�ned aording to Eq. (4.21) as
δ

δj̃
∗
i (t)

≡





δ
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 . (5.2)We an exploit relation (5.1) to de�ne the order parameter.
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≡ δF [j̃, j̃
∗
]

δj̃
∗
i (t)

. (5.3)Note that from the de�nition (5.2), the bakward omponent of Ψ̃ does not have the usual minus51



5 E�etive Ation in the MI Phasesign. The relation (5.3) means that j̃ and Ψ̃ are onjugate variables whih motivates us to introduea Legendre transformation. This will lead from the generating funtional of the onneted Green'sfuntions to the generating funtional of the one-partile irreduible Green's funtions, i.e. the e�etiveation Γ[Ψ̃, Ψ̃
∗
]. The transformation is given as usual by
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∗
](t)
)

. (5.4)To determine this quantity expliitly, we must express the urrents j̃ and j̃
∗ in terms of the order �elds

Ψ̃ and Ψ̃
∗. We an do this by performing the funtional derivative (5.3) in (4.35),

Ψ̃i(t1) =
1

~2

∑

j

∫ ∞

−∞
dt2 G̃ij(t1, t2)j̃j(t2), (5.5)with G̃ij(t1, t2) being impliitly de�ned in Eq. (4.20). A subsequent inversion yields:

j̃i(t1) = ~
2
∑

j

∫ ∞

−∞
dt2 G̃

−1
ij (t1, t2)Ψ̃j(t2). (5.6)Putting this into Eq. (5.4) gives us the e�etive ation, with an index (2,m) to stress that it omesfrom a seond-order expansion in the �elds, while the hopping order is (still) not spei�ed:

Γ(2,m)[Ψ̃, Ψ̃
∗
] = −~

2
∑

ij

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ψ̃

∗
i (t1)G̃

−1
ij (t1, t2)Ψ̃j(t2). (5.7)It is onvenient to rotate the expressions on the right side of Eq. (5.4), leaving us with Γ as a funtionalof the rotated order �elds Ψi(t). With the de�nition (5.3), we �nd

Ψi(t) = QΨ̃i(t) =

(

Ψi,cl(t)

Ψi,q(t)

)

, Ψ
∗
i (t) = Ψ̃

∗
i (t)Q

−1 =
(

Ψ∗
i,cl(t),Ψ

∗
i,q(t)

)

. (5.8)Note that the lassial omponent is the one on top/on the left, whih di�ers from the de�nition of
j, j∗ in Eqs. (4.22) and (4.23). For the rotation of the matrix, we note

QG̃
−1
Q−1 = Q−1G̃

−1
Q = (Q−1G̃Q)−1 = G−1. (5.9)So we have to invert the matrix given in Eq. (4.35) whih has the Keldysh struture from Eq. (3.55).This leads to:

G−1
ij (t1, t2) =





0
[

GA
ij(t1, t2)

]−1

[

GR
ij(t1, t2)

]−1
Ãij(t1, t2)



 . (5.10)In this matrix, the inverse funtions of the advaned and the retarded Green's funtions appear. The
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5.2 Frequeny Spae Green's Funtionsentry in the third non-vanishing omponent is given by
Ãij(t1, t2) = −

∑

k,l

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
[

GR
ik(t1, t)

]−1
Akl(t, t

′)
[

GA
lj(t

′, t2)
]−1

. (5.11)The �nal result for the e�etive ation in Keldysh spae reads
Γ(2,m) [Ψ,Ψ∗] = −~

2
∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ψ

∗
i (t1)





0
[

GA
ij(t1, t2)

]−1

[

GR
ij(t1, t2)

]−1
Ãij(t1, t2)



Ψj(t2).(5.12)We note that this is always zero if Ψq = Ψ∗
q = 0, i.e. when the value of Ψ and Ψ∗ do not dependwhether time evolves forward or bakward. Thus, we have an important normalization property of thee�etive ation [75℄:

Γ
[

Ψcl,Ψ
∗
cl,Ψq = 0,Ψ∗

q = 0
]

= 0. (5.13)Now, the atual problem is the alulation of the matrix elements in Eq. (5.10). For the unper-turbed system, this is a straightforward task. We only have to �nd the inverse of the unperturbedretarded/advaned Green's funtions, whih will be done in the next setion. Afterwards, we will dealwith a hopping-perturbed system. As already mentioned, the inversion there will work di�erently.5.2 Frequeny Spae Green's FuntionsTo �nd the inverse funtions, it is onvenient to perform the Fourier transformation
f(ω) =

∫ ∞

−∞
dt f(t)eiωt (5.14)for quantities related to annihilation operators and

f∗(ω) =

∫ ∞

−∞
dt f∗(t)e−iωt (5.15)for its onjugates. The inverse relations read orrespondingly

f(t) =
1

2π

∫ ∞

−∞
dω f(ω)e−iωt , f∗(t) =

1

2π

∫ ∞

−∞
dω f∗(ω)eiωt. (5.16)In partiular, this transformation will turn out to be useful for a later resummation. We will see thisat the end of this setion when we take a look at the hopping-orreted Green's funtion. But let'sbegin with the inversion of the unperturbed retarded funtion de�ned in Eq. (4.25). To �nd its Fouriertransform G

R(0)
ij (ω1, ω2), we use the integral representation of the step funtion:

θ(t1 − t2) = lim
ǫ→0+

∫ ∞

−∞

i/2π

x+ iǫ
e−i(t1−t2)xdx. (5.17)
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5 E�etive Ation in the MI PhaseIn the following we will suppress the limit-symbol for eonomi reasons. The Dira δ-funtion has thefollowing Fourier representation
δ(ω1 − ω2) =

1

2π

∫ ∞

−∞
ei(ω1−ω2)t dt. (5.18)Performing the substitution t ≡ t1 − t2, we have

G
R(0)
ij (ω1, ω2) = i

δij

Z(0)

∞
∑

n=0

e−βEn

∫ ∞

−∞
dt1 ei(ω1−ω2)t1

∫ ∞

−∞
dt eitω2

∫ ∞

−∞
dx

i/2π

x+ iǫ
e−itx

×
[

(n+ 1)e−
i
~
(En+1−En)t − n e−

i
~
(En−En−1)t

]

=
−δij
Z(0)

∞
∑

n=0

e−βEn δ(ω2 − ω1)

∫ ∞

−∞

dx

x+ iǫ

∫ ∞

−∞
dt

×
[

(n+ 1)e−
i
~
(En+1−En−~ω2+~x)t − ne−

i
~
(En−En−1−~ω2+~x)t

]

=
−2πδij

Z(0)

∞
∑

n=0

e−βEnδ(ω2 − ω1)

×
∫ ∞

−∞
dx



(n + 1)
δ
(

En+1−En

~
− ω2 + x

)

x+ iǫ
− n

δ
(

En−En−1

~
− ω2 + x

)

x+ iǫ





= 2πδijδ(ω1 − ω2)
1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω2 − iǫ

− n
En−En−1

~
− ω2 − iǫ

)

. (5.19)For pratial reasons we de�ne the funtion
gR(ω) ≡ 1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω − iǫ

− n
En−En−1

~
− ω − iǫ

)

. (5.20)With this we an write ompatly:
G

R(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)gR(ω1). (5.21)We see that the unperturbed funtion is diagonal in its spatial as well as in its temporal variables. Sothe inverse of it reads

[

G
R(0)
ij (ω1, ω2)

]−1
=

1

2π
δijδ(ω1 − ω2)

1

gR(ω1)
. (5.22)Repeating the whole proedure for the advaned Green's funtion shows that it is nothing but theomplex onjugate of (5.22):

G
A(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)gA(ω1). (5.23)with

gA(ω) ≡ 1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1
En+1−En

~
− ω + iǫ

− n
En−En−1

~
− ω + iǫ

)

. (5.24)
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5.2 Frequeny Spae Green's FuntionsAs in the ase of the retarded funtion, this representation in Fourier spae allows for an immediateinversion. For ompleteness, we still give the Fourier representation of the third non-vanishing matrixelement Aij :
Aij(ω1, ω2) = 2πδijδ(ω1 − ω2)

∞
∑

n=0

e−βEn [nδ(ω1 − ωn) + (n+ 1)δ(ω1 − ωn+1)]

≡ 2πδijδ(ω1 − ω2)a(ω1), (5.25)where we have de�ned
ωn ≡ En − En−1

~
. (5.26)In Ref. [66℄ it is shown by a spetral analysis of the Green's funtions that Aij(ω1, ω2) equals thedissipative part of the time-ordered Green's funtion. The whole Green's funtion matrix reads:

G
(0)
ij (ω1, ω2) = 2πδijδ(ω1 − ω2)

(

a(ω1) gR(ω1)

gA(ω1) 0

)

≡ 2πδ(ω1 − ω2)G
(0)
ij (ω1). (5.27)We have already found the form of the inverse matrix funtion in Eq. (5.10). To write it downexpliitly, we still have to take a look at the omponent Ãij . It is given in time spae by Eq. (5.11) asa double temporal integral. In Fourier spae, these integrals beome trivial beause of the frequenyonservation. Thus we �nd

Ãij(ω1, ω2) = − 1

2π
δ(ω1 − ω2)δij

a(ω1)

gR(ω1)gA(ω1)
≡ − 1

2π
δ(ω1 − ω2)δij ã(ω1). (5.28)This allows for the following writing

[

G
(0)
ij (ω1, ω2)

]−1
=

1

2π
δijδ(ω1 − ω2)

(

0 1/gA(ω1)

1/gR(ω1) ã(ω1)

)

≡ 1

2π
δ(ω1 − ω2)

[

G
(0)
ij (ω1)

]−1
.(5.29)Let us still take a look at the Fourier transform of the �rst hopping-orreted Green's funtion fromEq. (4.34), and the free energy from Eq. (4.35):

~
2F [j, j∗] =

∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 j∗i (t1)G

(1)
ij (t1, t2)jj(t2) (5.30)

=
∑

i,j

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

{

j∗i (t1)G
(0)
ij (t1, t2)jj(t2) +

Jij
~

∫ ∞

−∞
dt j∗i (t1)G

(0)
ii (t1, t)σ

1G
(0)
jj (t, t2)jj(t2)

}

.Using the Fourier representation of all quantities in Eq. (5.30) and doing the time integrations weobtain δ-funtions, whih an be integrated out. This leaves us with the following expression:
∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

{

j∗i (ω1)G
(0)
ij (ω1, ω2)jj(ω2) +

∫ ∞

−∞

dω

2π

Jij
~

j∗i (ω2)G
(0)
ii (ω1, ω)σ1G

(0)
jj (ω, ω2)jj(ω2)

}

.(5.31)55



5 E�etive Ation in the MI PhaseInserting Eq. (5.27) in Eq. (5.31), two frequeny integrations beome trivial. We get
~

2F [j, j∗] =

∫ ∞

−∞

dω1

2π

{

j∗i (ω1)G
(0)
ij (ω1)jj(ω1) +

Jij
~

j∗i (ω2)G
(0)
ii (ω1)σ

1G
(0)
jj (ω1)jj(ω1)

}

. (5.32)This shows that we don't have to integrate over inner frequeny variables in Fourier spae. Instead,the hopping links two umulants via a simple multipliation. The whole hopping-orreted Green'sfuntion an be diretly taken from Eq. (5.32):
G

(1)
ij (ω1) = G

(0)
ij (ω1) +

Jij
~

G
(0)
ii (ω1)σ

1G
(0)
jj (ω1), (5.33)or, if we want to keep both frequeny variables:

G
(1)
ij (ω1, ω2) = G

(0)
ij (ω1, ω2) +

∫ ∞

−∞

dω

2π

Jij
~

G
(0)
ii (ω1, ω)σ1G

(0)
jj (ω, ω2)

= 2πδ(ω1 − ω2)

[

G
(0)
ij (ω1) +

Jij
~

G
(0)
ii (ω1)σ

1G
(0)
jj (ω1)

]

. (5.34)5.3 ResummationWe now want to onsider expliitly a system with hopping. What is di�erent then? The matrix in Eq.(5.12) still has the same form, but until now we have only found how to invert the unperturbed Green'sfuntions. The perturbed matrix G
(1)
ij (t1, t2), however, is built up of the perturbed funtions from Eqs.(4.31)�(4.33) whih are not loal. In the temporal variables, we proeed as before by diagonalizingthese funtions via a transformation into frequeny spae. For the spatial variables, however, we do nottry an exat diagonalization, although this would be possible for a homogeneous system by performinganother Fourier transformation into k-spae. But as we are doing a hopping expansion, we have asystematial reason to demand for the inverted Green's funtion that it has the form of a power seriesin the hopping as well. This motivates us to perform the inversion iteratively. We start with theequation
∑

k

G
(1)
ik (ω)

[

G
(1)
kj (ω)

]−1
= δij . (5.35)Now, the iterative proedure works the following way: Instead of [G(1)

kj (ω)
]−1, we plug into thisequation the zeroth-order solution, i.e. [G(0)

kj (ω)
]−1 from Eq. (5.29). The expression for G

(1)
ik (ω) isgiven by Eq. (5.33). Then left side of Eq. (5.35) reads

δij +
Jij
~

G
(0)
ii (ω)σ1. (5.36)We see that the seond term, whih is linear in Jij , di�ers from the right side of Eq. (5.35). Wesubtrat this term from [

G
(0)
kj (ω)

]−1, whih gives us a better approximation of [G(1)
kj (ω)

]−1. Let ustherefore de�ne:
[

G
(1)
ij (ω)

]−1
≡
[

G
(0)
ij (ω)

]−1
(

δij −
Jij
~

G
(0)
ij (ω)σ1

)

. (5.37)
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5.3 ResummationBy re-inserting Eq. (5.37) in Eq. (5.35), we �nd that now the right side deviates from left side only byterms whih are of seond-order in J . To be onsistent with our hopping expansion, these terms mustbe negleted. Although Eq. (5.37) is not the mathematially the inverse of Eq. (5.33), in a physialsense it is, sine Eq. (5.33) approximates the full Green's funtion G and Eq. (5.37) approximates theinverse of it G−1.From Eq. (5.37) we an diretly read o� the Green's funtion of two frequeny variables. We mustonly note the prefator 1/2π from Eq. (5.29):
[

G
(1)
ij (ω1, ω2)

]−1
=
δ(ω1 − ω2)

2π

[

G
(0)
ij (ω1)

]−1
(

δij −
Jij
~

G
(0)
ij (ω1)σ

1

)

=
[

G
(0)
ij (ω1, ω2)

]−1
(

δij −
Jij
2π~

G
(0)
ij (ω1, ω2)σ

1

)

. (5.38)The seond line of this equation shows us that the hopping has to be divided by 2π, when we expressthe inverse Green's funtion in terms of Green's funtions of two frequeny variables. The retardedand advaned omponents of this matrix read:
[

G
R/A(1)
ij (ω1, ω2)

]−1
= δ(ω1 − ω2)

1

2πgR/A(ω1)

{

δij − gR/A(ω1)
Jij
~

}

. (5.39)Now we an get the expliit expression for the hopping-expanded e�etive ation. We must insertEq. (5.38) into the Fourier transform of Eq. (5.12) and �nd
Γ(2,1) [Ψ,Ψ∗] = −~

2
∑

i,j

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
Ψ

∗
i (ω1)

[

G
(1)
ij (ω1, ω2)

]−1
Ψj(ω2) (5.40)

= − ~
2

(2π)2

∑

i,j

∫ ∞

−∞

dω1

2π
Ψ

∗
i (ω1)

{

[

G
(0)
ij (ω1)

]−1
− Jij

~
σ1

}

Ψj(ω1).The advantage of the inversion sheme applied above is the fat that a resummation is automatiallymade. Let us sketh what is meant by this by looking at the exat re-inversion of Eq. (5.37). To dothis we must de�ne the Fourier transformation into k-spae:
fk =

∑

i

fie
−ik·ri , f∗k =

∑

i

f∗i e
ik·ri (5.41)

fi =
1

Ns

∑

k

fkeik·ri , f∗i =
1

Ns

∑

k

f∗ke−ik·ri . (5.42)Here both the index i and the oordinate ri denote the position at a lattie site i, the total number ofsites is denoted by Ns.Assuming spatial homogeneity, we have Jij → Jk,k′ = Jkδk,k′ . With the δ-funtion in the frequeniesand the Kroneker-δ in the wave vetors, we an de�ne the Green's funtion as a funtion of only onefrequeny and one wave vetor:
[

G(1)(k, ω)
]−1

=
[

G(0)(k, ω)
]−1

{

1 − Jk

~
G(0)(k, ω)σ1

}

, (5.43)
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5 E�etive Ation in the MI Phasewhih is immediately inverted:
G(1)(k, ω) =

{

1 − Jk

~
G(0)(k, ω)σ1

}−1

G(0)(k, ω). (5.44)The term in the brakets an be interpreted as a geometri sum:
{

1 − Jk

~
G(0)(k, ω)σ1

}−1

=

∞
∑

m=0

(

Jk

~
G(0)(k, ω)σ1

)m

. (5.45)This shows what is meant by resummation. Diagrammatially, this resummed Green's funtion isrepresented by the following hain diagram:
+ + + · · · (5.46)Although in our expansion of F given by Eq. (4.18), we had only onsidered the �rst two of theproesses shown in the diagram above, our resummed Green's funtion inludes all of them. If wedid again an expansion of F , but now took into aount any of those longer hain diagrams, afterperforming the Legendre transform like done before, we would �nally get the same result as in Eq.(5.37). The �eld-theoretial reason for this lies in the role of Γ as the generating funtional of one-partile irreduible (OPI) Green's funtions [14℄. As all diagrams in (5.46) are onstruted of one andthe same OPI diagram, for the alulation of Γ it does not matter, how muh of these diagram we takeinto aount. We only need the �rst diagram (whih is the OPI) and the seond one, in order to haveat least one non-loal diagram seeding the resummation.Our hope is that, although we started the expansion with the assumption of a small hopping, theresummation leads to equations whih are even valid for larger hoppings.5.4 Equations of MotionNow let's have a look at the dynamis of the order �elds. To �nd an equation of motion for them, wehave to �nd the saddle points of Γ(2,1). For this we take the funtional derivative of Γ(2,1) with respetto the order �elds and set it equal to zero. For simpliity we do this in Fourier spae, as we then haveno integral over the time.

