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Chapter 1Introdu
tionMost physi
al problems are not exa
tly solvable. Therefore a wide variety of approximativemethods has been developed throughout the history of physi
s. One of them is perturbationtheory. This te
hnique has proven to be extremely useful under innumerable 
ir
umstan
es.Usually, however, the weak-
oupling series whi
h are obtained through perturbation theoryare not 
onvergent.The ground state energy of the anharmoni
 os
illator is the simplest example where thisphenomenon 
an be studied. Re
ursion relations �a la Bender and Wu [1℄ yield perturbationseries for the eigenvalues (energy) and eigenfun
tions (wave fun
tions) of the S
hr�odingerequation up to arbitrarily high orders. The Bender-Wu re
ursion relation yields a powerseries for the anharmoni
 part of the wave fun
tion both in the 
oupling strength g and inthe 
oordinate x. The power series in x 
an be 
ut o� naturally by 
omparing the re
ursiveresults with results obtained from generating Feynman diagrams. If now the value of the
oupling strength g that determines the in
uen
e of the anharmoni
ity is mu
h smaller thanone, the series in g 
onverges initially. To higher orders, however, the series diverges. If the
oupling strength be
omes too large, the series always diverges and no physi
al results 
anbe obtained at all. This thesis deals with both problems: Obtaining high-order perturbationseries and then making them 
onverge for all values of the 
oupling strength.In Part I we introdu
e a new re
ursive te
hnique that extends the Bender-Wu re
ursion tosolutions of the time-dependent S
hr�odinger equation. This new, more 
omprehensive re-
ursion relation enables us to obtain high-order perturbative results for the imaginary-timeevolution amplitude of the anharmoni
 os
illator by solving a set of both di�erential andalgebrai
 equations. This is in 
ontrast to the Bender-Wu re
ursion whi
h is a purely algeb-rai
 formalism.We treat our simple model system | the anharmoni
 os
illator | quantum statisti
ally byperforming a Wi
k rotation. In the beginning of Chapter 2, both the real- and the imaginary-time evolution amplitude and their respe
tive properties are reviewed. The subsequent se
-tions deal with the physi
al quantities that 
an be derived from the imaginary-time evolutionamplitude, namely the partition fun
tion, the density matrix, the ground state wave fun
-tion, and the 
orrelation fun
tions. At the end of Chapter 2 we take a look at the limits asthe temperature goes to zero and to in�nity, respe
tively.In Chapter 3 we derive the 
ombined di�erential and algebrai
 re
ursion relation for 
al
ulat-



8 Introdu
tioning the imaginary-time evolution amplitude. To that end we 
ompare two di�erent ansatzesfrom whi
h the se
ond proves to be the better one. It obeys a symmetry whi
h eventuallyenables us to 
hange many of the di�erential equations into purely algebrai
 ones. Thus ourre
ursion relation assumes a Bender-Wu [1℄ like shape. We also 
ut o� the power series inthe 
oordinates by 
omparison to diagrammati
 
onsiderations.In Part II of this thesis variational perturbation theory [2℄ is applied to the perturbativeresults gained throughout the �rst part. This theory is a systemati
 extension of a simplevariational approa
h, �rst developed by Feynman and Kleinert in the path integral form-alism. Feynman introdu
ed the path integral formalism as a quantization regulation, thatrepresents the operator properties of quantum physi
s by 
u
tuations of the dynami
al vari-ables [3, 4℄. By extending analyti
ally real time to imaginary time, also quantum statisti
alquantities 
an be obtained by summing over quantum me
hani
al and thermal 
u
tuationswith the help of path integrals [4, 5℄. In order to evaluate the path integral for the freeenergy approximatively, Feynman and Kleinert developed a variational method in 1986 [6℄.It repla
es the relevant system by the exa
tly solvable harmoni
 os
illator whose frequen
ybe
omes a variational parameter whi
h has to be optimized. Starting with Ref. [7℄, thismethod has been systemati
ally enhan
ed by Kleinert to higher orders [2, 8℄. It is nowknown as variational perturbation theory and yields results for all temperatures and all
oupling strengths. It has already been applied to a broad variety of physi
al problemslike, for instan
e, to e�e
tive 
lassi
al partition fun
tions and potentials [6, 7, 9, 10℄, to theCoulomb problem with and without homogeneous magneti
 �eld [11, 12, 13, 14℄1, semi
las-si
al simulations of mole
ular dynami
s [15, 17℄, the anharmoni
 os
illator [18, 19, 20, 21℄,Sine-Gordon 
hains [22℄, Markov pro
esses [23, 24, 25℄, Bender-Wu singularities [26℄, the an-harmoni
 os
illator with an xP -potential [27℄, as well as to tunneling phenomena [28, 29, 30℄,to the double-well potential [31℄, to parti
le distributions [11, 32, 33, 34℄, to 
u
tuating �eldsystems [35℄, and the 
u
tuation pressure of membranes [36, 37℄, to �4-theory [8, 38, 39℄ andlast but not least to the ground state wave fun
tion [40, 41℄. Only very re
ently variationalperturbation theory was applied to quantum dissipative systems [42℄. For instan
e Cu

oli etal. applied variational perturbation theory to the density matrix [43℄ of the Caldeira-Leggettmodel [44, 45, 46, 47℄, using te
hniques developed by Gia
hetti and Tognetti [22℄.In Chapters 4 and 5 the free energy and the ground state wave fun
tion of the anharmoni
os
illator are dis
ussed and ea
h of them undergoes variational perturbation theory. Usingthe high-order results for the imaginary-time evolution amplitude from Chapter 3 we studythe 
onvergen
e behaviour of variational perturbation theory up to �fth order for the freeenergy and up to seventh order for the ground state wave fun
tion. As variational perturb-ation theory espe
ially allows for strong 
oupling, we 
on
entrate on 
oupling strengths gequal to or greater than one. The results for the free energy are subje
t to a numeri
al
ross 
he
k and | where appropriate | to 
lassi
al 
onsiderations, whereas our results forthe ground state wave fun
tion are 
he
ked against both numeri
al 
al
ulations and againstthe well-known asymptoti
 behaviour [41℄. Moreover we study the patterns o

urring in theoptimization pro
ess [2, 48℄ for the free energy whi
h already have proven to be very regularin the 
ase of the ground state energy [2℄.1The singularity is ironed out by the thermal 
u
tuations. This pro
ess 
ondensed in the smearingformula [6, 12℄. Similar potentials have been treated reverting on wave pa
kages [15, 16℄.