δΓ(2,1)

δΨ∗
i,q(ω)

=
−~

2

(2π)2

∑

j

{

[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) + Ã

(1)
ij (ω)Ψj,q(ω)

}

= 0, (5.47)
δΓ(2,1)

δΨ∗
i,cl(ω)

=
−~

2

(2π)2

∑

j

[

G
A(1)
ij (ω)

]−1
Ψj,q(ω) = 0. (5.48)
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5.4 Equations of MotionTaking the trivial solution of the last equation, Ψj,q(ω) = 0 on any site, the �rst equation redues to
∑

j

[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) = 0. (5.49)This result states that, as long as we restrit ourselves on on�gurations with Ψq = 0, the dynamis ofa system is given by the retarded Green's funtion. For the omplex onjugated �eld, we get a similarequation, but the advaned funtion will appear instead of the retarded one:

δΓ(2,1)

δΨi,q(ω)
=

−~
2

(2π)2

∑

j

{

Ψ∗
j,cl(ω)

[

G
A(1)
ji (ω)

]−1
+ Ψ∗

j,q(ω)Ã
(1)
ji (ω)

}

= 0, (5.50)
δΓ(2,1)

δΨi,cl(ω)
=

−~
2

(2π)2

∑

j

Ψ∗
j,q(ω)

[

G
R(1)
ji (ω)

]−1
= 0. (5.51)whih now redues to

∑

j

Ψ∗
j,cl(ω)

[

G
A(1)
ji (ω)

]−1
= 0 (5.52)when Ψ∗

j,q(ω) = 0. This result agrees perfetly with the linear response theory, whih is valid nearequilibrium, where all the physis is given by the retarded/advaned Green's funtions. We postponethe disussion of this equation to Chapter 7, where the spetra in the MI phase and the phase boundarybetween the MI and the SF are found from Eq. (5.49). Before we do that, we go beyond this phaseboundary and extend our theory to the super�uid phase.
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6 E�etive Ation in the SF PhaseAording to Fig. 2.3, a super�uid system annot be desribed by an e�etive ation, whih is quadratiin the order �elds. It is ruial to take into aount the next order, thus the expansion of Eq. (4.18)has to be extended up to fourth order in the urrents.6.1 Ψ
4 ExpansionWith the diagrammati rules given in Setion 4.5, it is straightforward to write down the expansion of

F up to fourth order in the urrents diagrammatially:
F (4,1)[j, j∗] =

1

~2

{

+
J

~
(6.1)

+
1

4~2
+

J

2~3

[

+

]}

.The fator 1/2 in front of the last two terms omes from the symmetry of the diagrams. Either forthe ingoing or for the outgoing lines, we have two possibilities of interhanging them without reatinga new diagram. In the third diagram, both the ingoing and the outgoing lines have this symmetry,whih gives us in total the prefator 1/4.In Eq. (6.1) a new umulant with four legs appears, i.e. it depends on four time variables. Therefore,
24 = 16 possibilities to distribute path indies ± exist. In the MI phase we were able to �nd amatrix representation for the 22 = 4 umulants in the seond order. By a rotation of this matrixwe ould redue the number of terms to only three. Now we will try a similar proedure again, butinstead of a bilinear form, a fourth rank tensor must be rotated. The omponents of this tensor
CP1P2P3P4

i (t1, t2; t3, t4) are given by Eq. (4.13). To save some spae, we hange the notation a little
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6 E�etive Ation in the SF Phasebit by writing iC
P1P4

P2P3
in the following. The produt of this tensor with the urrents an be written as

iC
P1P4

P2P3
j∗i,P1

(t1)j
∗
i,P2

(t2)ji,P3
(t3)ji,P4

(t4) =

= j̃
∗
i (t1)



























j̃
∗
i (t2)
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++ iC

++
+−

iC
++
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j̃i(t4) (6.2)
where the de�nition of the vetor urrents from Eq. (4.21) is applied.This objet an be Keldysh-rotated by rotating the sub-matries as well as the overall matrix. Inthe new expression the urrents j̃ and j̃

∗ are replaed by j and j∗ de�ned in Eqs. (4.22) and (4.23).The new umulants are linear ombinations of the 16 original ones from Eq. (6.2). These rotatedumulants are denoted by iC
cl/q,cl/q
cl/q,cl/q . For an impliit de�nition of these umulants, we write down therotated equivalent of Eq. (6.2):

j∗i (t1)



























j∗i (t2)







iC
cl,cl
cl,cl iC

cl,cl
cl,q

iC
cl,cl
q,cl iC

cl,cl
q,q






ji(t3) j∗i (t2)







iC
cl,q
cl,cl iC

cl,q
cl,q

iC
cl,q
q,cl iC

cl,q
q,q






ji(t3)

j∗i (t2)







iC
q,cl
cl,cl iC

q,cl
cl,q

iC
q,cl
q,cl iC

q,cl
q,q






ji(t3) j∗i (t2)







iC
q,q
cl,cl iC

q,q
cl,q

iC
q,q
q,cl iC

q,q
q,q






ji(t3)



























ji(t4) ≡

≡ j∗i (t1)j
∗
i (t2)C

(4)
i (t1, t2; t3, t4)ji(t3)ji(t4). (6.3)It might appear strange to all, for instane, the umulant in the top left-hand orner iCcl,cl

cl,cl , although itis multiplied only with quantum omponents of the urrents, but the meaning beomes lear, when wetake a look at the origin of the umulants: Inverting the relations (3.53), we an express the operators
â± and urrents j± in terms of operators âq/cl and urrents jq/cl. The generating funtional F [j, j∗],given in Eq. (3.59) whih is a funtional of j+, j−, j∗+, and j∗−, an then be rewritten as a funtionalof the rotated urrents jcl, jq, j∗cl, and j∗q . Instead of terms like j+â+ − j−â−, we have jqâcl + jclâq.Thus quantum urrents mix with lassial �elds and vie versa. When we now expand this generatingfuntional in terms of the rotated urrents, we always get a lassial operator in the umulant, whena derivative with respet to a quantum urrent is taken, e.g. δ

δji,cl(t)
~F [j, j∗] = 〈â†i,q(t)〉. Therefore we
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6.1 Ψ4 Expansionhave together with the deomposition formula from Eq. (4.13):
iC

cl,cl
cl,cl (t1, t2; t3, t4) = i3

{

〈

T̂c

{

âi,cl(t1)âi,cl(t2)â
†
i,cl(t3)â

†
i,cl(t4)

}〉

0
−
〈

T̂c

{

âi,cl(t1)â
†
i,cl(t3)

}〉

0

×
〈

T̂c

{

âi,cl(t2)â
†
i,cl(t4)

}〉

0
−
〈

T̂c

{

âi,cl(t1)â
†
i,cl(t4)

}〉

0

〈

T̂c

{

âi,cl(t2)â
†
i,cl(t3)

}〉

0

}

. (6.4)The other umulants in Eq. (6.3) are obtained in the same way. As for n = 2, the element in theright-down orner vanishes:
iC

q,q
q,q (t1, t2; t3, t4) = i3

{

〈

T̂c

{

âi,q(t1)âi,q(t2)â
†
i,q(t3)â

†
i,q(t4)

}〉

0
−
〈

T̂c

{

âi,q(t1)â
†
i,q(t3)

}〉

0

×
〈

T̂c

{

âi,q(t2)â
†
i,q(t4)

}〉

0
−
〈

T̂c

{

âi,q(t1)â
†
i,q(t4)

}〉

0

〈

T̂c

{

âi,q(t2)â
†
i,q(t3)

}〉

0

}

= 0. (6.5)This guarantees the ompliane of the normalization ondition (5.13), sine this umulant is the onlyone whih is not multiplied by quantum urrents jq, and thus this term wouldn't vanish by setting
jq = 0. We an generalize the latter observation for any umulant Cq···q: These umulants haveto vanish in order to have Eq. (5.13) ful�lled [75℄. The normalization ondition (5.13) therefore isequivalent to

Cq···q = 0. (6.6)The proof of Eq. (6.6) is important and will be needed again at a later stage. We must show that anyexpetation value of quantum omponent operators 〈T̂c

{

âi,q(t1) · · · â†i,q(tn)
}〉

0
is zero. We thereforereplae these operators by the operators in the ±-basis aording to the de�nition (3.53):

2−n/2
〈

T̂c

{(

âi,+(t1) − âi,+(t1)
)

· · ·
(

â†i,+(tn) − â†i,−(tn)
)}〉

0
.Multiplying this out yields 2n path-ordered terms. Now it is ruial to note that within a path-orderedprodut the position of the operator with the largest time does not depend on its path index. But thismeans that eah ordered produt appears twie, though with di�erent signs. Thus, every term anelsout.Instead of examining the other elements at this stage, let's ontinue with, in prinipal, the sameproedure as in the MI phase and perform a Legendre transformation of F [j, j∗] in Eq. (6.1). After-wards we will see whih of the umulants we really need to alulate. The de�nition for the Legendretransformation is the same as before, given in Eqs. (5.3) and (5.4), but to be more eonomi, wework in the {q,l}-basis and in Fourier spae from the beginning. As the Legendre transformationnow requires a lot of bookkeeping, it is onvenient to write it down diagrammatially. To this end, we
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6 E�etive Ation in the SF Phasemodify our previous de�nitions from Eqs. (4.14) and (4.15). The umulant tensors are symbolized by
ω2 ω1

i ≡ C
(2)
i (ω1, ω2) ≡ G

(0)
ii (ω1, ω2) and

ω3

ω4

ω1

ω2

i ≡ C
(4)
i (ω1, ω2;ω3, ω4). (6.7)The vetor urrents are depited by

iω
= ji(ω) and iω

= j∗i (ω). (6.8)If we now onnet urrents and umulants with a losed line, we must integrate the orrespondingfrequeny variable divided by 2π. When two umulants are linked by a hopping, we additionally haveto put the Pauli matrix σ1 between the umulants. Note that these re-de�nitions of the diagrams donot a�et the expansion (6.1).To do the Legendre transformation, we still must de�ne symbols for the order �elds and the inverseumulants. We assoiate them with white squares and irles:
iω

= Ψi(ω) ,
iω

= Ψ
∗
i (ω), (6.9)and

ω2 ω1
i ≡

[

C
(2)
i (ω1, ω2)

]−1
≡
[

G
(0)
ii (ω1, ω2)

]−1
. (6.10)If we multiply a umulant with its inverse, we get a δ-funtion in the frequenies and a Kroneker-δ inspatial variables, i.e.:

ω2 ω1
i j

= δijδ(ω1 − ω2). (6.11)Note that the internal line between blak and white umulants does not represent a hopping, thereforeit is not assoiated with the Pauli matrix σ1.Diagrammatially, Eq. (5.3) reads
iω

= δF [j, j∗]/δ(
iω

). (6.12)Suh a diagrammati derivative is performed by taking away the respetive leg from all the graphs in
F . If there are graphs without suh legs, they vanish ompletely. For graphs with more than one of64



6.1 Ψ4 Expansionthem, the usual produt rule of di�erentiation has to be applied. We this we get from Eq. (6.1):
iω

=
1

~2

{

ω
i

+
Jij
~

ω
i

+
1

2~2
ω

i (6.13)
+
Jij
2~3

[

2
ω

i
+

ω
i

+

ω
i

]}

,and a similar expression for the omplex onjugate. Due to the derivative, there are some umulants�xed to the site index i. Of ourse, urrents whih are diretly linked to these umulants must havethe same site index. The site index of umulants whih are linked to them is summed, but suh a linkneessarily omes along with a hopping matrix element Jij multiplying the whole diagram. In our asethis restrits the summation to nearest neighbors.Now Eq. (6.13) must be inverted iteratively, but now the iteration involves the hopping and theorder �elds. From our previous onsiderations in the Mott phase, we already know the solutions inthe �rst hopping order and in seond order in the �elds, sine we only have to insert Eq. (5.37) in therotated and Fourier-transformed version of Eq. (5.6). In our diagrammati notation this yields:
iω

= ~
2











ω
i −

∑

j

Jij
2π~

jω











, (6.14)
iω

= ~
2











ω
i −

∑

j

Jij
2π~

jω











. (6.15)Here we have used a dotted line in order to mark the legs originally oming from a hopping proess.They have to be distinguished from the others beause of the σ1 matrix whih is multiplied by them.Now we multiply Eq. (6.13) with iω and insert Eqs. (6.14) and (6.15). We throw away alldiagrams with a prefator J2 and are already at the end of the iteration, beause any further stepwould give only terms whih are of higher than fourth order in the �elds. We now have
iω

= (6.16)
~

2

{

ω
i − 1

2~2
ω

i

−
∑

j

Jij
2π~

[

jω
+

1

2~2 ω

j

]}

.A similar expression exists for the omplex onjugate of the order �eld. When we insert this into theequation for the e�etive ation given by (5.4), we at �rst get a lot of diagrams. Of ourse, all diagramswith more than four order �elds or of higher than linear hopping order are not taken into aount.
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6 E�etive Ation in the SF PhaseWe �nd that the diagrams with four legs and one hopping anel. Thus the �nal result beomes veryompat. Not surprisingly, it only ontains the one-partile-irreduible diagrams:
Γ(4,1) = −~

2

{

− J

2π~
− ~

2

4

}

. (6.17)Now we an replae the diagrams by its analytial analogues:
Γ(4,1)[Ψ,Ψ∗] = −~

2

{

∑

i,j

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω3

2π

[

(

Ψ
∗
i (ω1)

[

G
(0)
ii (ω1)

]−1
Ψj(ω3) −

Jij
~

Ψ
∗
i (ω1)σ

1
Ψi(ω3)

)

× 1

2π
δ(ω1 − ω3) −

~
2

4

∫ ∞

−∞

dω2

2π

∫ ∞

−∞

dω4

2π
Ψ

∗
i (ω1)

[

G
(0)
ii (ω1)

]−1
Ψ

∗
i (ω2)

[

G
(0)
ii (ω2)

]−1

×iC
4(ω1, ω2;ω3, ω4)

[

G
(0)
ii (ω3)

]−1
Ψi(ω3)

[

G
(0)
ii (ω4)

]−1
Ψi(ω4)

]}

. (6.18)6.2 Equations of MotionLike before in the MI phase, we are espeially interested in the equations of motion, whih we getby taking the funtional derivatives of Γ(4,1)[Ψ,Ψ∗] from Eq. (6.18) with respet to the order �elds.Again we hoose the trivial solution for the quantum omponents of the order �elds, Ψq = Ψ∗
q = 0,beause we always want the bakward �elds having the same value as the forward ones. With this, thefollowing two equations of motion are solved for arbitrary Ψcl and Ψ∗

cl:
δΓ

δΨi,cl(ω)

!
= 0, (6.19)

δΓ

δΨ∗
i,cl(ω)

!
= 0. (6.20)In these derivatives, the only terms whih do not inlude any quantum �elds are the ones whihontain the vanishing �all q�-umulant. These terms, however, are zero beause of the vanishing ofthis umulant. Taking the derivatives with respet to a quantum omponent �eld yields another twoequations of motion, whih remain non-trivial under the ondition Ψq = Ψ∗

q = 0:
δΓ[Ψ,Ψ∗]

δΨi,q(ω)
=

~
2

(2π)3

∑

j

{

Ψ∗
j,cl(ω)

(

1

gA(ω)
− Jji

~

)

− ~
2

4

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3 (6.21)

× 1

2π

[

jC
q,cl
q,q (ω1, ω2;ω3, ω) + jC

q,q
q,cl(ω1, ω2;ω, ω3)

] Ψ∗
j,cl(ω1)Ψ

∗
j,cl(ω2)Ψj,cl(ω3)

gA(ω1)gA(ω2)gR(ω3)gA(ω)

}

!
= 0,

δΓ[Ψ,Ψ∗]

δΨ∗
i,q(ω)

=
~

2

(2π)3

∑

j

{

Ψj,cl(ω)

(

1

gR(ω)
− Jij

~

)

− ~
2

4

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

∫ ∞

−∞
dω4 (6.22)

× 1

2π

[

jC
cl,q
q,q (ω, ω2;ω3, ω4) + jC

q,q
cl,q(ω2, ω;ω3, ω4)

] Ψ∗
j,cl(ω2)Ψj,cl(ω3)Ψj,cl(ω4)

gR(ω)gA(ω2)gR(ω3)gR(ω4)

}

!
= 0.
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6.2 Equations of MotionThus, only four of the �fteen non-vanishing elements in jC
(4) determine the dynamis of the system aslong as we assume the quantum omponent to be zero. These four umulants jCcl,q

q,q , jC
q,cl
q,q , jC

q,q
cl,q, jC

q,q
q,clrequire a loser examination.6.2.1 The {q,q,q,l} CumulantsTo simplify the notation, we will drop the site index of both the umulants and the operators in thissubsetion.

• We �rst take a look at the relation of these umulants to the Green's funtions. Aording toEq. (4.13), the deompositions are given by Ccl,q
q,q = Gcl,q

q,q − iGcl,qGq,q − iGcl
qG

q
q. Both produtsof 2-point funtions involve a {q,q} Green's funtion and therefore vanish. Thus any {q,q,q,l}umulant is idential to its orresponding Green's funtion. We have

Ccl,q
q,q (t1, t2; t3, t4) = −i

〈

T̂c

{

âcl(t1)âq(t2)â
†
q(t3)â

†
q(t4)

}〉

0
, (6.23)

Cq,q
cl,q(t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âcl(t2)â
†
q(t3)â

†
q(t4)

}〉

0
, (6.24)

Cq,q
q,cl(t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âq(t2)â
†
cl(t3)â

†
q(t4)

}〉

0
, (6.25)

Cq,cl
q,q (t1, t2; t3, t4) = −i

〈

T̂c

{

âq(t1)âq(t2)â
†
q(t3)â

†
cl(t4)

}〉

0
. (6.26)

• Seond we note a quite obvious symmetry onerning the interhange of variables: We an hangethe time variables of two annihilation operators or of two reation operators if we hange as welltheir indies {q,l}. Note that, in general, we annot do that with one annihilation and onereation operator. As a onsequene of this we have
Ccl,q

q,q (t1, t2; t3, t4) = Cq,q
cl,q(t2, t1; t3, t4), (6.27)

Cq,cl
q,q (t1, t2; t3, t4) = Cq,q

q,cl(t1, t2; t4, t3). (6.28)This relation also holds in frequeny spae as an easily be seen by applying a Fourier trans-formation on these equations. Therefore the number of di�erent umulants in the equations ofmotion is redued from four to two. Thus, in both equations (6.21) and (6.22), we an simplysum the umulants:
Cq,cl

q,q (ω1, ω2;ω3, ω) + Cq,q
q,cl(ω1, ω2;ω, ω3) = 2Cq,cl

q,q (ω1, ω2;ω3, ω), (6.29)
Ccl,q

q,q (ω, ω2;ω3, ω4) + Cq,q
cl,q(ω2, ω;ω3, ω4) = 2Ccl,q

q,q (ω, ω2;ω3, ω4). (6.30)
• Finally we will show how these remaining two umulants are related to eah other by means ofa omplex onjugation. That there exists suh a relation, is already obvious from the de�nitions(6.23)�(6.26), but we will show this expliitly via a long but helpful alulation.
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6 E�etive Ation in the SF PhaseTo this end we introdue the short-hand notation [â+ ± â−
]

(t1) = â+(t1) ± â−(t1) and use thede�nition from Eq. (3.53):
Ccl,q

q,q (t1, t2; t3, t4) =
−i
4

〈

T̂c

{

[

â+ + â−
]

(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
=

−i
4

〈

T̂c

{

[

â+ − â− + 2â−
]

(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
=

−i
2

〈

T̂c

{

â−(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
. (6.31)For the last equality we have to split the expetation value of the seond line into a sum of twoexpetation values and reognize that one of them vanishes, sine it ontains operators â+ − â− ∼ âqonly.Now we must show the important relation

〈

T̂c

{

â−(t1)
[

â+ − â−
]

(t2)
[

â†+ − â†−
]

(t3)
[

â†+ − â†−
]

(t4)
}〉

0
= 0 if t1 is not the largest time. (6.32)The proof of this is based on the same arguments as for the vanishing of the {q,q,q,q} umulantsgiven in Setion 6.1. We must remember that the path order does not depend on the path index ofthe operator with the largest time. Sine in Eq. (6.32) the operators at t2, t3, t4 appear twie withdi�erent signs, all ordered produts anel if one of those times was the largest.Note furthermore the symmetry in t3 ↔ t4. This allows to onsider only three di�erent time-orders

θ(t1− t2)θ(t2− t3)θ(t3− t4), θ(t1− t3)θ(t3− t2)θ(t2− t4), and θ(t1− t3)θ(t3− t4)θ(t4− t2). Time-orderswith t4 > t3 an diretly be read from the ones given here by re-symmetrizing the result. We willdenote this symmetrization by {·}t3↔t4 . This saves spae and redues the omputational task.For a alulation of the expetation value in Eq. (6.32), we multiply out all the produts yieldingeight path-ordered terms. Then we onsider eah of the three relevant time-orders making use ofHeaviside step funtions θ(t − t′). We then �nd for eah time-order that the eight produts an beexpressed by a triple ommutator. We therefore have:
Ccl,q

q,q (t1, t2; t3, t4) =
−i
2

{

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)

〈[

[

[

â(t1), â(t2)
]

, â†(t3)

]

, â†(t4)

]〉

0

(6.33)
+ θ(t1 − t3)θ(t3 − t2)θ(t2 − t4)

〈[

[

[

â(t1), â
†(t3)

]

, â(t2)

]

, â†(t4)

]〉

0

+ θ(t1 − t3)θ(t3 − t4)θ(t4 − t2)

〈[

[

[

â(t1), â
†(t3)

]

, â†(t4)

]

, â(t2)

]〉

0

}

t3↔t4

.We note that this is almost idential to the usual de�nition of retarded n-point funtions [55℄. Foronveniene we introdue a fator 2 and de�ne:
2Ccl,q

q,q (t1, t2; t3, t4) ≡ CR(t1, t2; t3, t4). (6.34)
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6.2 Equations of MotionThe other umulant an be brought analogously to a similar form
Cq,cl

q,q (t1, t2; t3, t4) =
−i
2

{

θ(t4 − t1)θ(t1 − t3)θ(t3 − t2)

〈[

[

[

â†(t4), â(t1)
]

, â†(t3)

]

, â(t2)

]〉

0

(6.35)
+ θ(t4 − t3)θ(t3 − t1)θ(t1 − t2)

〈[

[

[

â†(t4), â
†(t3)

]

, â(t1)

]

, â(t2)

]〉

0

+ θ(t4 − t1)θ(t1 − t2)θ(t2 − t3)

〈[

[

[

â†(t4), â(t1)
]

, â(t2)

]

, â†(t3)

]〉

0

}

t1↔t2

.Coming bak to the relation between this umulant and the the umulant from Eq. (6.33), we mustreognize that (ÂB̂)† = B̂†Â†. Thus a omplex onjugation ating on a ommutator yields a minussign, [Â, B̂]† = −[Â†, B̂†]. Beause of the fator −i in Eq. (6.35) its omplex onjugate will maintainthe same sign. Therefore the only e�et of a omplex onjugation is an interhange of annihilation andreation operators. If we then hange in addition the time variables t1 ↔ t4, t2 ↔ t3, we get bak tothe same expression as in Eq. (6.33). Therefore we have
(

Cq,cl
q,q (t4, t3; t2, t1)

)∗
= Ccl,q

q,q (t1, t2; t3, t4). (6.36)Note that a similar relation holds for the 2-point funtions. There we have
GR(t1, t2) =

(

GA(t2, t1)
)∗
. (6.37)In analogy we will all 2Cq,cl

q,q (t1, t2; t3, t4) ≡ CA(t1, t2; t3, t4) the advaned 4-point umulant. Whathas to be done next, is to take either the retarded or the advaned funtion and alulate it. Weare espeially interested in its Fourier transform. This is a straightforward task very similar to thealulation for the 2-point funtion, but many di�erent ombinations have to be onsidered. Due tothe length of this alulation, we put it into the appendix.6.2.2 Equilibrium Con�gurationLet's now ome bak to the equations of motion (6.21) and (6.22). Using the de�nition of the Fouriertransformation into k-spae from Eq. (5.41), the summation over the site index an be eliminatedfrom them. If we still make the equilibrium ansatz of a time-independent, homogeneous order �eld,i.e. Ψk,cl(ω) = Ψeqδk,0δ(ω), so that the ω-integrals beome trivial. We have
2πΨ∗

eq

(

1

gA(0)
− J0

~

)

−
[

Cq,cl
q,q (0, 0; 0, 0) + Cq,q

q,cl(0, 0; 0, 0)
] ~

2Ψ∗
eqΨ

∗
eqΨeq

4gA(0)gA(0)gR(0)gA(0)

!
= 0, (6.38)

2πΨeq

(

1

gR(0)
− J0

~

)

−
[

Ccl,q
q,q (0, 0; 0, 0) + Cq,q

cl,q(0, 0; 0, 0)
] ~

2Ψ∗
eqΨeqΨeq

4gR(0)gA(0)gR(0)gR(0)

!
= 0. (6.39)From these equations, the equilibrium values of the order �eld Ψeq an be read o�:

~
2|Ψeq|2 = 2π

4gA(0)gA(0)gR(0)gA(0)

Cq,cl
q,q (0, 0; 0, 0) + Cq,q

q,cl(0, 0; 0, 0)

(

1

gA(0)
− J0

~

)

. (6.40)
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6 E�etive Ation in the SF PhaseWe note that all Green's funtions beome real in the limit ω → 0, whih makes the right side of Eq.(6.40) real too, as it must be. The phase φ of the equilibrium order �eld an be hosen arbitrarily, so weset it to zero without loss of generality. Then the solution of the four equations of motion (6.19)�(6.22)in the stationary ase reads:
Ψk,eq(ω) =

(

Ψeq

0

)

δ(ω)δk,0 and Ψ
∗
k,eq(ω) = (Ψeq, 0) δ(ω)δk,0. (6.41)It should be mentioned that in our basis, ~Ψcl is not the expetation value 〈â〉, but (1/

√
2)〈â+ +â−〉 =√

2〈â〉.6.2.3 Linearization of Equation of MotionIn the previous setion we have found time-independent order �elds in Eq. (6.41), whih solve theequations of motion (6.19)�(6.22). But as one main goal is the desription of the dynamis of theorder parameter, we have to onsider time-dependent solutions as well. The problem, however, is thefat that Γ from Eq. (6.18) ontains non-loal terms. The non-loality in spae is assoiated withthe Ψ2 terms only. Given a homogeneous system, it an be handled by a Fourier transformation intothe wave vetor spae. The non-loality in time, however, also onerns the Ψ4 term, suh that evenin frequeny spae, three non-trivial integrals remain. One thing that helps us out, is a linearizationof the equations of motion by assuming a on�guration near equilibrium and Taylor expanding thee�etive ation around this equilibrium position. Up to seond order, all terms will then be loal inFourier spae.To do that expansion, we �rst refer to the normalization ondition (5.13): Due to the vanishing ofthe �all q� omponents of the Green's funtions, the whole e�etive ation Γ vanishes, if the quantum�elds are zero. Thus we have no zeroth order term. Furthermore, all �rst-order derivatives of Γ withrespet to the �elds evaluated at Ψeq vanish aording to Eqs. (6.38) and (6.39). So the only termsthat we have to onsider are the seond derivatives. With the de�nitions Ψcl(ω) ≡ Ψcl(ω) − Ψeq and
Ψq(ω) ≡ Ψq(ω), the e�etive ation reads

Γ[Ψq, Ψ
∗
q , Ψcl, Ψ

∗
cl] ≈

1

2
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∫ ∞

−∞
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∣

∣

∣

∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣
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∣

∣

∣

∣
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∣

∣

∣
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∣

∣
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6.2 Equations of Motion
+ 2

δ2Γ

δΨi,cl(ω1)δΨj,cl(ω2)

∣

∣

∣

∣

∣

eq

Ψj,cl(ω2)Ψi,cl(ω1) + 2
δ2Γ

δΨ∗
i,cl(ω1)δΨ∗

j,cl(ω2)

∣

∣

∣

∣

∣

eq

Ψ∗
j,cl(ω2)Ψ

∗
i,cl(ω1)

}

. (6.42)The last six terms appear twie, as we have assumed the symmetry i↔ j of a homogeneous system inorder to save writing spae. Atually, this assumption is no restrition here, beause we have writtendown these six terms only for ompleteness. The last three terms, however, vanish as a onsequene ofEq. (5.13) and the other three terms are quadrati in quantum omponent �elds. So when we derivethe equations of motion from the expanded e�etive ation in Eq. (6.42) and insert Ψq = Ψ∗
q = 0, alsothese terms do not ontribute.The remaining four terms are alulated straightforwardly. The �rst term reads

δ2Γ

δΨi,cl(ω1)δΨ∗
j,q(ω2)

∣

∣

∣

∣

∣

eq

=
~

2

(2π)4
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gR(ω1)
δij −

Jij
~

]

2πδ(ω1 − ω2) (6.43)
− ~

2

2
|Ψeq|2

δijC
R(ω2, 0; 0, ω1)

gA(0)gR(0)gR(ω1)gR(ω2)
.Note that CR(ω2, 0; 0, ω1) inludes a funtion δ(ω1 − ω2) as well. The seond term with the derivative

δ2Γ
δΨ∗

i,cl
(ω1)δΨj,q(ω2)

∣

∣

eq
is the omplex onjugate of Eq. (6.43), therefore we only have to interhange theadvaned funtions with the retarded ones. Still the derivative δ2Γ

δΨi,cl(ω1)δΨj,q(ω2)

∣

∣

eq
and its omplexonjugate must be alulated. Thus, we have

δ2Γ

δΨi,cl(ω1)δΨj,q(ω2)
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∣

∣
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4(2π)4
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δijC
R(ω1, ω2; 0, 0)

gR(0)gR(0)gR(ω1)gA(ω2)
, (6.44)and its omplex onjugated expression.Now it is important to note that CR(ω1, ω2; 0, 0) ∼ δ(ω1 + ω2) in ontrast to CR(ω2, 0; 0, ω1) ∼

δ(ω1 − ω2). The kernel of our Taylor expanded e�etive ation from Eq. (6.42) therefore depends onone frequeny variable only, but at some plaes this variable appears with a reversed sign. We mustbe areful with this sign, sine neither the 2-point funtions nor the 4-point funtions are symmetriunder a hange of sign, i.e. CR(ω, 0; 0, ω) 6= CR(−ω, 0; 0, ω). Nevertheless, we have CR(ω,−ω; 0, 0) =

CR(−ω, ω; 0, 0) aording to Eq. (6.27).Transforming the spatial variables into k-spae aording to Eq. (5.14) yields a Kroneker-δ fortranslational invariant systems. Therefore the double sum ∑

ij redues to a single on ∑k. Similarly,the δ(ω1 ± ω2)-funtions redues the number of integrals from two to one. We an therefore write
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∗
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∣

∣

∣

∣
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∣
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}

. (6.45)
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6 E�etive Ation in the SF PhaseThe remaining sum and integral are removed when taking the funtional derivative. Then the twonon-trivial equations of motion (6.21) and (6.22), whih are integral equations, now appear as simplealgebrai equations. Writing Ψk,cl ≡ Ψ and inserting Eqs. (6.43) and (6.44), we have
0

!
=
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∣

∣

∣

∣

∣
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∣

∣
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, (6.46)and
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eq
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−
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4
|Ψeq|2

CR(ω,−ω; 0, 0)

2πgA(−ω)gR(0)gR(ω)gR(0)
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Ψ∗(−ω)
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. (6.47)With (6.36) we an hek that one equation is the omplex onjugate of the other. We will deal withthe solution of these equations in the next hapter. For a ompat referene to them, we introdue thefollowing shorthand notations:
A(ω,k)Ψ∗

k(ω) +B(ω,k)Ψk(−ω) = 0, (6.48)
A∗(ω,k)Ψk(ω) +B∗(ω,k)Ψ∗

k(−ω) = 0, (6.49)where A,B and its onjugates represent the di�erent funtional derivatives in Eqs. (6.46) and (6.47).6.2.4 Super�uid Resummed Green's FuntionWith the linearization from the subsetion above, we an �nd a 2-point funtion, whih desribesthe orrelations near equilibrium in the symmetry-broken phase. This funtion will be the super�uidanalog of the resummed retarded funtion in the MI phase given by the inverse of Eq. (5.39). We willshow that this super�uid retarded/advaned 2-point funtion an be ompletely onstruted by thesame terms A,A∗, B and B∗, whih appear in Eqs. (6.48) and (6.49). Therefore, we need to know howto derive the retarded/advaned 2-point funtion from our generating funtionals.We begin with the funtional F [j, j∗] de�ned in Eq. (3.59). However, we should not argue with theexpansion from Eq. (4.35), where the relation between F and the retarded/advaned Green's funtionsis obvious, sine this expansion is valid only for a system without broken symmetry. Then expetationvalues like 〈Ψcl〉 whih in priniple may ontribute to the Green's funtion are zero. Instead, we willstay more general and onsider the soure term spei�ed in Eq. (4.5). There we still had worked in the
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6.2 Equations of Motion
±-basis. Making use of the rotation matrix Q de�ned in Eq. (3.51), we transform it into the l,q-basis:

ji,+â†i+ − ji,−â†i,− =
(

â†i,+, â
†
i,−

)

(

ji,+

−ji,−

)

=
(

â†i,+, â
†
i,−

)

QQ

(

ji,+

−ji,−

)

=
(

â†i,cl, â
†
i,q

)

(

ji,q

ji,cl

)

= ji,qâ
†
i,cl + ji,clâ

†
i,q. (6.50)Here the index i should be interpreted as a set of variables, inluding site index and time. Thus witha sum over this index, we denote at the same time a sum over the disrete variables and an integralover the ontinuous ones. Now we need the following relation:

〈

T̂c

(

âi,qâ
†
j,cl

)〉
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T̂
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âi,+â†j,−

)

+ ˆ̃T
(

âi,−â†j,−

)