9In Chapter 6 we take a look at a problem from outside quantum statisti
s, namely the prop-erties of boundary-layers. They 
an be 
al
ulated on a latti
e in the limit as the latti
espa
ing goes to zero. Understanding this limit would enable us to swit
h from di�eren
eequations and numeri
s to di�erential equations and symboli
 evaluations and vi
e versa.Here we 
ompare variational perturbation theory with Pad�e methods. It turns out thatthey both produ
e good approximative results, but they do not 
onverge. However, bothresummations reveal spe
ial properties whi
h have not been observed before. We also studythe large-order behaviour of two boundary-layer problems in order to better understand thestrong-
oupling limit.Chapter 7 �nally sket
hes advantages and disadvantages of our 
ombined di�erential and al-gebrai
 re
ursion relation and dis
usses the 
onvergen
e of variational perturbation theory.It also provides an outlook on very promising future appli
ations of both re
ursion relationsand variational perturbation theory.
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Chapter 2Quantum Statisti
sIn this 
hapter we review the de�nitions of some quantum statisti
al quantities based onthe time evolution amplitude in quantum me
hani
s and in quantum statisti
s. From theimaginary-time evolution amplitude we derive the partition fun
tion and the free energy asglobal quantities of a system. Thereafter we examine lo
al quantities su
h as the densitymatrix and 
orrelation fun
tions whi
h 
an also be derived from the imaginary-time evolutionamplitude. We �nally go ba
k to quantum me
hani
s by taking the low-temperature limitfrom whi
h we obtain the ground state wave fun
tion and energy. We shall also study thehigh-temperature limit in whi
h we obtain the 
lassi
al statisti
al properties of the system.2.1 Real-Time Evolution AmplitudeIn the S
hr�odinger pi
ture, the time evolution of a state ve
tor j	(ta)i at a time tb is givenby the equationj	(tb)i = e�i(tb�ta)Ĥ=�hj	(ta)i : (2.1)The operatorÛ(tb; ta) � e�i(tb�ta)Ĥ=�h (2.2)is 
alled the time evolution operator. Here Ĥ = Ĥ(x̂; p̂) is a Hermitean Hamilton operatorwhi
h depends on the 
anoni
al variables, position and momentum of the system. We assumethat there is no expli
it time-dependen
e. The operator Û(tb; ta) is unitary by 
onstru
tion,so Û�1(tb; ta) = Û y(tb; ta) (2.3)holds for all times ta, tb. Also, it ful�lls the group multipli
ation lawÛ(tb; ta) = Z +1�1 dt
 Û(tb; t
)Û(t
; ta) : (2.4)



14 Quantum Statisti
sThe time evolution operator obeys the equation of motionddtb Û(tb; ta) = � i�hĤÛ(tb; ta) (2.5)with the initial 
onditionÛ(ta; ta) = 1 : (2.6)We now introdu
e another quantity derived from the time evolution operator, namely thereal-time evolution amplitude. It is de�ned by(xb tbjxa ta) � hxbjÛ(tb; ta)jxai ; (2.7)where the bra hxbj and the ket jxai denote the eigenstates of the position operator x̂ to theeigenvalue x, obeying the eigenvalue equationx̂jxi = xjxi : (2.8)The eigenve
tors are orthonormalhxjx0i = Æ(x� x0) ; (2.9)and 
ompleteZ +1�1 dxjxihxj = 1 : (2.10)The operator Û(tb; ta) obeys the unitarity property (2.3), su
h that the matrix elements havethe propertyhxbjÛ(tb; ta)jxai = hxajÛ y(tb; ta)jxbi�= hxajÛ�1(tb; ta)jxbi�= hxajÛ(ta; tb)jxbi� : (2.11)For the amplitude (2.7) this implies(xb tbjxa ta) = (xa tajxb tb)� : (2.12)



2.2 Spe
tral Representation 152.2 Spe
tral RepresentationLike any fun
tion of an operator, the time evolution amplitude has a spe
tral representationwhi
h turns out to be helpful for a lot of 
al
ulations at a later stage of this work. Bymultiplying equation (2.5) with a bra hxbj from the left and with a ket jxai from the rightwe obtain the S
hr�odinger equationi�h ��t (xb tjxa 0) = Ĥ(xb; p̂b)(xb tjxa 0) ; (2.13)wherep̂b � �i�h ��xb : (2.14)The initial 
ondition is(xb 0jxa 0) = Æ(xb � xa) ; (2.15)whi
h 
omes from equation (2.6) together with (2.9). Suppose now that we have found a
omplete and orthonormal set of eigenfun
tions of the stationary S
hr�odinger equationĤ(xb; p̂b)	n(xb) = En	n(xb) : (2.16)The 
ompleteness relation in this 
ase readsXn 	�n(xb)	n(xa) = Æ(xb � xa) ; (2.17)and the orthonormality property isZ +1�1 dxb	�n(xb)	n0(xb) = Ænn0 : (2.18)Be
ause of 
ompleteness, we 
an expand the time evolution amplitude (xb tjxa 0) in terms ofthe eigenfun
tions 	n(xb):(xb tjxa 0) =Xn 
n(t)	n(xb) : (2.19)Inserting this ansatz into the S
hr�odinger equation (2.13), and using (2.16), we obtaini�hXn _
n(t)	n(xb) =Xn En
n(t)	n(xb) : (2.20)



16 Quantum Statisti
sMultiplying (2.20) by 	�n0(xb) and integrating over xb yieldsi�hXn _
n(t) Z +1�1 dxb	�n0(xb)	n(xb) =Xn En
n(t) Z +1�1 dxb	�n0(xb)	n(xb) ; (2.21)whi
h | employing the orthormality property (2.18) | transforms toi�h _
n(t) = En
n(t) : (2.22)The solution to this di�erential equation simply is
n(t) = 
n(0)e� i�hEnt : (2.23)Inserting (2.23) into the expansion (2.19), the real-time evolution amplitude be
omes(xb tjxa 0) =Xn 
n(0)e� i�hEnt	n(xb) : (2.24)The 
onstants 
n(0) are now �xed by applying the initial 
ondition (2.15):(xb 0jxa 0) =Xn 
n(0)	n(xb) = Æ(xb � xa) : (2.25)Multipli
ation by 	�n0(xb) and integration over xb leads to
n0(0) = 	�n0(xa) : (2.26)So all in all we get for the real-time evolution amplitude(xb tjxa 0) =Xn 	�n(xa)e� i�hEnt	n(xb) ; (2.27)whi
h is its spe
tral representation.Generally, every fun
tion of an operator F (Ô) 
an be spe
trally expanded asF (Ô) =Xn f(�n)	n	�n ; (2.28)where the �n are eigenvalues of the operator Ô.