− âi,−â†j,+ − â†j,−âi,+

〉

= GR
ij . (6.51)The last equality is found by making use of the Heaviside step funtion. It an be used in order tosubstitute T̂ and ˆ̃T . Then it is easy to see that this is exatly the de�nition of the retarded Green'sfuntion given in Eq. (3.54). Similarly, we have 〈T̂c

(

âi,clâ
†
j,q

)

〉 = GA
ij . From this we an see that

δ2F [j, j∗]

δj∗i,qδjj,cl

∣

∣

∣

j=j∗=0
= GA

ij and
δ2F [j, j∗]

δj∗i,clδjj,q

∣

∣

∣

j=j∗=0
= GR

ij . (6.52)We stress that these equations hold as long as 〈Ψq〉 = 0, sine the derivatives deompose into vanishingproduts 〈âi,cl〉〈âj,q〉. If we had to take derivatives with respet to two quantum soures, however, westill would get a deomposition term to Eq. (6.52). For the retarded/advaned Green's funtions,however, this is not the ase.Now we have to �nd out how the seond derivative of F [j, j∗] is related to the e�etive ation
Γ[Ψ,Ψ∗]. Making use of the produt rule for funtional derivatives, we �nd the following identity

δij =
δji,q
δjj,q

=
∑

k

(

δji,q
δΨk,q

δΨk,q

δjj,q
+
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δΨ∗

k,q

δΨ∗
k,q

δjj,q
+

δji,q
δΨk,cl

δΨk,cl

δjj,q
+

δji,q
δΨ∗

k,cl

δΨ∗
k,cl

δjj,q

) (6.53)With the de�nition of the Legendre transform in (5.3), we an express Ψ as the derivative of F withrespet to j∗. In our basis, one must note that the derivative with respet to the quantum omponentof the urrents brings down the lassial omponent of the orresponding operator. Therefore we have,e.g.,
Ψi,cl =

δF
δj∗i,q

. (6.54)From (5.4), the inverse relations an be found:
ji,cl =

δΓ

δΨ∗
i,q

. (6.55)
73



6 E�etive Ation in the SF PhaseInserting this in Eq. (6.53) yields
δij =

∑

k

(

δ2Γ

δΨk,qδΨ
∗
i,cl
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δΨ∗
k,qδΨ
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i,cl
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δjj,qδjk,cl

+
δ2Γ

δΨ∗
k,clδΨ

∗
i,cl

δ2F
δjj,qδjk,q

)

. (6.56)We should note that the seond and the last term vanish when evaluated at Ψq = Ψ∗
q = 0, as they on-tain derivatives of Γ with respet to lassial omponents only. In order to eliminate δ2F/(δjj,qδjk,cl),we perform similar manipulations on another intrinsi equation, for instane:

0 =
δj∗i,q
δjj,q

=
∑

k
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δ2Γ

δΨ∗
k,qδΨi,cl

δ2F
δjj,qδjk,cl

)

. (6.57)Without the sum over k, we ould diretly inverse this equation and eliminate δ2F/(δjj,qδjk,cl) fromEq. (6.56). We an get rid of this sum by the expansion whih was used for the linearization of theequations of motion in the subsetion above. Taking the expanded e�etive ation from Eq. (6.45)and swithing into Fourier spae, Eqs. (6.56) and (6.57) appear without sum. But we have to takeare with the sign of the frequenies, sine the seond derivatives with respet to two �eld or twoonjugate �elds imply a funtion δ(ω + ω′), while the seond derivatives with respet to one �eld andone onjugate �eld implies the funtion δ(ω − ω′). Combining Eqs. (6.56) and (6.57), we an write:
1 =

δ2F
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{
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}

. (6.58)Aording to Eq. (6.52), the �rst term an be interpreted as the Fourier transform of the retardedGreen's funtion in the super�uid system, GR
k(ω) =

∑

ij G
R
ij(ω) exp [−i(ri − rj) · k], thus the termwithin the urly braes must be the inverse of it. Therefore we have

GR
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, (6.59)and the omplex onjugate expression for the retarded Green's funtion.Now we should note that the equations of motion, (6.48) and (6.49) are solved, if
0

!
= A(−ω,k)A∗(ω,k) −B∗(−ω,k)B(ω,k). (6.60)This is exatly the denominator of the super�uid Green's funtion (6.59), i.e. the equations of motionsare solved when the retarded/advaned Green's funtions diverge.
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7 Exitation SpetraUp to now a lot of work has been done in order to derive a theory for the dynamis of bosons inoptial latties, but still we have said nothing about what is really going on in suh systems. Thiswill hange in this hapter, sine now we are in a position to alulate both the phase diagram andthe exitation spetra. The spetra are given by a funtion ω(k) whih relates the frequeny of anexitation to its orresponding momentum. As already stated in the beginning, due to the Goldstonetheorem we expet one gapless mode with ω(k) ∼ |k| for small |k| in the super�uid phase. Thisexpetation will be on�rmed in this hapter, when we solve the equations of motion in the super�uidphase. Comparing our spetrum with the Bogoliubov result we will �nd a good agreement for weakinterations, but in ontrast to that theory, our equations yield also a seond solution, whih is gappedand quadrati in k. From the point of view of Bogoliubov theory, this �nding is quite surprising. Butif we onsider the exitations in the Mott phase, suh a mode seems to be neessary, sine we �nd twokinds of MI exitations, too. Thus, again we start our alulations in the MI phase and present the SFalulations later. Of speial interest is the behavior of the spetra near the phase boundary, wherethey are found to map onto eah other. Moreover, ritial exponents should quantitatively desribethe system properties in this regime.7.1 Spetra in the MI PhaseTo see how things work, we �rst onsider the easiest ase, namely a system without hopping. Alreadythis limit will give us some insight into the physis of the MI phase.7.1.1 Zeroth Hopping OrderThe MI equations of motion are given in Eq. (5.49). Setting J = 0 redues the Green's funtion GR(1)
ijto the unperturbed one, whih is loal. This leaves us with

1

gR(ω)
Ψj,cl(ω) = 0. (7.1)Using Eq. (5.20) the ondition for non-trivial solutions therefore reads
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~
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) = 0, (7.2)i.e. we must look for divergenes in gR(ω). As this is a omplex funtion, it would be helpful to havethe real part separated from the imaginary part. This is done by multiplying both denominators in75



7 Exitation SpetraEq. (5.20) with their omplex onjugates, leading to
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, (7.3)where we have de�ned ∆n ≡ En−En−1

~
. With the identity

lim
ǫ→0

ǫ

x2 + ǫ2
= πδ(x), (7.4)we an take the limit ǫ→ 0. This gives us
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1

Z(0)

∞
∑

n=0

e−βEn

(

n+ 1

∆n+1 − ω
− n

∆n − ω
+ iπ

[

(n+ 1)δ(∆n+1 − ω) − nδ(∆n − ω)
]

) (7.5)We observe that a diverging term appears in the real part if
ω = ∆n for any n ∈ N. (7.6)At these frequenies ∆n, the argument of the δ-funtions in the imaginary part beomes zero, too. Thusthe imaginary part diverges as well. Therefore an order �eld Ψj(ω) being proportional to δ(ω − ∆n)with arbitrary n solves the equation of motion. The general solution an be written as:

Ψj,cl(ω) =

∞
∑

n=1

Anδ(ω − ∆n). (7.7)Note that this sum does not have a term with n = 0, sine Eq. (7.5) does not diverge for ω = ∆0.The oe�ients An of this solution have to be hosen in aordane with the initial onditions. Theseoe�ients still might depend on the site index and espeially on temperature. We note that, althoughthe temperature appears in the equation of motion, it in�uenes the dynamis of the system onlyindiretly via the initial ondition.Going bak to time spae, we �nd
Ψj,cl(t) =

∫ ∞

−∞
dω

∞
∑

n=1

Anδ(ω − ∆n)e
−iωt =

∞
∑

n=1

Ane
−i∆nt. (7.8)Thus, the dynamis of the lassial omponent of the order �eld onsists of osillations with thefrequenies ∆n. They orrespond to the energies for hanging the number of partiles on a site by one.We should note that the information about the exitation frequenies is ontained in the real partas well as in the imaginary part of the retarded Green's funtion. This will help us a lot later in thealulation of the SF spetra. To see what kind of information is enoded in the retarded/advaned
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7.1 Spetra in the MI PhaseGreen's funtions, we onsider the following spetral representation [66℄ :
GR/A(ω) =

∫ ∞

−∞
dω′ρ(ω′)

( P
ω − ω′

± iπδ(ω − ω′)

)

, (7.9)where P denotes the prinipal value of the integration aross the singularity and ρ(ω) denotes thespetral funtion. This funtion does not only ontain the exitation frequenies, but also informationabout their spetral weights, i.e. about how muh of the total exitation energy is stored in eahexitation. The spetral funtion obeys the so-alled sum rule [66℄:
∫ ∞

−∞
dω ρ(ω) = 1. (7.10)From the spetral representation in Eq. (7.9), we an further see that ρ(ω) an be obtained from theimaginary part of the advaned and retarded Green's funtion: 2πρ(ω) = GR(ω)−GA(ω) = 2ImGR(ω).In our ase, we �nd from Eq. (7.5):

ρ(ω) =
−1

Z(0)

∞
∑

n=0

nδ(ω − ∆n)
(

e−βEn − e−βEn−1

)

=
1

Z(0)

∞
∑

n=0

ne−βEnδ(ω − ∆n)
(

eβ∆n − 1
)

. (7.11)Let us still hek if this expression satis�es the sum rule. The ω-integration is trivial, so we immediately�nd
∫ ∞

−∞
dω ρ(ω) =

1

Z(0)

∞
∑

n=0

n
(

e−βEn − e−βEn−1

)

=
1

Z(0)

∞
∑

n=0

e−βEn (n− n+ 1) = 1. (7.12)The transformation from the seond to the third expression an be done by shifting the summationindex in the seond term. Then n is aneled from the sum and the whole expression redues to 1.Let's still investigate the zero-temperature limit of Eq. (7.2). Note that we have a Boltzmann sumof the form
lim
β→∞

1

Z

∞
∑

m=0

e−βEmfm = lim
β→∞

e−βEn
∑∞

m=0 e−β(Em−En)fm

e−βEn
∑∞

m=0 e−β(Em−En)
= fn, (7.13)where fm is an arbitrary expression whih does not depend on β and the summation index m denotesthe oupation number. The �nal n in Eq. (7.13) now denotes the ground-state oupation number,i.e. a number whih is �xed by µ/U [31℄. For the last step, we need to note that with our standardBose-Hubbard Hamiltonian from Eq. (2.1), degenerate ground-states an be exluded, so we have

Em > En for any m 6= n, thus for β → ∞ all terms in both sums beome zero exept the one with theground-state oupation number n. The Green's funtion (7.2) then redues to:
1

gR(ω)
=

(

n+ 1

ωn+1 − ω + iǫ
− n

ωn − ω + iǫ

)−1

= 0. (7.14)This means that at T = 0, the system an be exited only at two frequenies whih orrespond tothe reation of an additional partile or taking away one partile from the ground-state on�guration.Taking away one partile an also be onsidered as the reation of a hole. This interpretation of the77



7 Exitation Spetratwo modes already gives us a good piture of the Mott-insulator physis, where the partile numberper site is �xed and the system is exited by taking away or adding partiles.7.1.2 First Hopping OrderAfter having seen how the proedure of �nding the spetra works for the quite easy ase of a systemwithout hopping, we an now go ahead and try the same for the ase of muh greater interest, the MIsystem with non-zero hopping. Let us �rst write down the equation of motion (5.49):
[

G
R(1)
ij (ω)

]−1
Ψj,cl(ω) =

∑

j

1

gR(ω)

[

δij −
Jij
~
gR(ω)

]

Ψj,cl(ω) = 0. (7.15)Here we have plugged in the inverse Green's funtion from Eq. (5.39), whih is no longer loal, sineit ontains the hopping matrix element Jij . Thus it is advantageous to transform the equation into
k-spae. Our solutions will then depend on a wave vetor k, and non-onstant dispersion relations ω(k)should arise. With the assumption of spatial homogeneity, Eq. (7.15) is a onvolution. Transforminginto wave vetor spae yields

1

gR(ω)

[

1 − Jk

~
gR(ω)

]

Ψk,cl(ω)
!
= 0. (7.16)The ondition for non-trivial solutions seems to be

1 − Jk

~
gR(ω) = 0, (7.17)where for a ubi lattie the hopping matrix Jij from Eq. (2.16) transforms into Jk = 2J [cos(kxa) +

cos(kya) + cos(kza)]. But if we remember the form of gR(ω) given by Eq. (7.5), we see that we mighthave a problem with the imaginary part: Sine 1 is a real number and Jk is real as well, the imaginarypart, being non-zero for ω = ∆n, annot anel. At these frequenies, the ondition (7.17) annot beful�lled, whih, however, does not mean that neither Eq. (7.16) is ful�lled.Nevertheless, Eq. (7.17) an be used to alulate the phase boundary. In equilibrium the order �eldshould be onstant in time and spae, as a homogeneous systems is assumed. The �elds thereforeshould be of the form Ψi(t) = Ψieq = Ψeq. After a Fourier transformation in the spatial and temporalvariables, they read Ψk(ω) = Ψeqδk,0δ(ω). This ansatz might solve Eq. (7.17), beause at ω = 0 theGreen's funtion is real, and thus the problem with the imaginary part annot our. In equilibrium,the ondition for a non-vanishing lassial order �eld therefore reads
1 − gR(0)

J0

~
= 0. (7.18)This equation determines the phase boundary in terms of a ritial hopping parameter. Up to thisritial value, the equilibrium order parameter must vanish in order to ful�ll the equations of motion.For larger J , the order parameter might, for the �rst time, beome �nite, whih means that the SFphase is reahed. To go further, higher-order terms in Ψ must be taken into aount. We have alreadydone this in Chapter 6, where we found the equilibrium order �eld in Eq. (6.40). Inserting the ritial
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7.1 Spetra in the MI Phase
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Figure 7.1: The phase boundary between the MI phase and the SF phase at T=0 shows lobes dependingon the ground-state oupation number n.parameters from Eq. (7.18) into Eq. (6.40), we �nd that Ψeq vanishes at the phase boundary.For a hopping matrix like the one given in Eq. (2.16), we have J0 = zJ , where z = 2d denotes theoordination number, i.e. the number of nearest neighbors in a d-dimensional lattie. We thereforean diretly determine the phase boundary JPB = ~

zgR(0) . One an divide both sides by the on-siteinteration parameter U and thus gets the ritial J/U ≡ J̃ as a funtion of the hemial potential
µ/U ≡ µ̃. This funtion has a well-known lobe struture [31,36,69,73℄. Its analytial expression reads

JPB

U
= −(n− µ̃− 1)(n − µ̃)

6(µ̃+ 1)
. (7.19)The �rst three lobes are plotted in Fig. (7.1). The tips will turn out to be the physially mostinteresting part of the lobes. By setting the derivative of the lobe equation (7.19) with respet to µ̃equal to zero, we �nd the loation of the lobe tips at

µ̃cr =
√

n(n+ 1) − 1 and J̃cr =
(
√

n(n+ 1) − n)(n−
√

n(n+ 1) + 1)

6
√

n(n+ 1)
(7.20)This phase diagram agrees qualitatively with other theoretial preditions. It is exatly the sameas the one obtained by mean-�eld theory [31℄. However, in omparison with the most exat results,whih are believed to be given by the Monte-Carlo data in Ref. [30℄, the n = 1 tip of our lobe is muhtoo low. But in Ref. [69℄ it is shown for a similar hopping expansion that taking into aount theseond hopping order improves the result from about 20% error to 2% error. It is one great advantageof our perturbative approah, that it o�ers a way to go systematially beyond mean-�eld results, ifthis is desired. It should be mentioned, however, that alulating higher-order diagrams is a hugeomputational task. However, by making use of a omputer algorithm, the e�etive potential of thesystem was alulated up to the 8th order [76,77℄. In Ref. [76℄ it an be seen, how the alulated phaseboundary gets loser to the Monte-Carlo data in eah hopping order.
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7 Exitation SpetraComing bak to the exitations of the system, we might be tempted to modify Eq. (7.17) anddemand that only its real part vanishes, Re[1 − Jk

~
gR(ω)] = 0. Then this formula is exatly the sameas in Ref. [73℄, where the imaginary parts have been negleted from the beginning. A more onviningsolution of this problem, however, is to take the resummed Green's funtions as a whole and performthe limit ǫ → 0, instead of splitting it, as has been done in Eq. (7.17). Surely, taking the limit ofthe whole expression will be quite more ompliated, but doing so is not only the more orret way,moreover we will get aess to an additional information about the spetral weights.From now on, it appears to be neessary to take the β → ∞ limit for any analytial treatment. Asthe limit limβ→∞ gR(ω) is well-de�ned by Eq. (7.14), we an take the limit for the resummed funtion

GR(1)(ω) from Eq. (5.39) by taking limβ→∞ gR(ω) wherever gR(ω) appears in Eq. (5.39). This leavesus with the following expression
GR

k (ω) =

n−1
∆n+1−ω−iǫ

− n
∆n−ω−iǫ

1 − Jk

~

(

n−1
∆n+1−ω−iǫ

− n
∆n−ω−iǫ

) ≡ a(ω) − iǫ

bk(ω) − ǫ2 + ick(ω)
, (7.21)where the three funtions a, b and c are de�ned as

a(ω) = −ω + (n+ 1)∆n − n∆n+1, (7.22)
bk(ω) = (ω − ∆n)(ω − ∆n+1) +

Jk

~
[ω − (n+ 1)∆n + n∆n+1] , (7.23)

ck(ω) = 2ω +
Jk

~
− ∆n − ∆n+ 1. (7.24)Separating real and imaginary parts yields

GR =
ab− ǫ2(a+ c)

b2 + ǫ2(c2 − 2b) + ǫ4
− i

ǫ(b− ac) − ǫ3

b2 + ǫ2(c2 − 2b) + ǫ4
. (7.25)The limit ǫ → 0 an be taken immediately for the real part, yielding Re[GR

k(ω)] = a(ω)
bk(ω) with adivergene for bk(ω) = 0, where we expet the exitation frequenies. For the imaginary part, we tryto apply the formula (7.4) again by negleting the term ǫ3 in the numerator and the term ǫ4 in thedenominator. Without having a mathematial proof, we expet that in the limit ǫ → 0 they shouldnot play a role. Then we have

Im(GR) = −π b+ ac

c2 − 2b
δ

(
√

b2

c2 − 2b

)

. (7.26)This shows that the imaginary part is non-zero only for b = 0. We hek that c2 − 2b 6= 0 when b = 0,so we an take out the denominator from the δ-funtion aording to the formula δ(kx) = 1
|k|δ(x).Furthermore we an set b = 0 in the term in front of the δ-funtion. Thus, the imaginary part reduesto:

Im(GR) = −πac · |c|
c2

δ(|b|). (7.27)
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7.1 Spetra in the MI PhaseWe still employ the formula
δ(f(x)) =

∑

i

1

|f ′(xi)|
δ(x− xi), (7.28)where the sum is over all xi with f(xi) = 0. Noting that Eq.(7.23) an be written as

bk(ω) = [ω − Ω+(k)] [ω − Ω−(k)] , (7.29)with
Ω±(k) =

1

2

(

− Jk

~
+ ∆n + ∆n+1

±
√

[

Jk

~
− ∆n − ∆n+1

]2

− 4

{

Jk

~
[n∆n+1 − (n+ 1)∆n] + ∆n∆n+1

}

)

, (7.30)we get the result:
Im[GR

k(ω)] = − π

[

|ck(Ω−(k))|
ck(Ω−(k))

a(Ω−(k))

|Ω+(k) − Ω−(k)|δ (ω − Ω−(k))

+
|ck(Ω+(k))|
ck(Ω+(k))

a(Ω+(k))

|Ω+(k) − Ω−(k)|δ (ω − Ω+(k))

]

. (7.31)Furthermore, heking that Ω+(k) ≥ Ω−(k) and |ck(Ω−(k))|/ck(Ω−(k)) = −1 while |ck(Ω+(k))|/ck(Ω+(k)) =

+1 for any k, the whole expression redues to
Im(GR

k(ω)) =π
[ a(ω)

Ω+(k) − ω
δ (ω − Ω−(k)) − a(ω)

ω − Ω−(k)
δ (ω − Ω+(k))

]

= πρ(ω,k). (7.32)Thus we have two dispersion modes Ω+(k) and Ω−(k) with the weights
w±(k) = − ±a(Ω±(k))

Ω+(k) − Ω−(k)
. (7.33)First we should hek whether this result satis�es the sum rule (7.10). We �nd for any wave vetor k

1

π

∫ ∞

−∞
dω Im(GR

k (ω)) =
a(Ω−(k))

Ω+(k) − Ω−(k)
− a(Ω+(k))

Ω+(k) − Ω−(k)
= 1. (7.34)This is very enouraging, as it is not obvious from the beginning that the �rst-order approximation ofthe full Green's funtion ful�lls this rule. Furthermore, this result justi�es a posteriori the negletionof the higher ǫ-terms in Eq. (7.25).The funtions Ω±(k) from Eq. (7.30) yield the pairs of frequenies and wave vetors, at whih thereal and the imaginary part of the Green's funtion diverge for T = 0, i.e. whih solve the equation ofmotion (7.15). These dispersion relations are the same as in Ref. [73℄. Inserting ∆n = U(n − 1) − µ
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7 Exitation Spetra
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() holesFigure 7.2: Partile spetrum (b) and hole spetrum () of the �rst Mott lobe for three di�erent µ/Uat onstant hopping J/U . Note the reversed sign of the ordinate in the hole spetrum.
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= 0.02Figure 7.3: At the lobe tip the dispersion relation gets linear (a), and the spetral weights (b) divergeat k = 0. The spetral weights of the spetra from Fig. 7.2 are plotted in (). Note thatthere is no µ-dependene.into Eq. (7.30), we get
Ω±(k) =

1

2~

[

U(2n − 1) − 2µ− Jk ±
√

U2 − 2JkU(2n + 1) + J2
k

]

. (7.35)The spetral weights w±(k) de�ned by Eq. (7.33) expliitly read
w±(k) =

1

2



1 ± U(1 + 2n) − Jk
√

U2 − 2JkU(2n + 1) + J2
k



 . (7.36)They do not depend on the hemial potential. At the tip of the lobe, both weights diverge at k = 0,as an be found by inserting J̃cr from Eq. (7.20) in Eq. (7.36).To illustrate the result, we plot the spetra and their weights given by Eqs. (7.35) and (7.36). Tothis end we speialize the lattie dispersion Jk = 2J
∑d

i=1 cos(kia) to the ase of an exitation alongone arbitrary lattie vetor diretion ki ≡ k in a three-dimensional lattie, i.e. the other omponentsare set to zero. Then the lattie dispersion reads
Jk = 2J [2 + cos(ka)] . (7.37)
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7.1 Spetra in the MI PhaseQualitatively, it makes no di�erene, whih diretion we hoose, so no interesting information is lostby this restrition to only one k-omponent. The plotted spetra and their weights an be found inFigs. 7.2 and 7.3 for di�erent parameters within the MI phase.For small k, we still would like to bring the dispersion relations Ω±(k) to the following form
~Ω±(k) = ∆± +

1

2m±
~

2k2 +O(k4). (7.38)Then the gap of the spetrum is expliitly given by ∆±, and m± denotes the e�etive mass of theexitation. Suh a form is ahieved by a Taylor expansion of Eq. (7.35) in k. If we again hoose
k = (k, 0, 0), we �nd

∆± =
1

2

(

−6J − U + 2nU ±
√

36J2 + U2 − 12J(U + 2nU) − 2µ
)

, (7.39)
~

2

m±
= J ± J(−6J + U + 2nU)

√

36J2 + U2 − 12J(U + 2nU)
. (7.40)With this we an hek that within all the Mott lobes, we have ∆± 6= 0, i.e. gapped exitations. Itturns out that the masses of both branhes have di�erent shapes: We always have m− < 0, while

m+ > 0. Furthermore, the branh with negative masses has negative energies, too, while the onvexbranh onsists of positive energies. We therefore interpret the exitation of the Ω−-branh as holes,i.e. exitations reated by taking away one partile with momentum −k. Correspondingly, Ω+ isassoiated with partile exitations by adding one partile with momentum k. This interpretation anbe heked by setting J = 0 in Eq. (7.39). We �nd that ∆+ → Un − µ = ∆n orresponds to theenergy needed for adding one partile to system without hopping, while |∆−| → U(n− 1)−µ = ∆n−1is the energy needed for the reation of a hole.For the reation of a partile and a hole at k = 0, the energy di�erene between the two gaps hasto be onsidered Epair = ∆+ − ∆− =
√

36J2 + U2 − 12J(U + 2nU). We �nd that this is exatly thewidth W (n, J̃) of the lobes [31℄. To see that, we must invert Eq. (7.19), yielding:
µ̃PB± =

1

2

(

−1 + 2n− 6J̃ ±
√

1 − 12J̃ − 24nJ̃ + 36J̃2
)

, (7.41)from whih follows the width of the lobe
W (n, J̃) = µPB+(n, J̃) − µPB−(n, J̃) =

√

1 − 12J̃ − 24nJ̃ + 36J̃2 =
∆+ − ∆−

U
. (7.42)The behavior beomes more interesting at the phase boundary: By evaluating ∆± in Eq. (7.39) onthe phase boundary given by Eq. (7.19), we �nd that the gap of the hole exitation vanishes in theinterval µ̃ ∈ (n − 1,

√

n(n+ 1) − 1], i.e. on the left side of the lobe tip. The opposite is true for thepartile exitation, where the gap vanishes in the interval µ̃ ∈ [
√

n(n+ 1) − 1, n). At the tip of thelobe, whih is haraterized by Eq. (7.20), both modes beome gap- and massless. This means thathere and only here, we have an exat symmetry between partiles and holes.Sine 1/m± diverges at the lobe tips, Eq.(7.38) is not appropriate to desribe the spetra there.
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7 Exitation Spetra
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U

= −0.37 () ~ω
U

= −0.40Figure 7.4: For three di�erent energies, the surfaes of onstant energy in k-spae are plotted. Theparameters µ/U and J/U have been hosen as in Fig. 7.2 II. We onsider hole exitations.When the exitation energy exeeds the gap, we get spherial surfaes as in a). For largerenergies the sphere blows up, until the the upper bound of the energy band is reahed.The isotropy gets lost and the symmetry of the lattie emerges, as an be seen in b). Foreven higher energies, no more exitations along the lattie diretions exist, suh that theonstant energy surfaes look like in ).Instead we �nd for small k
~Ω(k) = ±U

√

−2n2 +
√

n(1 + n) + 2n
(

−1 +
√

n(1 + n)
)

√
6

k +O(k2). (7.43)We will ome bak to the peuliarities at the tip in Setion 7.3 when we disuss ritial behavior.One additional information that, in priniple, ould be extrated from the spetral funtion ρ(ω,k)is the density of states. It is given by a k-integration of ρ(ω,k) over the �rst Brillouin zone. However,this integral turns out to be very ompliated, beause of the cos(k) and √cos(k) terms within the
δ-funtion. So let's ontent ourselves with some plots of the onstant energy surfaes in the k-spaeshown in Fig. 7.4. There we see how the symmetry of the lattie emerges, when we inrease theexitation energy.7.2 Spetra in the SF PhaseThe proedure to �nd the spetral funtion in the SF phase is exatly the same as before in the MIphase, i.e. we must take the Green's funtion, whih now is given by Eq. (6.59), separate it in its realand its imaginary part and take the ǫ→ 0 limit. But now, this limiting proedure turns out to be veryompliated, as the lengthy 4-point umulant enters the super�uid Green's funtion (6.59) at variousplaes. It does not seem feasible to follow this way.Instead we argue in the following way: The limiting proedure is di�erent from setting ǫ = 0 onlyfor those frequenies where the Green's funtion diverges, i.e. at the resonane frequenies that weare looking for. But this also means that these frequenies an be found by setting ǫ = 0 in Eq.84



7.2 Spetra in the SF Phase(6.59) instead of taking the limit. This immediately yields a real funtion of ω and k. By �ndingits divergenes, the exitation spetra are determined. Doing this, however, we loose all informationabout the spetral weights, whih is enoded in the imaginary part of the Green's funtion.Another way of �nding the dispersion relations without making use of the Green's funtion is solvingthe equations of motion (6.46) and (6.47). Sine the oe�ients in these equations require a similarlimiting proedure as the Green's funtion, we are onfronted there with the same tehnial problem.But again we argue, that the real part is obtained by setting ǫ = 0, while the ǫ→ 0 limit would yieldan imaginary part proportional to δ-funtions oiniding with the divergenes of the real parts. But asdiverging oe�ients do not solve the equations of motion, we will not onsider these ases and restritus to the ase ǫ = 0. We are then left with real oe�ients only. In terms of Eqs. (6.48) and (6.49),this means that A(ω,k) = A∗(ω,k) and B(ω,k) = B∗(ω,k).With the seond equation of motion (6.49),
Ψk(−ω) = −B

∗(−ω,k)

A∗(−ω,k)
Ψ∗

k(ω), (7.44)we an eliminate one �eld from the �rst equation of motion (6.48), leading to
[

A(ω,k) −B(ω,k)
B∗(−ω,k)

A∗(−ω,k)

]

Ψ∗
k(ω) = 0, (7.45)where all funtional derivatives are evaluated at the equilibrium solution. The resonane ondition fornon-trivial solutions therefore reads:

δ2Γ

δΨ∗
k,q(−ω)δΨk,cl(−ω)

δ2Γ

δΨk,q(ω)δΨ∗
k,cl(ω)

− δ2Γ

δΨ∗
k,q(−ω)δΨ∗

k,cl(ω)

δ2Γ

δΨk,q(ω)δΨk,cl(−ω)
!
= 0. (7.46)This is the same as the equation one would obtain by looking for a vanishing denominator of theGreen's funtion (6.59). The funtional derivatives in Eq. (7.46) have already been taken in Eqs.(6.46) and (6.47). Eq. (7.46) represents an impliit equation for ω(k), but it is too ompliated tobe solved analytially. We will later disuss some expansions that we an make or limits that we antake in order to get analyti expressions, but at �rst we an take a look at solutions, whih have beendetermined numerially. We make the following observations:

• O� the tip, we �nd all in all four SF dispersion branhes. There are two branhes with positiveenergy and two with negative energies. We �nd that the positive branhes di�er from the negativebranhes only by the sign. Remember that in the MI phase we had one mode with ω ≥ 0, thatwe interpreted as an exitation by adding one partile, and a seond mode with ω ≤ 0, whih wasinterpreted as an exitation by taking away one partile. But of ourse, in both ases, a positiveenergy is needed in order to exite the system. The di�erent sign for the exitation frequenyrepresents solely the fat that, when we add a partile, energy is olloated within the system,while energy is taken away from the system, when a hole is reated. However, if we are interestedin the exitation energy, we should rather onsider ~|ω(k)| than ~ω(k). With this reasoning inmind we end up with two dispersion modes in the Mott phase and also two modes in the SFphase. 85



7 Exitation Spetra
• One of the SF dispersion relation is gapped and quadrati for small k, the other SF mode isgapless and linear. For small k, we an therefore approximate both SF dispersion relations by

ω1(k) = ∆ +
1

2m
k2 + · · · , (7.47)

ω2(k) = ck + · · · , (7.48)where ∆ denotes the gap, m the e�etive mass of the massive exitations, and c the sound veloityof the massless mode.
• When we approah the phase boundary, the SF spetra beome idential to the MI spetra.Depending on whether the hemial potential µ is smaller (larger) than at the top of the Mottlobe, the partile (hole) mode from the MI phase survives as a massive exitation in the SF phase.To see this, we have plotted the two super�uid spetra (red), together with the partile/hole spetra inthe MI phase (green) and the spetra at the phase boundary (blue) in the upper part of Fig. 7.5. Thegraph in the middle shows the situation around the tip of the �rst Mott lobe, on the left and right sidewe have plotted the spetra for smaller and larger µ. The latter resemble eah other, but one mustdistinguish partile and hole exitations, in order to see the qualitative di�erene.The mapping of the SF spetra onto the MI spetra beomes even learer in the other plots of Fig.7.5: In the seond and the third row, the gap and the mass of eah mode are plotted as a funtion of

J/U . We see that o� the tip the gapped SF mode ends up at the phase boundary with exatly thesame gap as one of the MI modes. The same is true for its mass. The massless SF mode, however,gains mass near the phase boundary in a sudden, but ontinuous way. At the tip, both modes beomemass- and gapless, no matter whether we ome from the SF side or from the MI side. Finally thesound veloity of the massless SF mode is plotted in Fig. 7.5. While it remains �nite at the tip of thelobe, it falls o� ontinuously, if the phase boundary is approahed o� the tip.Even without solving the resonane ondition (7.46), we an show that our theory neessarily allowsfor this mapping: We only have to ompare the retarded SF Green's funtion given by Eq. (6.59) withthe retarded MI Green's funtion in Eq. (5.39). If we reognize that the equilibrium order �eld |Ψeq|2given by Eq. (6.40) vanishes ontinuously, when the phase boundary is approahed, it is easy to seethat the SF Green's funtion redues to the MI Green's funtion. Therefore it is a onsequene of ourGinzburg-Landau ansatz that the phase transition takes a smooth ourse, as it should be in ase of aseond-order phase transition.7.2.1 Interpretation of the SpetraStill the question arises, how the SF modes an be interpreted. Therefore we should remember thatthe massless exitations are expeted from many points of view:
• Already in the introdution we have stated that suh a dispersion relation is ruial for theunderstanding of super�uidity [15,16℄.
• In Bogoliubov's approah to weakly interating Bose gases, a linear spetrum is obtained as aonsequene of the interations [19℄.86



7.2 Spetra in the SF Phase

(a) µ̃ = 0.3 (b) µ̃ =
√

2 − 1 () µ̃ = 0.6Figure 7.5: The exitation spetra in both the MI and the SF phase are examined for three di�erent
µ̃: The graphs in the middle onsider the situation around the n = 1 lobe tip; Figs. (a)and () show the situation o� the tip. The upper plots show the spetra ω(k) in the SFphase (red), at the phase boundary (blue) and in the MI phase (green). The MI exitationsan be interpreted as partile modes (dotted lines) and hole modes (dashed lines). In theseond and the third row we examine the gap ∆ and the mass m of the exitations asfuntions of J/U . We �nd that the MI spetra map onto the SF spetra. The last rowshows the sound veloity of the massless mode in the SF phase. 87



7 Exitation Spetra
• In the light of symmetry-breaking, suh a dispersion relation is expeted from the Goldstonetheorem [50℄.In the ordered phase, the Landau free energy depited in Fig. 2.3 is haraterized by a minimum fora �nite absolute value of the order parameter. In this piture, it is obvious that hanging the phaseof the order �eld should ost no energy. Thus, we would like to interpret the linear mode, at least for