2.3 Imaginary-Time Evolution Amplitude 172.3 Imaginary-Time Evolution AmplitudeIn order to make the transition from quantum me
hani
s to quantum statisti
s1, we performa so-
alled Wi
k rotation of the time:t! �i� : (2.29)Thus the real-time evolution amplitude (xb tbjxa ta) turns into the imaginary-time evolutionamplitude (xb �bjxa �a). The imaginary-time evolution amplitude 
an also be expanded as(xb �bjxa �a) = hxbjÛ(�b; �a) xai ; (2.30)where Û(�b; �a) is the imaginary-time evolution operatorÛ(�b; �a) � e�(�b��a)Ĥ=�h : (2.31)In 
ontrast to the real-time evolution operator Û(tb; ta), its imaginary 
ounterpart Û(�b; �a)is not unitary, but Hermitean:Û y(�b; �a) = Û(�b; �a) : (2.32)That is why we get a slightly di�erent time reversal behaviour for the imaginary-time evol-ution amplitude 
ompared to the real one in (2.12). De�ning � � 1=kBT , we get(xb �h�jxa 0) = hxbje��Ĥ jxai= hxaj�e��Ĥ�y jxbi�= hxaje��Ĥ jxbi�= (xa �h�jxb 0)� ; (2.33)while it is known that the imaginary-time evolution amplitude is real for one-dimensionalproblems.The imaginary-time evolution amplitude has a spe
tral representation whi
h 
an easily beobtained from the spe
tral representation of the real-time evolution amplitude (2.27). Wejust have to repla
e real time by imaginary time a

ording to the Wi
k rotation (2.29) inthe spe
tral representation (2.27), yielding(xb �h�jxa 0) =Xn 	�n(xa)e��En	n(xb) : (2.34)1We are 
onsidering equilibrium systems only.
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s2.4 Partition Fun
tion and Free EnergyHaving de�ned the imaginary-time evolution amplitude, we now want to study one of theglobal quantities whi
h 
an be derived from it, namely the partition fun
tion. The partitionfun
tion Z is de�ned as the tra
e of the imaginary-time evolution amplitude,Z � Z +1�1 dx(x �h�jx 0) : (2.35)The partition fun
tion is a useful quantity, as it de�nes the free energy via its logarithmF = � 1� logZ : (2.36)The derivatives of the free energy F lead to all the important thermo dynami
al quantities,like e. g. pressure, entropy, or heat 
apa
ity.From the spe
tral representation of the imaginary-time evolution amplitude (2.34) we seethat the partition fun
tion Z also has a simple spe
tral representation, namelyZ =Xn Z +1�1 dxb	�n(xb)e��En	n(xb) =Xn e��En ; (2.37)whi
h follows from the normalization integrals in equation (2.18).2.5 Density MatrixLet us now dis
uss an important lo
al quantity whi
h 
an be obtained from the imaginary-time evolution amplitude. The density matrix allows us to treat pure and mixed quantumme
hani
al states simultaneously. Often we have to deal with a statisti
al mixture of purequantum states. For instan
e, the density matrix would be the appropriate formalism to dealwith a 
ontinuous (not fully) polarized proton beam with proton spins pointing in variousdire
tions. The ensemble of the protons in the beam should be treated in a 
onventionalstatisti
al way, while a single proton obeys quantum me
hani
s.Consider a time-independent base j	ni that is 
omplete (2.17) and orthonormal (2.18). Thenany state ve
tor 
an be expanded in this base a

ording toj	(t)i =Xn 
n(t)j	ni ; (2.38)where normalization of j	(t)i implies thatXn j
n(t)j2 = 1 : (2.39)



2.5 Density Matrix 19The 
oeÆ
ients 
n(t) are given by the s
alar produ
ts
n(t) = h	nj	(t)i : (2.40)The time evolution is governed by the S
hr�odinger equationĤj	(t)i = i�h ddt j	(t)i : (2.41)Expanding the j	(t)i a

ording to (2.38) and multiplying from the left by h	mj we getXn h	mjĤj	ni
n(t) = i�hXn h	mj	ni _
n(t) = i�h _
m(t) ; (2.42)be
ause the j	ni are orthonormal (2.18). Introdu
ing the matrix elements of the Hamiltonianwith respe
t to the base ve
tors Hmn � h	mjĤj	ni we 
an rewrite equation (2.42) asXn Hmn
n(t) = i�h _
m(t) : (2.43)Sin
e Ĥ is a Hermitean operator, the matrix elements Hmn form a Hermitean matrix:Hmn = h	mjĤj	ni = h	njĤyj	mi� = h	njĤj	mi� = H�nm : (2.44)We now introdu
e the density matrix for pure states by its matrix elements�mn(t) � 
m(t)
�n(t) : (2.45)This quantity has the following properties:(i) It has unit tra
e: tr�(t) =Pn �nn(t) =Pn j
n(t)j2 = 1 :(ii) It is Hermitean: �y = � .(iii) The expe
tation value in the state j	(t)i readsh	(t)jA	(t)i =Xmn Amn
n(t)
�m(t) =Xmn �mn(t)Amn = tr[�(t)A℄ : (2.46)(iv) A

ording to (2.43), it obeys an equation of motion:i�h _�mn(t) = i�h _
m(t)
�n(t) + i�h
m(t) _
�n(t)= Xp Hmp
p(t)
�n(t)�Xp Hpn
m(t)
�p(t)= Xp (Hmp�pn(t)�Hpn�mp(t))= [H; �(t)℄mn : (2.47)This equation is known as the von Neumann equation.