ω → 0, as a pure phase exitation. In this limit, the equations of motion (6.48) and (6.49) oinide:
A(0,0)Ψ∗

0(0) +B(0,0)Ψ0(0) = 0, (7.49)Splitting the order �eld in its real and its imaginary part, we get the equations
[B(0,0) −A(0,0)] Im[Ψk(0)] = 0, (7.50)
[B(0,0) +A(0,0)] Re[Ψk(0)] = 0. (7.51)Now we have to note that at ω = 0 and k = 0 the terms A and B get very simple, sine |Ψeq| givenby Eq. (6.40) anels partially the funtional derivatives. Thus we have

A(0,0) = −
(

1

gA(0)
− J0

~

)

= B(0,0). (7.52)But this means that Eq. (7.50) allows for non-trivial solutions, while Eq. (7.51) does not. Thus theexitations with ω = 0 are purely imaginary, i.e. only the phase of the order �eld may hange. Henethey must be interpreted as phase exitations in agreement with the piture of a wine-bottle shapedfree-energy funtional in Fig. 2.3.Unfortunately, our argumentation holds only for the zero-energy ase. For any other exitations onthe massless branh and on the massive branh, we are not able to �nd suh a unique lassi�ation.To gain further insight, we rely on the results of other authors:
• In Ref. [78℄ a slave-boson method yields two modes very similar to ours. It is shown thatwithin the sound mode, phase exitations are dominant leading to a density modulation of thesystem. Within the gapped mode, however, amplitude variations are muh stronger than phasevariations and the density stays onstant within the gapped mode. This mode is interpreted asan interhange between ondensate and non-ondensate.
• In Ref. [79℄, both modes are further disussed from the point of view of a quantum phase modelwhih is very similar to the super�uid regime of the BH model. Again, the sound mode is shownto re�et the phase degrees of freedom, while the gapped mode is interpreted as an amplitudemode.
• In Ref. [80℄ a random-phase approximation does not only �nd two, but several modes. Amongstthem, a seond gapped mode appears, whih is symmetrial in energy to the gapped mode arisingfrom the MI spetra. Remember that our theory has yielded suh a mode as well, but we haveargued that only the absolute value of the exitation energy has a physial meaning. In Ref.[80℄, however, the authors alulate the spetral weights of eah mode and �nd that the mirroredmode has zero strength.88



7.2 Spetra in the SF PhaseConerning the sound mode, all ited publiations laim good agreement with the exitation spetrumpredited by Bogoliubov theory whih is onsidered to desribe very well the sound mode exitations.Also the experimental data presented in Ref. [25℄ on�rms this. More questionable, however, is thegapped mode, sine neither does Bogoliubov's theory predit suh an exitation nor has there yet beenany experimental detetion.From our point of view, however, it is quite natural to have a gapped mode in the SF phase, sinewe have seen that it diretly takes up one of the MI mode. If we look at the weight of this mode at thephase boundary, we �nd from Fig. 7.3() in agreement with Ref. [80℄, that it is of the same order asthe gapless mode. Thus this mode must be present also in the SF phase. Unfortunately, we have notbeen able to alulate the weights within the SF phase, so we annot exlude that the weight of thegapped mode deays very fast, when we go away from the lobe. In Ref. [78℄, the weight is alulatedat J = 1.2 Jc above the tip. Here, the authors �nd that it beomes signi�ant only for large k.This might be one reason for the failure of the experimental detetion, but Ref. [78℄ still givesanother argument: Due to missing density modulations in the gapped mode, it is not sensitive toBragg spetrosopy. We an try to understand this by onsidering the physial situation at the phaseboundary: Depending on the position on the lobe, it still osts some energy ∆ to reate a partile(hole), while the reation of a hole (partile) is for free. If we simultaneously reate a partile and ahole, we have to pay this amount of energy ∆. Obviously, we have not hanged the loal density, butthe loal density of partile/hole pairs has inreased. It is proportional to |Ψi,cl|2 ∼ 〈âi〉〈â†i 〉. Thus itseems to make sense interpreting the gapped mode as an amplitude mode at onstant density.Refs. [78,79℄ therefore propose measurements via lattie modulation. Sine |Ψeq| is a funtion of
J and U , an exhange between ondensed and non-ondensed partiles should be stimulated via amodulation of those two parameters. This tehnique has already been applied by the group of T.Esslinger [81℄ and indeed a �nite energy absorption has been found. This an probably be interpretedas a �rst experimental evidene of the gapped mode.7.2.2 Sound ModeIn this setion, we will further analyze the SF sound mode. Before we disuss our own results, webrie�y sketh the way, how this mode is desribed within the Bogoliubov approximation.Bogoliubov SpetrumThe Bogoliubov approah [19℄ as well as the Gross-Pitaevskii (GP) approah [82,83℄ on old bosonigases is based on the idea that due to weak interations the bosoni operators âi and â†i an be replaedby their -number lassial expetation values φi and φ∗i . Bogoliubov's approah still onsiders quantum�utuations ˆ̃ai, i.e. âi = φi + ˆ̃ai and â†i = φ∗i + ˆ̃a†i .Within in the GP ansatz, the Bose-Hubbard HHamiltonian from Eq. (2.1) takes the followinglassial form [84℄

HGP =
∑

i



−J
∑

j∈n.n.

φ∗iφj − µ|φi|2 −
U

2
|φi|4



 , (7.53)
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7 Exitation Spetraleading to the equation of motion
i~
∂φi
∂t

= −
∑

j

Jijφj − µφi − Uφi|φi|2. (7.54)Assuming a homogeneous ondensate, i.e. φi = φ, and negleting third and higher order �utuationterms, the Bogoliubov approah for the BH model [28,80℄ yields the Hamilton operator
ĤB =

∑

i

{

U

2
|φ|4 − µ|φ|2 − 6J |φ|2 +

[

ˆ̃a†i
(

|φ|2U − µ− 6J
)

φ+ h.c.
]

+
U

2

(

φ2ˆ̃a†2i + 4|φ|2ˆ̃a†i ˆ̃ai + φ∗2ˆ̃a2
i

)

− µˆ̃a†i
ˆ̃ai

}

− J
∑

〈i,j〉

ˆ̃a†i
ˆ̃aj. (7.55)The energy is minimized by setting the �rst order �utuation terms to zero, U |φ|2 − µ− 6J = 0. Thesolution of this equation is also the solution of the time-independent, homogeneous GP equation. Wetherefore denote it by φGP:

φGP =

√

µ+ 6J

U
. (7.56)A transformation into k-spae aording to Eq. (5.41) yields

ĤB = N

(

−6J − µ+
U

2
n0

)

n0 +
∑

k

(−Jk − µ) ˆ̃a†k
ˆ̃ak +

U

2
n0

∑

k

(

ˆ̃ak
ˆ̃a−k + 4ˆ̃a†k

ˆ̃ak + ˆ̃a†−k
ˆ̃a†k

)

, (7.57)where n0 = |φGP|2. Using the bosoni ommutation rule [ˆ̃ak, ˆ̃a
†
k
] = 1, this Hamiltonian an bediagonalized by the so-alled Bogoliubov transformation

(

ˆ̃ak

ˆ̃a†k

)

=

(

ukb̂k + v∗−kb̂†
−k

u∗−kb̂†
−k + vkb̂†

k

)

. (7.58)Here the normalization |uk|2 − |v−k|2 = 1 guarantees the bosoni harater of the new operators b̂kand b̂†
k
. After this transformation the Hamiltonian reads

ĤB = −U
2
n2

0N +
1

2

∑

k

(~ωk − Un0 − ǫk) +
∑

k

~ωkb̂†
k
b̂k, (7.59)where ǫk denotes the free dispersion

ǫk = 2J

(

3 −
3
∑

ν=1

cos (kνa)

)

= 4J

3
∑

ν=1

sin2

(

kνa

2

)

, (7.60)while the Bogoliubov dispersion is given by
~ωk =

√

ǫ2k + 2Un0ǫk. (7.61)
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7.2 Spetra in the SF PhaseFurthermore, one �nds for the Bogoliubov parameters
|vk|2 = |uk|2 − 1 =

1

2

(

ǫk + Un0

~ωk

− 1

)

. (7.62)A self-onsisteny hek an be made by alulating the total partile number n(k) = n0δk,0 + |v−k|2.Sine in the Gross-Pitaevskii limit, n0 already equals the total partile number, the Bogoliubov ap-proah is good as long as |v−k| is small.In the next subsetion, we will ompare our spetrum with the Bogoliubov spetrum given by Eq.(7.61). For small k, this funtion an be linearized, and we an extrat a sound veloity from Eq.(7.61). It is given by
c

a/~
=
√

2J(µ+ 6J). (7.63)But now let's see how good our theory agrees with these famous results.Sound Mode from E�etive AtionBeause of the ompliated ω-dependene in the resonane ondition (7.45), we have been at �rstontent with a numerial solution plotted in Fig. 7.5. But as the sound mode is gapless for |k| = 0, itssmall-k behavior an be well approximated, if we Taylor expand the equations of motion in ω and karound ω = 0 and |k| = 0. In that ase the resonane ondition (7.45) beomes analytially solvable.For more simpliity we hoose without loss of generality k = (k, 0, 0) again and get:
α1(n, µ, J, U)k2 + α2(n, µ, J, U)ω2 + α3(n, µ, J, U)k2ω2 +O(ω3) +O(k2) = 0, (7.64)where the oe�ients αi are ompliated funtions, whih we do not want to write down expliitly. Aslong as α1 and α2 have non-zero values, the solution of (7.64) yields a non-zero sound veloity

c(n, µ, J, U) =

√

−α1(n, µ, J, U)

α2(n, µ, J, U)
. (7.65)We an redue the number of variables by measuring all energies in units of U , i.e. J̃ = J/U and

µ̃ = µ/U . We then de�ne the dimensionless quantity
c̃(n, µ̃, J̃) =

c(n, µ, J, U)

aU/~
. (7.66)
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7 Exitation Spetra

(a) Coe�ients α1 = 0 and α2 = 0 from Eq. (7.64).
SFMI
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(b) Sound veloityFigure 7.6: (a) In the �gure on the left-hand side the oe�ients in Eq. (7.64) are investigated: On theblue line whih lies ompletely on the Mott lobe, we have α1(1, µ, J, U) = 0. On the purpleline lying within the Mott lobe and hitting the lobe at its tip, we have α2(1, µ, J, U) = 0.(b) The sound veloity c obtained within our approah (purple) is ompared to the Bogoli-ubov predition (blue) from Eq. (7.63) for a �xed µ/U =
√

2 − 1.This funtion is plotted for n = 1 and onstant µ̃ in the right part of Fig. 7.5. Its expliit expressionfor n = 1 reads
c̃(1, µ̃, J̃) =

[(

J̃ µ̃2(1 + µ̃)3(3 − 2µ̃)
(

− 3 + 8µ̃− 10µ̃2 + 4µ̃3 + µ̃4
)2(

(µ̃− 1)µ̃+ 6J̃(1 + µ̃)
)

)/

(

36J̃(1 − µ̃)3µ̃3(−27 + 108µ̃+ 9µ̃2 − 92µ̃3 + 3µ̃4 − 24µ̃5 + 7µ̃6) − (−1 + µ̃)3µ̃3 (7.67)
(27 − 135µ̃+ 36µ̃2 + 172µ̃3 − 210µ̃4 + 294µ̃5 − 196µ̃6 + 60µ̃7 + 15µ̃8 + µ̃9) + 18J̃2(1 + µ̃)2

(27 − 270µ̃+ 1359µ̃2 − 3860µ̃3 + 5950µ̃4 − 4512µ̃5 + 1198µ̃6 + 100µ̃7 + 135µ̃8 − 66µ̃9 + 3µ̃10)
)]1/2

.For general n the expression beomes muh more lengthy, so we don't give it here.From Fig. 7.5 we suppose that the sound veloity vanishes at the phase boundary exept for thelobe tip. Now we are able to see this expliitly by examining the roots of α1 and α2 in Fig. 7.6(a).It an be seen that the sound veloity beomes zero on the whole lobe exept at the tip, where bothoe�ients α1 and α2 beome zero resulting in a �nite sound veloity.For a omparison with Eq. (7.63) from the Bogoliubov theory, we have plotted c̃(1, µ̃, J̃) for �xed
µ̃ =

√
2 − 1 in Fig. 7.6(b) together with the Bogoliubov predition. At �rst sight the agreement doesnot seem pretty good, as for large J/U the Bogoliubov result diverges, while our result tends to aonstant value. But nevertheless, we should look at what happens, when U dereases independentlyfrom J , as a ruial assumption in the derivation of the Bogoliubov spetrum was the weakness ofinterations.
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7.2 Spetra in the SF Phase

(a) J
U

= 0.04, µ

U
= 0.34 (b) J

U
= 0.15, µ

U
= 0.22Figure 7.7: Bogoliubov spetrum (blue) versus sound mode predited by Eq. (7.45) (purple): In bothplots (a) and (b), the parameter J/U, µ/U are hosen suh that n ≈ 1 aording to Ref.[70℄. While the system in (a) is lose to the phase boundary, in (b) it is deep in the SFphase.We therefore expand our result from (7.64) in U yielding

c

a/~
=
√

2J(6J + µ) +
J
[

216J3(1 + 2n) − 6J(1 + 2n)µ2 − (1 + 6n)µ3 + 36J2(µ+ 2nµ)
]

2
√

2µ3
√

J(6J + µ)
U +O(U2).(7.68)In zeroth interation order, we thus obtain the Bogoliubov result. This means that our theory, whihwe started as a small J expansion, yields the same result as a theory for small U in the asymptotilimit U → 0. As this is a quite remarkable �nding, we are going to study this in more details.First we hek, if only the sound veloity or even the whole spetrum of our theory oinides withthe Bogoliubov result in the weak interation limit. Therefore, we make a Taylor expansion in U ofthe resonane ondition (7.45). To zeroth order we get

~
2ω(k)2 = 4J

3
∑

ν=1

sin2

(

kνa

2

)

[

4J
3
∑

ν=1

sin2

(

kνa

2

)

+ 2(µ+ 6J)

]

. (7.69)This is exatly the result from Eq. (7.61) obtained in the Bogoliubov approximation with a Gross-Pitaevskii order �eld (7.56). In Fig. 7.7 we ompare this spetrum with the numerial solution of thefull resonane ondition. We �nd that in the left piture the agreement of both spetra is quite good.Only for large k, our dispersion relation is �attened a little bit. Deeper in the SF phase, however, ourspetrum strongly deviates from this result.We are thus onfronted with the somehow strange result, that we have a perfet agreement withBogoliubov for small U , but not for large J/U . So we take a look on the �rst-order term in Eq. (7.68).93



7 Exitation SpetraHere we have an asymptoti J3 behavior. This means that the in�uene of this �rst-order orretiongets bigger, when we are deep in the SF phase. Unfortunately, in this regime the Bogoliubov result issupposed to be very good. This is surely a limitation of our theory. But as we started our perturbationtheory in the Mott phase with an expansion for small J , we shouldn't expet too muh. We have goodreasons to believe that at the onset of super�uidity our orretions to the Bogoliubov spetrum arerelevant. A strong evidene for that is the fat that c(n, µ,U, J) vanishes at the phase boundary withthe exeption of the lobe tips.A �nal answer to the question, whether our result orrets the Bogoliubov spetrum near the phaseboundary, an only be given by experiment. The sound mode of bosons in optial lattie was reentlymeasured by the group of K. Sengstok [25℄. This data is shown in Fig. 1.5 in the Introdution. Aquantitative omparison with our results, however, is not possible, sine in the experimental setupthe atoms are on�ned by an additional harmoni trap. To desribe this situation theoretially, onemust introdue a hemial potential µi whih depends on the lattie site. Thus the assumption ofhomogeneity, whih was made in the derivation of our spetra, is no longer ful�lled. But qualitativelywe an see from Fig. 1.5, that the experimental spetrum agrees well with the Bogoliubov spetrumfor small k, but for large k, it is �attened a little bit. This is also the ase for our result as shown inFig. 7.7.7.2.3 Gapped ModeWe now have seen that our results are idential to Bogoliubov's preditions, if we trunate the equationof motion (7.45) in zeroth interation order yielding Eq. (7.69). This equation does not allow for agapped mode. We �nd, however, that a gapped mode arises, if we take into aount higher orders in
U . This mode must therefore be onsidered as a phenomenon, whih is aused by strong interations.Expanding Eq. (7.45) up �rst-order in U , however, still turns out to be too rude, as the e�etivemasses of the exitations have the wrong sign ompared to the numerial solution shown in Fig. 7.5.Sine this solution yields m ∼ 1/

√
U , these masses get big for small U . Then the wrong sign doesnot play an important role, beause the dispersion relation beomes very �at. In the limit U → 0, weget ~ω(k) = 2µ. By omparing this with our numerial solutions, this an be onsidered a reasonableapproximation.Now we should note that µ is a paramter used in our theoretial desription, but not being �xed inthe real system. There the partile number is given and we have to hoose µ in suh a way that thepartile number is reprodued. As one an best see from Eq. (7.56) for the ondensate density deepin the SF phase, a vanishing interation parameter U demands for a vanishing hemial potential µ, ifthe density is to be maintained onstant. Thus we see again, that this mode has to disappear in thelimit U → 0.Further analysis of the gapped mode turns out to be very di�ult. For the gapless mode, a Taylorexpansion around ω = 0 and k = 0 was possible. But solutions with ω 6= 0 annot be properlydesribed in suh a limit. So we really seem to be reliant on the numerial results. We will extendthem a little bit further in the next setion, where the ritial properties are disussed.
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7.3 Critial Behavior7.3 Critial BehaviorThe fat that the system behaves di�erently at the lobe tip than on the rest of the lobe requires somefurther onsiderations. It has already been argued by Weihman et al. [31℄ that suh a di�erene mustour. Their argument is based on the fat that, while the partile number per lattie site is quantizedto integer numbers in the MI phase, in the SF phase it is not. Thus a transition into the SF phase ingeneral omes along with a hange of the density. Only at the tip of the lobe, the phase boundary ishit by a super�uid n = const. urve, thus only there a transition without a density hange is possible.So while on the whole lobe exept at its tip the phase transition is driven by an addition or subtrationof partiles, on the tip of the lobe it is the inrease of the hopping parameter J , whih smoothly drivesthe system into the SF phase. This explains the di�erent ritial behavior.7.3.1 Some Saling IdeasTo examine this behavior a little bit loser, we should �rst state the onept of ritial theories[14,34,85℄: When a system undergoes a phase transition, some of its properties are supposed to beuniversal. That means that they depend on the behavior of the system under saling transformationsrather than on mirosopi details. Systems whih behave equally under the same saling transforma-tions belong to the same universality lass, whih means that their universal properties an be desribedby the same ritial exponents in the viinity of the phase transition. Saling transformations mightat on any relevant quantity within the theory, for example on time and length sales, i.e.:
x→ xe−ν (7.70)
t→ te−zν . (7.71)To see, if a system is invariant under suh a transformation, we have to look at its Lagrangian. Aruial role plays the dynami ritial exponent z. It gives the ratio of the saling fators for time andspae. It is lear that the saling for a Lorentz-invariant Lagrangian, for instane, must have z = 1.Suh a saling leaves veloities invariant and the orresponding systems have a relativisti exitationspetrum ~ω(k) =

√

∆2 + c2k2. Galilei-invariant systems have z = 2 and their spetrum is quadratiin k.Another interesting property onerning the exitation spetra near the phase boundary is the be-havior of an energy gap ∆. We have seen that within the BH model, the gap vanishes at least for onemode, when the phase boundary is approahed. This an be desribed by the power law:
∆ ∼ (J − JPB)a, (7.72)where again the exponent a is universal. As energy sales with the inverse of the saling for time, wehave a = zν.Coming bak to the BH model, the saling behavior on the tip of lobe should be di�erent of the restof the phase boundary. This an be seen by writing down the Lagrangian for a ontinuum quantum
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7 Exitation Spetra�eld theory of the Bose-Hubbard system [34℄:
L = K1Ψ

∗∂Ψ

∂t
+K2

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

2
+K3|∇Ψ|2 + (λ2/2) |Ψ|2 + (λ4/4!) |Ψ|4 , (7.73)where the K's and λ's are parameters depending on the system parameter µ,U and J . Investigating

K1, it is found in Ref. [34℄ that K1 = 0 at the tips of the lobes, resulting in a Lorentz-invariant salingtheory with z = 1, whereas z = 2 holds elsewhere. The universality lass of the transition at thetip is often referred to as the XY -model in d + 1 dimensions or the O(2) quantum rotor model. Forthis theory the mean-�eld value of the ritial exponent zν is found to be 1/2 [31℄, thus ν = 1/2 inmean-�eld. Outside the tip, the systems belongs to the universality lass of dilute Bose gases with
zν = 1, so again we have the mean-�eld exponent ν=1/2.7.3.2 Critial ExponentsFrom the point of view presented in the subsetion above, the linear shape of the dispersion relationat the tips, in ontrast to the quadrati shape elsewhere on the lobe, is a onsequene of the di�erentdynami ritial exponents. Let us still see whih ritial exponents zν are produed by our theory.We have the theoretial tools to study the ritial exponents on both sides of the phase boundary.Due to their universality, they of ourse must be the same on both sides [85℄. And while we an alulate
zν analytially in the MI phase, numerial methods must be applied on the SF phase. Nevertheless,we are going to examine zν in both phases in order to hek our theory. Furthermore, in the SF phasewe an go through the lobe tip either at onstant density or at onstant hopping, whih should yielddi�erent exponents.Approahing the Phase Boundary from the MI phaseThe MI phase approah to the tip has already been graphially investigated in Ref. [73℄ whih is basedon the same retarded Green's funtion as ours. Here we will extend the study of the ritial exponentsto the whole phase boundary. In the MI phase this an be done analytially.The gap is given by Eq. (7.35), when we set k = 0: ∆(U,µ, J) ≡ ~Ω±(0). Of ourse we have tohoose the dispersion relation with a vanishing gap, i.e. a hole spetrum for µ < µtip and the partilespetrum otherwise.Next we invert the equation for the phase boundary (7.19). For more simpliity, we restrit ourselvesto the �rst Mott lobe n = 1:

µ̃PB1,2
=

1

2

(

1 − 6J̃PB ±
√

1 − 36J̃PB + 36J̃2
PB

)

, (7.74)where µ̃PB and J̃PB denote the hemial potential and the hopping at the phase boundary measuredin units of U . We have two solutions, as the lobe is hit twie by J = const. < Jtip.Now we insert µ̃PB1,2
in ∆ whih leaves us with the following expression:

∆̃(µ̃, J̃) ≡ ∆(U,µ, J)

U
= 3(J̃PB − J̃) ±

(

√

1 − 36J̃PB + 36J̃2
PB −

√

1 − 36J̃ + 36J̃2

)

. (7.75)
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7.3 Critial BehaviorNote that this is still a funtion of µ̃, sine J̃PB depends on µ̃. If we now �x µ, we an �nd out howthe gap behaves, when the phase boundary is approahed. We still have to replae J = JPB − j. Wethen have
∆̃(µ̃, j̃) = 3j̃ ±

(

√

1 − 36J̃PB + 36J̃2
PB −

√

1 − 36J̃PB + 36J̃2
PB − 36j̃ − 72J̃PBj̃ + 36j̃2

)

. (7.76)For µ̃ =
√

2 − 1 the phase boundary is hit at the tip. There we have J̃PB = 1/2 −
√

2/3 and hene
√

1 − 36J̃PB + 36J̃2
PB = 0. Thus the gap reads

∆̃(µ̃tip, j̃) = 3j̃ ±
√

24
√

2j̃ + 36j̃2. (7.77)As j̃ vanishes at the phase boundary, the behavior near ritiality is given by the lowest order in j̃, i.e.we have the result
∆̃(µ̃tip, j̃) ∼

√

j. (7.78)This means that the ritial exponent is zν = 1/2.For all other µ, there remains a non-zero term 1−36J̃PB +36J̃2
PB under the square root. This meansthat the gap is not proportional to √

j, but to j. With a Taylor expansion in j, we get:
∆̃(µ̃, j̃) ≈



3 ± 36 − 72J̃PB

2
√

1 − 36J̃PB + 36J̃2
PB



 j. (7.79)Hene we have zν = 1 in agreement with Ref. [31℄.Approahing the Phase Boundary from the SF PhaseAt the tip of the lobe the gap of the SF gapped mode vanishes, so we an also determine the ritialexponent for it on this side of the phase transition. Here we have the possibility either to approah thetip along the line of onstant density or along a tangent to the phase boundary with onstant hoppingparameter J̃ . As we have seen in the MI phase, this di�erene should onern the ritial exponents,so we investigate both ases separately.For a study at onstant density we need to know the average partile number n in the SF phase asa funtion of µ̃ and J̃ . Obtaining this information within our theory is ompliated, so we revert toa thermodynami e�etive ation theory in imaginary time [70℄. There the derivative of the e�etiveation with respet to µ diretly yields n. It is found that n =onst along a line hitting the lobe tip,but without being parallel to the J̃ axis. The latter has been assumed by Weihman et al. [31℄, butdue to the bosoni ommutation relations, the BH model has, di�erent than the fermioni Hubbardmodel, no partile/hole symmetry.In Fig. 7.8(a) we plot the gap along n = 1. Noting the double-logarithmi axes, we an extrat theritial exponent from this graph: zν = 0.5. We also investigated zν for onstant µ̃ =
√

2 − 1 andfound the same value zν = 0.5, i.e. it makes no quantitative di�erene if we use the n =onst line
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7 Exitation Spetra
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8 Relation to other TheoriesIn this �nal hapter we would like to point out the relation of our e�etive ation theory to the theoryof Gross-Pitaevskii skethed in Setion 7.2.2 and to a similar approah as ours, though in imaginarytime [70℄.8.1 Gross-Pitaevskii EquationWe have already seen that the sound mode beomes the Bogoliubov spetrum in the limit U → 0.We want to take this up and onsider the Green's funtions in this limit. At �nite temperature thestruture of GR/A(ω1, ω2) and CR/A(ω1, ω2;ω3, ω4) an be taken from Eqs. (5.20) and (A.15):
GR/A(ω1, ω2) =

1

Z(0)

∞
∑

n=0

eβEngn(ω1, ω2), (8.1)
CR/A(ω1, ω2;ω3, ω4) =

1

Z(0)

∞
∑

n=0

eβEnCn(ω1, ω2;ω3, ω4). (8.2)We must note that the kernels gn and Cn as well as the unperturbed energies En and the partitionfuntion Z(0) depend on the interation U and must be taken into aount, when we expand in U . Inthe lowest, non-trivial interation order, these funtions read:
GR/A(ω1, ω2) = −2π

1

µ+ ω
δ(ω1 − ω2) +O(U) (8.3)

CR/A(ω1, ω2;ω3, ω4) = −2π
2U

(µ+ ω1)(µ+ ω2)(µ+ ω3)(µ+ ω4)
δ(ω1 + ω2 − ω3 − ω4) +O(U2). (8.4)In this limit the Green's funtions do not depend on temperature, sine the kernels gn and Cn donot depend on n. Thus, the temperature-dependene from the exponential an be aneled by thetemperature-dependene of the partition funtion. Any higher-order terms, however, are not indepen-dent from the temperature.In the previous hapter, we have made the limit U → 0 at T = 0. Atually, this has not been orret,sine at zero temperature the Green's funtions redue to one single gn or Cn, respetively. Then n isthe ground-state oupation number. But we know that this is a funtion of µ/U , thus it would bea�eted by U → 0. At �nite temperature, however, we do not have to worry about that, sine n is asummation index.The small U expansion of the equilibrium order �eld Ψeq from Eq. (6.40) yields

(~|Ψeq|)2 = 2
6J + µ

U
+O(U0), (8.5)99



8 Relation to other Theorieswhih is, apart from the fator 2, idential to the Gross-Pitaevskii �eld in Eq. (7.56). This fator isdue to our de�nition of lassial and quantum omponents ~Ψcl =
√

2〈â〉.Eq. (8.5) shows that the order �eld diverges for small U with U−1/2. We should note that there areterms of di�erent order in Ψ in the equation of motions (6.21) and (6.22): the term with GR/A(ω1, ω2)is multiplied with only one �eld, while the term with CR/A(ω1, ω2;ω3, ω4) is multiplied with three�elds. To have the same order in U for all the terms, we trunate the U -expansion of GR/A in zerothorder, while for CR/A it is trunated only in �rst order. The equation of motion (6.21) then reads
0

!
=
∑

j

{

[(−~ω − µ) δij − Jij ]ψ
∗
j,cl(ω) +

~
2

2
Uδij

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

∫ ∞

−∞
dω4

× δ(ω + ω2 − ω3 − ω4)ψi,cl(ω2)ψ
∗
i,cl(ω3)ψ

∗
i,cl(ω4)

}

. (8.6)This is the Fourier transform of the Gross-Pitaevskii equation given in (7.54). The fator 1/2 in frontof U omes again from the de�nition of ~Ψcl as √
2〈â〉. The fat that our theory produes the GPlimit, is a nie rosshek of our results.8.2 E�etive Ation in Imaginary TimeAnother possible hek of our theory is the omparison with the ITF approah in Ref. [70℄. Insteadof de�ning the generating funtional Z by an integration along the real-time axis, an integration from

t = 0 to t = −i~β is used there. Thus, this formalism is, at �rst, a pure thermodynamial theorywithout any signi�ane for real-time dynamis. Nevertheless a omparison of both formalisms ispossible, as in thermal equilibrium it should play no role, whih integration path is hosen, sine bothan be related to eah other via an analyti ontinuation.In order to throw some light on the relationship between those two formalisms, we �rst realizethat both enode all information within the orresponding Green's funtions: In the ITF, these arethe time-ordered n-point funtions de�ned by Eq. (3.28). In the CTPF, we have 2n path-ordered
n-point funtions de�ned by Eq. (3.45). Making the assumption Ψq = 0, we found that only a fewlinear ombinations of them are neessary to desribe the dynamis of the system. We named thesefuntions the advaned/retarded funtions, see Eqs. (4.31) and (6.34). So they should be omparedwith their imaginary-time analogs. To do that, we set ǫ = 0 in the retarded/advaned funtion from theCTPF and replae the real and ontinuous frequeny variable ω by the disrete Matsubara frequeny
iωm = iπm/(~β) or vie versa, where m ∈ N.

• For n = 2, we �nd that the retarded n-point funtion from the CTPF is exatly the same as thethermal Green's funtion from the ITF given in Ref. [70℄.
• For n = 4, however, a disrepany appears. The thermal 4-point funtion from Ref. [70℄ di�ers
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8.2 E�etive Ation in Imaginary Timefrom the retarded funtion CR(ω1, ω2;ω3, ω4) given in Eq. (A.15) by the following term:
1

Z(0)

∞
∑

n=0

e−βEn

{

δωm2,ωm4

( (n+ 1)2

(En+1 −En − iωm1)(En+1 −En − iωm2)

+
n2

(En −En−1 − iωm1)(En − En−1 − iωm4)
− n(n+ 1)

(En − En−1 − iωm1)(En+1 − En − iωm4)

− n(n+ 1)

(En −En−1 − iωm4)(En+1 − En − iωm1)

)

}

ωm1↔ωm2

. (8.7)At this plae we should remember that CR(ω1, ω2;ω3, ω4) is the retarded Green's funtion and at thesame time the retarded onneted Green's funtion. Sine the retarded/advaned funtions have theform 〈T̂c

{

â†qâ
†
qâqâcl

}〉

0
, any deomposition onsists of an expetation value 〈T̂c

{

â†qâq

}〉

0
aordingto Eq. (4.13). Due to the fat that this expetation value is built up of quantum omponent operatorsonly, it must vanish, as we have proved in Setion 6.1. Thus the retarded/advaned Green's funtionsare equal to the orresponding retarded/advaned onneted Green's funtions.For the thermal Green's funtion this is not the ase. The onneted Green's funtion ontains thefollowing additional deomposition term:

−
{

δωm2,ωm4
g2(ωm1)g2(ωm2)

}

ωm1↔ωm2

. (8.8)Now we note that for β → ∞ the expressions (8.7) and (8.8) anel eah other, thus the onneted4-point funtions beome the same in both formalisms.Noting that the equation of motions (6.21) and (6.22) are struturally idential to the equation ofmotion obtained in the ITF, the aordane of the onneted Green's funtions means idential resultsonerning on the one hand the equilibrium order �eld Ψeq and on the other hand the dynamis of thesystem. This saves us for T = 0.Unfortunately, for �nite temperature the expressions (8.7) and (8.8) do not anel, and thus theequations of motion in both formalisms are no longer the same. We wouldn't be onerned with that,if this disrepany a�eted only the dynamis of the system, sine it is far from obvious that theanalyti ontinuation ωm → iω + ǫ in the thermal Green's funtion yields the right real-time funtion[55�57,66,86,87℄. Due to the de�nition of the Matsubara frequenies (3.33), we for example havean ambiguity onerning fators eiβωm = 1, with whih we ould multiply the ITF Green's funtionswithout hanging their value. For real, ontinuous frequenies, however, these terms would not be equalto 1 any longer. But even without making an analyti ontinuation, we an ompare both formalismsby restriting ourselves to equilibrium preditions. We �nd disrepanies onerning the stati solutionfor the order �eld from Eq. (6.40). To obtain this time-independent quantity, all frequenies are setto zero. Then the ITF produes a unique result, whih is on�rmed by Ref. [36℄. Thus we have tosuppose that our equilibrium �eld has the wrong temperature dependene.Another problem, whih seems to be losely related to this one, onerns thermodynami quantitieslike the free energy, whih ontains useful information about the oupation number n or the om-pressibility κ. In the ITF, the free energy is diretly given by the generating funtional F [j, j∗] whihmust be evaluated at j = j∗ = 0. Then n and κ an immediately be gained by derivations of F with101



8 Relation to other Theoriesrespet to the hemial potential µ. Evaluated at j = j∗ = 0, it is the same as the e�etive ation Γevaluated at equilibrium [70℄. We therefore have in the ITF:
〈n〉 = − 1

N

∂Γ

∂µ

∣

∣

∣

∣

ψ=ψeq

, (8.9)
κ = − 1

N

∂2Γ

∂µ2

∣

∣

∣

∣

ψ=ψeq

. (8.10)In the CTPF, however, the assumption Ψq = 0 automatially yields F = Γ = 0. Thus the funtional
F annot be interpreted as the free energy, neither an we derive 〈n〉 or κ from Γ. So the questionarises, whether this thermodynami information is ontained at all in the CTPF. From the point ofview of the equations of motion, it might be possible to drop the assumption Ψq = 0, but sine
Ψq ∼

(

〈â†+〉 − 〈â†−〉
) this would be an unphysial solution, as long as the forward and the bakwardpaths are idential.If we take again a look at the integration ontours shown in Fig. 3.1, we see that the ontour in b),whih ends at a �nite time t− i~β, ertainly enodes the same statistial information as the ITF andallows for an interpretation of Z as the thermodynami partition funtion. Our approah, however,integrates along the ontour depited in Fig. 3.1). Here the integration along the imaginary-time axis,whih is responsible for the thermal averaging, is negleted. We justi�ed this with the fat that all whathappens at �nite real times, is in�nitely far away from the imaginary part of the ontour, whih hasbeen pushed into the in�nite past [59,60℄. For a theory in thermal equilibrium, however, it now seemsruial to inlude this part. Sine in an equilibrium situation, energy is onserved during the wholetime-evolution, it must make a di�erene, whether we start with the perturbed or the unperturbedsystem at a given temperature β. A similar argument against the negletion of the imaginary part isgiven by Refs. [56,88℄, where di�erent ontours are disussed to resolve this problem. Ref. [89℄ proposesto deal with equilibrium situations by shifting the bakward path from t to t− i~β. It requires furtherstudies to �nd out whether suh a ontour really resolves the disrepanies between the CTPF and theITF.