20 Quantum Statisti
s(v) We have �2 = � for pure states.With respe
t to the fourth property one should remark that �(t) and Hmn are de�ned in theS
hr�odinger pi
ture. One should not be de
eived by the striking similarity to the Heisenbergequation i�h _̂F = [F̂ ; Ĥ℄ for �F̂ =�t = 0, where F̂ ; Ĥ are operators in the Heisenberg pi
ture.This is the reason why the density matrix �(t) 
hanges with the opposite sign with respe
tto the operator F̂ .On
e we know the initial value �(0) � �0, the von Neumann equation (2.47) enables us to
al
ulate �(t) for all times. For the time-independent Hamiltonian under 
onsideration Ĥthe time evolution of the density matrix simply is�(t) = e� iĤt�h �0e iĤt�h : (2.48)We now want to extend the de�nition of the density matrix to statisti
al mixtures of purestates. Therefore we de�ne�mn �X� p�
(�)m 
(�)�n ; (2.49)with the real probabilities p� obeyingX� p� = 1 ; (2.50)and p� � 0.The above properties of the density matrix for pure states remain the same ex
ept for itssquare: �2 6= �. This provides us with a 
onvenient way to distinguish pure states frommixed quantum states.In quantum statisti
s we only 
onsider time-independent density matri
es �(t) = �. Thismatrix is diagonal in the energy eigenstates j	ni. The 
anoni
al density matrix 
an berepresented as�(xb; xa) = Xn 	�n(xa)e��En	n(xb)Xn e��En ; (2.51)whi
h is the imaginary-time evolution amplitude (2.34), normalized by the partition fun
tion(2.37):�(xb; xa) = (xb �h�jxa 0)Z : (2.52)



2.6 Correlation Fun
tion 212.6 Correlation Fun
tionCorrelation fun
tions of the path x(�) 
arry important information of quantum statisti
alsystems. They are de�ned as expe
tations of produ
ts of path positions at di�erent times.For instan
e the two-point 
orrelation fun
tion readshx(�1)x(�2)i = Z +1�1 dx Z +1�1 dx1 Z +1�1 dx2(x �h�jx2 �2)x2(x2 �2jx1 �1)x1(x1 �1jx 0) : (2.53)Correlation fun
tions are observable in s
attering experiments. All n-point 
orrelation fun
-tions 
an be expanded a

ording to Wi
k's rule. A generalization of that formalism 
an befound in Se
tion 3.2.2.7 Quantum Me
hani
al Limit � !1Quantum me
hani
al quantities 
an be reobtained from quantum statisti
s by letting thetemperature go to zero or � ! 1. In this limit the imaginary-time evolution amplitudebe
omes(xb �h�jxa 0) � 	�0(xa)e��E0	0(xb) (� !1) ; (2.54)be
ause the term with the lowest energy in the summation in the spe
tral representation(2.34) | the ground state energy E0 | is the one whi
h de
ays slowest.The low-temperature limit of the partition fun
tion (2.37) is of 
ourseZ � e��E0 (� !1) ; (2.55)su
h that the low temperature limit of the free energy (2.36) be
omeslim�!1F = E0 : (2.56)The ground state wave fun
tion 	0(x) 
an be obtained from the diagonal elements of thedensity matrix �(x; x) in a straight-forward way. A

ording to (2.54) and (2.55) the lowtemperature limit of the diagonal elements of the density matrix (2.52) 
an be written aslim�!1 �(x; x) = lim�!1 	�0(x)e��E0	0(x)e��E0 = j	0(x)j2 : (2.57)So the ground state wave fun
tion simply is the square-root of the low-temperature limit ofthe diagonal elements of the density matrix	0(x) =q lim�!1�(x; x) ; (2.58)for the one-dimensional wave fun
tion is real.



22 Quantum Statisti
s2.8 Classi
al Limit � ! 0The 
lassi
al limit is rea
hed as the inverse temperature � goes to zero. In this limit, thenon-diagonal elements of the density matrix �(xb; xa) vanishlim�!0 �(xb; xa) = 0 ; xb 6= xa ; (2.59)and the diagonal elements approa
h the 
lassi
al 
on�guration spa
e distribution �
l(x):�(x; x) � �
l(x) (� ! 0) : (2.60)The latter is related to the 
lassi
al phase spa
e distribution�
l(x; p) = 1Z
l exp [��H(x; p)℄ ; (2.61)where H(x; p) is the Hamilton fun
tionH(x; p) = p22M + V (x) : (2.62)The normalization of the phase spa
e distribution (2.61) is ensured by the 
lassi
al partitionfun
tion Z
l whi
h �xes the integral over positions and momenta to be one. So the parti
lemust be somewhere in phase spa
e:Z dxdp2��h �
l(x; p) = 1 : (2.63)Integrating over the momenta, we get the 
lassi
al 
on�guration spa
e distribution�
l(x) = Z +1�1 dp2��h�
l(x; p) : (2.64)Inserting in the phase spa
e distribution (2.61) with the Hamiltonian (2.62), we obtain�
l(x) = e��V (x)Z
l ; (2.65)where the 
lassi
al partition fun
tion readsZ
l = Z +1�1 dx�th e��V (x) ; (2.66)with the thermal wavelength �th =q2��h2=MkBT .



Chapter 3Imaginary-Time Evolution AmplitudeFeynman diagrams enable us to 
ompute physi
al quantities of intera
ting theories in theform of perturbation series. In the beginning of this 
hapter we use this diagrammati
approa
h to 
al
ulate the imaginary-time evolution amplitude of the anharmoni
 os
illatorto �rst perturbative order. For higher orders this approa
h be
omes quite 
umbersome.Therefore we develop a more eÆ
ient te
hnique. We 
al
ulate the imaginary-time evolutionamplitude re
ursively by 
hoosing an ansatz whi
h solves its S
hr�odinger equation. Thus wederive a set of re
ursive di�erential equations similar to the algebrai
 Bender-Wu re
ursionfor quantum me
hani
al eigenfun
tions and eigenvalues [1℄. We then streamline the ansatz aswell as the equations by proposing a strategy to exploit the symmetry (2.33) of the imaginary-time evolution amplitude. This way we redu
e the number of re
ursive di�erential equationsand transform most of them into algebrai
 ones. Finally we evaluate the equations up toseventh order with the help of a Maple programme.
3.1 Path Integral RepresentationThe path integral representation for the imaginary-time evolution amplitude of a parti
le ofmass M moving in a one dimensional potential V (x) reads [2℄(xb �h�jxa 0) = Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d� �M2 _x2(�) + V (x(�))�� : (3.1)For the anharmoni
 os
illator potentialV (x) = M2 !2x2 + gx4 (3.2)



24 Imaginary-Time Evolution Amplitudethe imaginary-time evolution amplitude (3.1) 
an be expanded in powers of the 
oupling
onstant g. Thus we obtain the perturbation series(xb �h�jxa 0) = (xb �h�jxa 0)!� �1� g�h Z �h�0 d�1hx4(�1)i! + g22�h2 Z �h�0 d�1 Z �h�0 d�2 hx4(�1) x4(�2)i! + :::� ; (3.3)where we have introdu
ed the harmoni
 imaginary-time evolution amplitude(xb �h�jxa 0)! � Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d� �M2 _x2(�) + M2 !2x2(�)�� ; (3.4)and the harmoni
 expe
tation value for an arbitrary fun
tional F [x℄ of the path x(�):hF [x℄i! � 1(xb �h�jxa 0)! Z x(�h�)=xbx(0)=xa DxF [x℄� exp��1�h Z �h�0 d� �M2 _x2(�) + M2 !2x2(�)�� : (3.5)The latter is evaluated with the help of the generating fun
tional for the harmoni
 os
illator,whose path integral representation reads(xb �h�jxa 0)![j℄ = Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d�� �M2 _x2(�) + M2 !2x2(�)� j(�)x(�)�� ; (3.6)leading to [2℄(xb �h�jxa 0)![j℄ = (xb �h�jxa 0)! exp �1�h Z �h�0 d�1 x
l(�1)j(�1)+ 12�h2 Z �h�0 d�1 Z �h�0 d�2 G(D)(�1; �2)j(�1)j(�2)� (3.7)with the harmoni
 imaginary-time evolution amplitude(xb �h�jxa 0)! =s M!2��h sinh �h�! exp�� M!2�h sinh �h�! [(x2a + x2b) 
osh �h�! � 2xaxb℄� : (3.8)In equation (3.7) we have introdu
ed the 
lassi
al pathx
l(�) � xa sinh(�h� � �)! + xb sinh!�sinh �h�! ; (3.9)



3.2 Wi
k's Theorem 25and the Diri
hlet Green's fun
tionG(D)(�1; �2) � �hM! 1sinh �h�! [�(�1 � �2) sinh(�h� � �1)! sinh!�2+ �(�2 � �1) sinh(�h� � �2)! sinh!�1℄ ; (3.10)whose properties are dis
ussed in detail in Ref. [49℄.3.2 Wi
k's TheoremWe follow Ref. [40, 50℄ and evaluate harmoni
 expe
tation values of polynomials in x arisingfrom the generating fun
tional (3.7) a

ording to Wi
k's theorem. Let us illustrate thepro
edure to redu
e the power of polynomials by the example of the harmoni
 expe
tationvalue hxn(�1) xm(�2)i!:(i) Contra
ting x(�1) with xn�1(�1) and xm(�2) leads to Green's fun
tions G(D)(�1; �1)and G(D)(�1; �2) with multipli
ity n � 1 and m, respe
tively. The rest of the polyno-mial remains within the harmoni
 expe
tation value, leading to hxn�2(�1) xm(�2)i! andhxn�1(�1) xm�1(�2)i!.(ii) If n > 1, extra
t one x(�1) from the expe
tation value giving x
l(�1) multiplied byhxn�1(�1)xm(�2)i!.(iii) Add the terms from (i) and (ii).(iv) Repeat the previous steps until only produ
ts of expe
tation values hx(�1)i! = x
l(�1)remain.With the help of this pro
edure, the �rst-order harmoni
 expe
tation value hx4(�1)i! isredu
ed tohx4(�1)i! = x
l(�1) hx3(�1)i! + 3G(D)(�1; �1)h x2(�1)i! : (3.11)Furthermore, we �ndhx3(�1)i! = x
l(�1)hx2(�1)i! + 2G(D)(�1; �1) x
l(�1) ; (3.12)andhx2(�1)i! = x2
l(�1) +G(D)(�1; �1) : (3.13)Combining equations (3.11){(3.13) we obtain in �rst orderhx4(�1)i! = x4
l(�1) + 6 x2
l(�1)G(D)(�1; �1) + 3G(D)2(�1; �1) : (3.14)



26 Imaginary-Time Evolution AmplitudeThe se
ond order harmoni
 expe
tation value requires 
onsiderably more e�ort and �nallyleads tohx4(�1) x4(�2)i! = x4
l(�1) x4
l(�2) + 16 x3
l(�1)G(D)(�1; �2) x3
l(�2)+ 12 x2
l(�1)G(D)(�1; �1) x4
l(�2) + 72 x2
l(�1)G(D)2(�1; �2) x2
l(�2)+ 36 x2
l(�1)G(D)(�1; �1)G(D)(�2; �2) x2
l(�2) + 96 x3
l(�1)G(D)(�1; �2)G(D)(�2; �2) x
l(�2)+ 6G(D)2(�1; �1) x4
l(�2) + 96 x
l(�1)G(D)3(�1; �2) x
l(�2)+ 144 x
l(�1)G(D)(�1; �1)G(D)(�1; �2)G(D)(�2; �2) x
l(�2) + 9G(D)2(�1; �1)G(D)2(�2; �2)+ 36G(D)2(�1; �1) x2
l(�2)G(D)(�2; �2) + 144 x2
l(�1)G(D)2(�1; �2)G(D)(�2; �2)+ 72G(D)(�1; �1)G(D)2(�1; �2)G(D)(�2; �2) + 24G(D)4(�1; �2) : (3.15)
3.3 Feynman DiagramsThese 
ontra
tions 
an be illustrated by Feynman diagrams with the following rules: Avertex represents the integration over �= Z �h�0 d� ; (3.16)a line denotes the Diri
hlet Green's fun
tion1 2 = G(D)(�1; �2) ; (3.17)and a 
ross or a \
urrent" pi
tures a 
lassi
al path1 = x
l(�1) : (3.18)Inserting the harmoni
 expe
tation values (3.14) and (3.15) into the perturbation expansion(3.3) leads in �rst order to the diagramsZ �h�0 d�1hx4(�1)i! = + 6 + 3 ; (3.19)