102



9 Summary and OutlookFinally, we would like to summarize our main results and point out the open questions that we arestill left with. The goal has been the derivation of a real-time Ginzburg-Landau theory of order �eldsto desribe the MI-SF quantum phase transition undergone by a bosoni system in an optial lattie.The basi models, whih have guided us, have been presented in Chapter 2.To onstrut a Ginzburg-Landau funtional, we have hosen a Green's funtion formalism presentedin Chapter 3. Sine it is di�ult to extrat real-time information from the thermal Green's funtions[55,56℄, the tehnique of ontour-ordered Green's funtions de�ned in Setion 3.4 has been applied.However, 2n n-point funtions exist in this formalism, thus the Keldysh rotation [66℄ introdued inSetion 3.5 is a useful simpli�ation, sine in this basis always one n-point funtion beomes zero.The general proof of this an be found in Setion 6.1. Furthermore, the Keldysh rotation introdues,amongst others, the retarded/advaned Green's funtions, whih are more physial than the ontour-ordered Green's funtions. This an be seen in Setions 5.4 and 6.2, where the dynami equations ofthe system are exlusively given by the retarded/advaned funtions [75℄.In Chapter 4 we have expanded a free-energy-like funtional of symmetry-breaking soures simul-taneously in the urrents and in the hopping parameter. Sine the urrents have been de�ned asonjugate variables of the order �elds, expanding in them prepares the Ginzburg-Landau funtionalwhere, in view of a proper desription of the phase transition, the dependene on the �elds an betrunated in fourth order [14℄. The hopping expansion is physially justi�ed for large dimensions dueto the saling behavior of the problem [68℄.In Setions 4.3 � 4.5 we have shown that, due to the linked-luster theorem [71,72℄, this expansionan be diretly written down diagrammatially. The building bloks of the expansion are the umulantsof the system without hopping, whih an straightforwardly be alulated. Up to seond order in theurrents and �rst order in the hopping, this expansion is performed in Setion 4.6. There we haveused the �old� basis of ontour-ordered funtions and performed the Keldysh rotation afterwards. Thisareful proedure has shown that in the Keldysh basis, the Pauli matrix σ1 must be put in betweentwo Green's funtion matries in order to orretly desribe a hopping proess [59℄.In Chapter 5 we have Legendre transformed the funtional from Setion 4.6. This transformationyields the e�etive ation, whih serves as a Ginzburg-Landau funtional, sine the arti�ial urrentsare replaed by physial order �elds Ψ and Ψ∗ whih an be identi�ed with the expetation values ofthe annihilation/reation operators [69,70℄. Furthermore, it resums the Green's funtion as is shownin detail in Setion 5.3. The resummation allows for good results even for a larger hopping parameter.In seond order in the urrents, however, the approah is restrited to the MI phase, thus we had torepeat the proedure from Setions 4.6 and 5.1 in order to get the higher-order terms. This is donein Setion 6.1, where we work in the Keldysh basis and in frequeny spae from the beginning. The�nal funtional Γ[Ψ,Ψ∗] is given in Eq. (6.18). From this funtional, we get the equations of motions103



9 Summary and Outlook(6.21) and (6.22), whih yield the equilibrium order �eld in Eq. (6.40). To solve the equations ofmotion in the dynami ase, we have linearized them around the equilibrium result in Setion 6.2.3.In this linear approximation, we have also been able to derive a SF retarded Green's funtion from thee�etive ation, whih is given by Eq. (6.59).With this theoretial groundwork we are well equipped to takle the atual goal of our thesis, namelyto �nd onrete results about the dynami behavior of the system. This work is done in Chapter 7,where we have found the phase boundary as well as the respetive exitation spetra in both theMott-insulator and the super�uid phase. For simpliity, we have restrited ourselves to T = 0. Theresult for the phase boundary shown in Fig. 7.1 is idential with the mean-�eld result [31℄, but weould go beyond it by inluding higher-order hopping terms [69℄. This is one big advantage of oursystemati perturbation expansion. In the MI phase, we have been able to �nd analyti expressionsfor the spetra and their weights given by Eqs. (7.35) and (7.36). These are the usual partile/holeexitations predited by mean-�eld theory [73℄.In Setion 7.2 we have �rst solved numerially the equations of motion in the SF phase. This yieldedtwo exitation branhes, where one has the linear shape expeted from Bogoliubov theory [28℄, whilethe other one is gapped and quadrati. We have analyzed the gap, the mass, and the sound veloity ofthese spetra and found that they perfetly map onto the MI spetra. All this information is ontainedin Fig. 7.5. We have shown that this mapping is a natural onsequene of our Ginzburg-Landau ansatz.Then an analyti result for the sound veloity has been obtained in Eq. (7.67) by a Taylor expansionof the equations of motion for small ω. In the limit U → 0, the gapless spetrum gets idential to theBogoliubov spetrum, whereas the gapped mode disappears. Unlike the Bogoliubov approximation,our approah is also able to desribe the behavior in the viinity of the phase boundary. Therefore wehave analyzed the ritial exponents in Setion 7.3 and reprodued the mean-�eld results from Ref.[31℄.As already mentioned, the results from Chapter 7 ould still be improved by inluding higher-orderhopping terms. But even in the �rst order, whih we have examined here, the SF equations of motionare so ompliated that not all the information, whih is ontained, ould be extrated. This onernsespeially the spetral weights, whih ould give some hints for the heavily disussed SF gapped mode[78�80℄. For the interpretation of this mode, whih has few experimental evidene [81℄, it would alsobe helpful to get more information about the harater of this exitation.The sound mode, however, has been reently measured via Bragg spetrosopy [25℄, thus we musttry to ompare our result with the experimental data. To this end we must hek the in�uene ofthe additional harmoni trap in the experimental setup. The theoretial problem with suh a trap is,that spatial homogeneity has been ruial in our derivation of the equations of motion. It ould beonsidered, for instane, within a Thomas-Fermi approximation [42℄.Instead of omparing our results with experiments, we have pointed out the relation of our approahto other theories on the problem. In Setion 8.1 we have shown that for U → 0 our equations of motionbeome idential to the Gross-Pitaevskii equation. Thus, although we have started the perturbationexpansion from the strong-oupling limit, we are able to extrat the right weak-oupling limit. Thishas not been ahieved before, as the following itation from the reently published book �UltraoldQuantum Fields� by H. Stoof et al. [90℄ may demonstrate: �Although these [the weak- and the strong
104



oupling limit℄ should be smoothly onneted to eah other, at present it is not known how to formulatea mean-�eld theory that interpolates between these two extremes.�In Setion 8.2, our results have been ompared with an e�etive ation theory in imaginary timefrom Ref. [70℄. They perfetly agree for T = 0. For �nite temperature, however, a disagreement in the4-point funtion has been found.Certainly the main fore in future works must be put into the failure of our theory in thermoequi-librium, whih arose very unexpetedly. We therefore have to hek, whether a di�erent ontour isable to irumvent this problem. We suspet that an integration ontour like in Fig. 3.1b), whihontains an imaginary part from t to t − i~β, is able to desribe the equilibrium situation properly[60,88℄. Unfortunately, many feasible properties of the Keldysh ontour, whih have been used in thisthesis, do not hold for suh a ontour, so this theory would have to start from the very beginning.Although we believe that out of equilibrium the Keldysh ontour is appropriate to desribe thesystem, we �rst have to hek, how to handle the equilibrium situation, before we an go on and applythe theory to non-equilibrium situations as for example in ollapse and revival experiments [41℄. Thesituation found there ould then be desribed by a Bose-Hubbard Hamiltonian where the parametersdepend on time. Certainly, the CTPF would ome out on top in suh a problem, sine the ITF wouldno longer be appliable. In suh a time-dependent system, however, neither frequeny is onserved atthe verties nor a linearization of the equation of motions around equilibrium is possible. Thus wewould end up with multiple integral equations and would rely on new methods of solving them.
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A CTPF 4-Point FuntionHere we show how to alulate the retarded 4-point funtion as de�ned in Eqs. (6.33) and (6.34) andits Fourier transform. We suppose that t3 > t4, whih redues the number of time-orders that have tobe onsidered to only three. To ompensate this restrition, we will have to symmetrize the expressionin these variables at the end of the alulation.Writing out the triple ommutator in Eq. (6.33) yields eight operator produts for eah time-order.The expetation values of these produts an diretly be read from the de�nition of the reation andannihilation operators:
â|n〉 =

√
n|n − 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (A.1)We have

CR(t1, t2; t3, t4) = −i
∞
∑

n

e−βEn

Z(0)

{

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4) An+

θ(t1 − t3)θ(t3 − t4)θ(t4 − t2) Bn + θ(t1 − t3)θ(t3 − t2)θ(t2 − t4) Cn

}

t3↔t4
, (A.2)where the respetive oe�ients are given by

An ≡ (n+ 1)(n + 2) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t2(En+1 −En+2) + t1(En − En+1)
)

]

− (n+ 1)(n + 2) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t2(En − En+1)
)

]

+ n(n− 1) exp

[

i

~

(

t4(En − En−1) + t3(En−1 − En−2) + t2(En−1 − En) + t1(En−2 − En−1)
)

]

− n(n− 1) exp

[

i

~

(

t1(En−1 − En) + t2(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t1(En − En+1) + t2(En−1 − En) + t3(En − En−1)
)

]

− n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t1(En−1 − En) + t3(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t1(En − En+1) + t2(En−1 − En) + t4(En − En−1)
)

]

− n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t2(En − En+1) + t1(En−1 − En) + t4(En − En−1)
)

]

, (A.3)
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A CTPF 4-Point Funtion
Bn ≡ n(n+ 1) exp

[

i

~

(

t2(En−1 −En) + t4(En − En−1) + t3(En+1 − En) + t1(En − En+1)
)

]

− n(n+ 1) exp

[

i

~

(

t1(En−1 − En) + t3(En − En−1) + t4(En+1 −En) + t2(En − En+1)
)

]

+ n(n− 1) exp

[

i

~

(

t2(En−1 − En) + t1(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

− (n + 2)(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t2(En − En+1)
)

]

+ 2(n + 1)2 exp

[

i

~

(

t4(En+1 − En) + t1(En − En+1) + t3(En+1 − En) + t2(En − En+1)
)

]

− 2n2 exp

[

i

~

(

t2(En−1 −En) + t3(En − En−1) + t1(En−1 −En) + t4(En − En−1)
)

]

, (A.4)
Cn ≡ n(n− 1) exp

[

i

~

(

t2(En−1 −En) + t1(En−2 − En−1) + t3(En−1 − En−2) + t4(En − En−1)
)

]

+ n(n+ 1) exp

[

i

~

(

t3(En+1 − En) + t1(En − En+1) + t2(En−1 −En) + t4(En − En−1)
)

]

− (n + 2)(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t3(En+2 − En+1) + t1(En+1 − En+2) + t4(En − En+1)
)

]

− n(n+ 1) exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t1(En−1 −En) + t3(En − En−1)
)

]

+ 2(n + 1)2 exp

[

i

~

(

t4(En+1 − En) + t2(En − En+1) + t3(En+1 − En) + t1(En − En+1)
)

]

− 2n2 exp

[

i

~

(

t1(En−1 −En) + t3(En − En−1) + t2(En−1 −En) + t4(En − En−1)
)

]

. (A.5)The substitution t̃i = ti−t4 anels one time argument in the expressions. Now we perform the Fouriertransformation. It an be done in exatly the same way as in Setion 5.2, where we transformed the2-point funtion. For eah step funtion we insert its Fourier representation from Eq. (5.17), yielding
δ-funtions that an easily be integrated out. Sine the variable t4 ould be aneled, the Fouriertransformation in this variable simply gives 2πδ(ω1+ω2−ω3−ω4) guaranteeing frequeny onservation.We therefore introdue the notation

θ(t1 − t2)θ(t2 − t3)θ(t3 − t4)An → −i2πδ(ω1 + ω2 − ω3 − ω4) an, (A.6)
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and similarly for Bn and Cn. The oe�ients an, bn, and cn are given by
an ≡ (n+ 2)(n + 1)

(En − En+1 + ω1 + iǫ1)(En − En+2 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− (n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(En − En+2 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(En−2 − En + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n− 1)

(En−1 − En + ω1 + iǫ1)(En−2 − En + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

+
n(n+ 1)

(En −En+1 + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n+ 1)

(En −En+1 + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(En−1 − En+1 + ω1 + ω2 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)
,(A.7)

bn ≡ −n(n+ 1)

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)

− −n(n+ 1)

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

+
−n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)

− −(n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

+
−2(n+ 1)2

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω2 + iǫ3)

− 2n2

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω2 + iǫ3)
, (A.8)
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A CTPF 4-Point Funtion
cn ≡ n(n+ 1)

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− n(n+ 1)

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
n(n− 1)

(En−2 − En−1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)

− (n+ 2)(n + 1)

(En+1 − En+2 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

+
2(n+ 1)2

(En − En+1 + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En − En+1 + ω1 + ω2 − ω3 + iǫ3)

− −2n2

(En−1 − En + ω1 + iǫ1)(ω1 − ω3 + iǫ2)(En−1 − En + ω1 + ω2 − ω3 + iǫ3)
. (A.9)To take the limit iǫ→ 0, we note that all terms look like

1

(x+ iǫ1)(y + iǫ2)(z + iǫ3)
. (A.10)Applying Eq. (7.4) subsequently for eah ǫi leaves us with

[

1

x
− iπδ(x)

] [

1

y
− iπδ(y)

] [

1

z
− iπδ(z)

]

. (A.11)Thus, divergenes of the real part our, when xyz = 0. In this ase, the diverging term 1
xyz interfereswith δ-funtions, but they do not a�et the asymptoti behavior of the real part lose to these diver-genes. In the imaginary part, however, the δ-funtions play the ruial role, sine it is only non-zeroas long as xyz 6= 0.But in Setion 7.2 we have argued that the dynami behavior an be extrated from the real partalone, and thus we an neglet the δ-funtions in the following. The only thing that remains to bedone now, is to join all terms from an, bn and cn, in order to get a ompat expression.First we note that eah term in bn has a �partner� in cn. Then we take a look at the terms in an,whih are proportional to n(n+ 1). Two of the four terms read

+1

(En − En+1 + ω1)(En − En+1 + ω1 + ω2 − ω3)(En−1 − En+1 + ω1 + ω2)
+

+1

(En − En+1 + ω1)(En−1 − En + ω1 + ω2 − ω3)(En−1 − En+1 + ω1 + ω2)
. (A.12)Now we mustn't forget the symmetrization that has to be performed in ω3 ↔ ω4. Then the �rst termin (A.12) plus the symmetrization of the seond term an be ombined to

(En−1 − En+1 + 2ω1 + 2ω2 − ω3 − ω4)

(En − En+1 + ω1)(En − En+1 + ω1 + ω2 − ω3)(En−1 − En + ω1 + ω2 − ω4)(En−1 − En+1 + ω1 + ω2)
.(A.13)
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Still noting the frequeny onservation, ω1 + ω2 − ω3 − ω4 = 0, we get
1

(En − En+1 + ω1)(En − En+1 + ω3)(En−1 − En + ω4)
. (A.14)Finally we ombine everything and write:

Re CR(ω1, ω2;ω3, ω4) = −2πδ(ω1 + ω2 − ω3 − ω4)
∞
∑

n=0

e−βEn

Z(0)

×
{

n(n+ 1)

(En − En−1 − ω1)(En+1 − En − ω4)

(

1

En −En−1 − ω3
− 1

En+1 − En − ω2

)

+
n(n+ 1)

(En − En−1 − ω3)(En+1 −En − ω1)

(

1

En − En−1 − ω2
− 1

En+1 − En − ω4

)

+
−(n+ 2)(n + 1)

(En+1 − En − ω4)(En+2 −En − ω1 − ω2)

(

1

En+1 − En − ω1
+

1

En+1 − En − ω2

)

+
n(n− 1)

(En − En−1 − ω4)(En − En−2 − ω1 − ω2)

(

1

En − En−1 − ω1
+

1

En − En−1 − ω2

)

+
2(n + 1)2

(En+1 − En − ω1)(En+1 −En − ω2)(En+1 − En − ω4)

+
−2n2

(En − En−1 − ω1)(En − En−1 − ω2)(En − En−1 − ω4)

}

ω3↔ω4, ω2↔ω1

. (A.15)We heked this result by omparing it with the ITF Green's funtion in Setion 8.2. Agreement isfound for T = 0.
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