3.3 Feynman Diagrams 27whereas the se
ond-order terms areZ �h�0 d�1 Z �h�0 d�2 hx4(�1) x4(�2)i! = + 16+12 + 72 + 36+96 + 6 + 96+144 + 36 + 144+ 72 + 24 + 9 : (3.20)We now want to evaluate the �rst-order Feynman diagrams in (3.19) for �nite temperaturesand arbitrary xa; xb. Thus we will get a �rst-order result for the imaginary-time evolutionamplitude in (3.3):= Z �h�0 d�x4
l(�)= 1sinh4 �h�! Z �h�0 d� [xa sinh(�h� � �)! + xb sinh �h�!℄4= 132! sinh4 �h�! �(x4a + x4b) (sinh 4�h�! � 8 sinh 2�h�! + 12�h�!)+ (x3axb + xax3b) (4 sinh 3�h�! + 36 sinh �h�! � 48�h�! 
osh �h�!)+ x2ax2b (�36 sinh 2�h�! + 48�h�! + 24�h�! 
osh 2�h�!)� : (3.21)The se
ond diagram redu
es to= Z �h�0 d�x2
l(�)G(D)(�; �)= �h2M! sinh3 �h�! Z �h�0 d� [xa sinh(�h� � �)! + xb sinh!� ℄2[
osh �h�! � 
osh(�h� � 2�)!℄= �h32M!2 sinh3 �h�! �(x2a + x2b) (sinh 3�h�! + 9 sinh �h�! � 12�h�! 
osh �h�!)+ xaxb (�12 sinh 2�h�! + 16�h�! + 8�h�! 
osh 2�h�!)℄ ; (3.22)



28 Imaginary-Time Evolution Amplitudewhereas the last diagram turns out to be= Z �h�0 d�G(D)2(�; �)= �h24M2!2 sinh2 �h�! Z �h�0 d� [
osh �h�! � 
osh(�h� � 2�)!℄2= �h216M2!3 sinh2 �h�! (�3 sinh 2�h�! + 4�h�! + 2�h�! 
osh 2�h�!) : (3.23)So all in all we get for the imaginary-time evolution amplitude(xb �h�jxa 0) = (xb �h�jxa 0)!��1� g�h � �h2M2!3 sinh2 �h�! �� 916 sinh 2�h�! + 34�h�! + 38�h�! 
osh 2�h�!�+ �hM!2 sinh3 �h�! �(x2a + x2b)� 316 sinh 3�h�! + 2716 sinh �h�! � 94�h�! 
osh �h�!�+ xaxb��94 sinh 2�h�! + 3�h�! + 32�h�! 
osh 2�h�!��+ 1! sinh4 �h�! �(x4a + x4b)� 132 sinh 4�h�! � 14 sinh 2�h�! + 38�h�!�+(x3axb + xax3b)�18 sinh 3�h�! + 98 sinh �h�! � 32�h�! 
osh �h�!�+ x2ax2b ��98 sinh 2�h�! + 32�h�! + 34�h�! 
osh 2�h�!���+ :::� : (3.24)As expe
ted the imaginary-time evolution amplitude (3.24) has the time reversal behaviour(2.33) dis
ussed in Se
tion 2.3.3.4 Partial Di�erential EquationConsider the S
hr�odinger equation (2.13) for the real-time evolution amplitudei�h ��t(xb tjxa 0) = � �h22M �2�x2b (xb tjxa 0) + V (xb) (xb tjxa 0) : (3.25)In order to get a 
orresponding quantum statisti
al S
hr�odinger equation we now have to
hange from real time to imaginary time, i.e. we have to perform the Wi
k rotation t! �i� ,as dis
ussed earlier. Thus the S
hr�odinger equation (3.25) be
omes��h ��� (xb � jxa 0) = � �h22M �2�x2b (xb � jxa 0) + V (xb) (xb � jxa 0) : (3.26)



3.5 General Ansatz 29To solve that equation we need an initial 
ondition. For both the real and the imaginary-timeevolution amplitude this 
ondition reads(xb 0jxa 0) = Æ(xb � xa) : (3.27)Plugging the anharmoni
 os
illator potential (3.2) into the S
hr�odinger equation (3.26) we�nally get���h ��� + �h22M �2�x2b � M2 !2x2b � gx4b� (xb � jxa 0) = 0 : (3.28)3.5 General AnsatzMaking the ansatz(xb � jxa 0) = (xb � jxa 0)! F (xb; xa; �) ; (3.29)where (xb � jxa 0)! is the harmoni
 imaginary-time evolution amplitude (3.8), we 
on
ludefrom (3.28) a partial di�erential equation for F (xb; xa; �):� ��� � �h2M �2�x2b + !xb 
osh!� � xasinh!� ��xb + g�hx4b�F (xb; xa; �) = 0 : (3.30)In order to solve equation (3.30) we expand at �rst F (xb; xa; �) in powers of the 
ouplingstrength g:F (xb; xa; �) = 1 + 1Xn=1 gnf (n)(xb; xa; �) : (3.31)From our previous perturbative results we know that the nth order f (n)(xb; xa; �) 
an atmost 
ontain the powers 4n of xa and xb, respe
tively, for the 
orresponding diagram withthe most 
urrents 
onsists of n 
ross diagrams:::: : (3.32)So when expanding f (n)(xb; xa; �) in powers of xb, the sum has to break o� at m = 4n:f (n)(xb; xa; �) = 4nXm=0C(n)m (xa; �)xmb : (3.33)Thus our ansatz for F (xb; xa; �) is a double expansion:F (xb; xa; �) = 1 + 1Xn=1 4nXm=0 gnC(n)m (xa; �)xmb : (3.34)



30 Imaginary-Time Evolution AmplitudeThe initial 
ondition (3.27) implies that the expansion 
oeÆ
ients C(n)m (xa; �) must not di-verge in the limit � ! 0:lim�!0 ��C(n)m (xa; �)�� <1 : (3.35)
3.6 First-Order ResultsTo �rst order in g the above ansatz (3.34) implies that F (xb; xa; �) readsF (1)(xb; xa; �) = 1 + g nC(1)0 (xa; �) + C(1)1 (xa; �) xb + C(1)2 (xa; �) x2b+C(1)3 (xa; �) x3b + C(1)4 (xa; �) x4bo : (3.36)Inserting this into the partial di�erential equation (3.30) we get �ve re
ursive ordinary dif-ferential equations for the �rst-order 
oeÆ
ients C(1)m (xa; �) (m = 0; :::; 4):�C(1)4 (xa; �)�� + 4! 
oth!� C(1)4 (xa; �) = �1�h ; (3.37)�C(1)3 (xa; �)�� + 3! 
oth!� C(1)3 (xa; �) = 4!xasinh!� C(1)4 (xa; �) ; (3.38)�C(1)2 (xa; �)�� + 2! 
oth!� C(1)2 (xa; �) = 6�hM C(1)4 (xa; �) + 3!xasinh!� C(1)3 (xa; �) ; (3.39)�C(1)1 (xa; �)�� + ! 
oth!� C(1)1 (xa; �) = 3�hM C(1)3 (xa; �) + 2!xasinh!� C(1)2 (xa; �) ; (3.40)�C(1)0 (xa; �)�� = �hM C(1)2 (xa; �) + !xasinh!� C(1)1 (xa; �) : (3.41)These equations are easy to solve by �nding solutions to both the homogeneous set of equa-tions and the inhomogeneous ones. We 
an give these equations an easier shape by makingthe following transformation:C(1)m (xa; �) = 
(1)m (xa; �)sinhm !� ; (3.42)



3.6 First-Order Results 31where m runs from 0 to 4. Thus the �ve equations (3.37){(3.41) be
ome�
(1)4 (xa; �)�� = �1�h sinh4 !� ; (3.43)�
(1)3 (xa; �)�� = 4!xasinh2 !� 
(1)4 (xa; �) ; (3.44)�
(1)2 (xa; �)�� = 3!xasinh2 !� 
(1)3 (xa; �) + 6�hM sinh2 !� 
(1)4 (xa; �) ; (3.45)�
(1)1 (xa; �)�� = 2!xasinh2 !� 
(1)2 (xa; �) 3�hM sinh2 !� 
(1)3 (xa; �) ; (3.46)�
(1)0 (xa; �)�� = !xasinh2 !� 
(1)1 (xa; �) + �hM sinh2 !� 
(1)2 (xa; �) : (3.47)These new equations 
an easily be solved by dire
t integration. First we get from (3.43)
(1)4 (xa; �) = �1�h Z d� sinh4 !� + d(1)4 ; (3.48)where d(1)4 denotes the integration 
onstant as the integral 
hooses any stem fun
tion. Eval-uating the integral and dividing by sinh4 !� a

ording to equation (3.42) we �ndC(1)4 (xa; �) = 1�h! sinh4 !� ��14 sinh3 !� 
osh!�+38 sinh!� 
osh!� � 38!� + �h!d(1)4 � : (3.49)Investigating the behaviour of this 
oeÆ
ient for � ! 0 we see that the 
onstraint (3.35)�xes the integration 
onstant d(1)4 to zero, so we obtainC(1)4 (xa; �) = 1�h! sinh4 !� �� 132 sinh 4!� + 14 sinh 2!� � 38!�� : (3.50)Integrating the se
ond di�erential equation (3.44) we get
(1)3 (xa; �) = 4!xa Z d� 
(1)4 (xa; �)sinh2 !� + d(1)3= 4xa�h Z d� ��14 sinh!� 
osh!� + 38 
oth!� � 38 !�sinh2 !��+ d(1)3= xa�h! ��12 sinh2 !� + 32!� 
oth!��+ d(1)3 : (3.51)Dividing by sinh3 !� we derive from (3.42):C(1)3 (xa; �) = xa�h! sinh3 !� (�12 sinh2 !� + 32!� 
oth!� + �h!d(1)3xa ) : (3.52)



32 Imaginary-Time Evolution AmplitudeTaking the limit � ! 0 we see that the 
onstraint (3.35) leads tod(1)3 = � 3xa2�h! ; (3.53)otherwise C(1)3 (xa; �) would diverge for � ! 0. Thus from (3.52) and from (3.53) we obtain:C(1)3 (xa; �) = xa�h! sinh4 !� ��18 sinh 3!� � 98 sinh!� + 32!� 
osh!�� : (3.54)The same pro
edure is now applied to determine 
(1)2 (xa; �) and C(1)2 (xa; �), respe
tively. Itis a straightforward 
al
ulation whi
h yieldsC(1)2 (xa; �) = 1M!2 sinh3 !� �� 316 sinh 3!� � 2716 sinh!� + 94!� 
osh!��+ x2a�h! sinh4 !� �98 sinh 2!� � 32!� � 34!� 
osh 2!�� : (3.55)Correspondingly, the 
oeÆ
ient C(1)1 (xa; �) readsC(1)1 (xa; �) = xaM!2 sinh3 !� �94 sinh 2!� � 3!� � 32!� 
osh 2!��+ x3a�h! sinh4 !� ��18 sinh 3!� � 98 sinh!� + 32!� 
osh!�� : (3.56)Finally we determine the last 
oeÆ
ient C(1)0 (xa; �) to beC(1)0 (xa; �) = �hM2!3 sinh2 !� � 916 sinh 2!� � 34!� � 38!� 
osh 2!��+ x2aM!2 sinh3 !� �� 316 sinh 3!� � 2716 sinh!� + 94!� 
osh!��+ x4a�h! sinh4 !� �� 132 sinh 4!� + 14 sinh 2!� � 38!�� : (3.57)After having evaluated the integrals, we insert them into (3.36) and obtain a �rst-orderperturbation expansion for the imaginary-time evolution amplitude (3.29). The result is seento fully 
oin
ide with the earlier result (3.24) obtained from evaluating Feynman diagramsin the 
ase that � = �h�.3.7 Higher OrdersWe now 
hange our ansatz (3.34) for F (xb; xa; �) slightly by introdu
ing a third expansionin powers of xa. Thus the expressions for the 
oeÆ
ients be
ome smaller. Also we take out



3.7 Higher Orders 33the fa
tor sinh�l !� right from the beginning su
h that the ordinary di�erential equationsfor the expansion 
oeÆ
ients are simpli�ed:F (xb; xa; �) = 1Xn=0 2nXk=0 2kXl=0 gn 
(n)2kjl(�)sinhl !� x2k�la xlb : (3.58)In order to obtain the unperturbed result F (xb; xa; �) = 1 for g = 0 we then need 
(0)0j0(�) = 1.The supers
ript n in equation (3.58) still denotes the perturbative order, whereas 2k 
ountsthe (even) powers of the various produ
ts xiaxjb and l 
an be identi�ed with the index m in(3.34). Due to the time reversal behaviour (2.33), the 
oeÆ
ients 
(n)2kjl(�) show a symmetry,namely:
(n)2kjl(�)sinhl !� = 
(n)2kj2k�l(�)sinh2k�l !� : (3.59)Inserting the new ansatz (3.58) into the S
hr�odinger equation (3.30) we obtain:1Xn=0 2nXk=0 2kXl=0 "�!l 
oth!�
(n)2kjl(�) + �
(n)2kjl(�)�� # gn x2k�la xlbsinhl !� (3.60)� �h2M 1Xn=0 2nXk=0 2kXl=2 l(l � 1)gn 
(n)2kjl(�)sinhl !� x2k�la xl�2b + ! 
oth!� 1Xn=0 2nXk=0 2kXl=1 lgn 
(n)2kjl(�)sinhl !� x2k�la xlb� !sinh!� 1Xn=0 2nXk=0 2kXl=1 lgn 
(n)2kjl(�)sinhl !� x2k�l+1a xl�1b + 1�h 1Xn=0 2nXk=0 2kXl=0 gn+1 
(n)2kjl(�)sinhl !� x2k�la xl+4b = 0 :Note that the two terms 
ontaining 
oth!� 
an
el due to our 
hoi
e of the 
(n)2kjl(�). Arrangingthe indi
es in su
h a way that ea
h term is proportional to x2k�la xlb we get for the di�erentpowers of g and for n > 0:2nXk=0 2kXl=0 x2k�la xlbsinhl !� �
(n)2kjl(�)�� � �h2M 2n�1Xk=�1 2k�2Xl=�2(l + 2)(l + 1)
(n)2k+2jl+2(�)sinhl+2 !� x2k�la xlb�! 2nXk=0 2k�1Xl=�1(l + 1) 
(n)2kjl+1(�)sinhl+2 !� x2k�la xlb + 1�h 2nXk=2 2k+4Xl=4 
(n�1)2k�4jl�4(�)sinhl�4 !� x2k�la xlb = 0 : (3.61)Thus the sums over k and over l 
ollapse and we determine the master equation for our
oeÆ
ients 
(n)2kjl(�):�
(n)2kjl(�)�� = (l + 2)(l + 1) �h2M 
(n)2k+2jl+2(�)sinh2 !� + (l + 1)!
(n)2kjl+1(�)sinh2 !�� 1�h
(n�1)2k�4jl�4(�) sinh4 !� ; (3.62)
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h is solved by
(n)2kjl(�) = (l + 2)(l + 1) �h2M Z d� 
(n)2k+2jl+2(�)sinh2 !� + (l + 1)! Z d� 
(n)2kjl+1(�)sinh2 !�� 1�h Z d�
(n�1)2k�4jl�4(�) sinh4 !� + d(n)2kjl : (3.63)Here the d(n)2kjl denote the integration 
onstants whi
h are �xed by applying the initial 
ondi-tionlim�!0 ����� 
(n)2kjl(�)sinhl !� ����� <1 : (3.64)However the above master equation (3.63) is not valid for all k and l. Therefore we nowintrodu
e a set of empiri
al rules telling us whi
h of the 
oeÆ
ients 
(n)2kjl(�) have to bedropped on
e we write down (3.63) for any order n:(i) Drop all terms 
ontaining a 
(n)2kjl(�) where 2k > 4n.(ii) Drop all terms 
ontaining a 
(n)2kjl(�) with l > 2k.(iii) Negle
t all terms 
ontaining a 
(n)2kjl(�) with any negative indi
es k and l.To 
onvin
e the reader that equation (3.63) together with this pro
edure leads to the 
orre
tresults we now reobtain our �rst-order results from Se
tion 3.6. To that end we set n = 1,su
h that k runs from 0 to 2 and l from 0 to 4. Fixing k = 2 and 
ounting down from l = 4to l = 0 we get
(1)4j4(�) = �1�h Z d�
(0)0j0(�) sinh4 !� + d(1)4j4 ; (3.65)
(1)4j3(�) = 4! Z d� 
(1)4j4(�)sinh2 !� + d(1)4j3 ; (3.66)
(1)4j2(�) = 3! Z d� 
(1)4j3(�)sinh2 !� + d(1)4j2 ; (3.67)
(1)4j1(�) = 2! Z d� 
(1)4j2(�)sinh2 !� + d(1)4j1 ; (3.68)
(1)4j0(�) = ! Z d� 
(1)4j1(�)sinh2 !� + d(1)4j0 : (3.69)



3.8 Exploiting the Symmetries | First-Order Results 35Correspondingly, for k = 1 we obtain
(1)2j2(�) = 6�hM Z d� 
(1)4j4(�)sinh2 !� + d(1)2j2 ; (3.70)
(1)2j1(�) = 3�hM Z d� 
(1)4j3(�)sinh2 !� + 2! Z d� 
(1)2j2(�)sinh2(�) + d(1)2j1 ; (3.71)
(1)2j0(�) = �hM Z d� 
(1)4j2(�)sinh2 !� + ! Z d� 
(1)2j1(�)sinh2(�) + d(1)2j0 : (3.72)Finally for k = 0 we get the equation
(1)0j0(�) = �hM Z d� 
(1)2j2(�)sinh2 !� + d(1)0j0 : (3.73)Performing the integrations in equations (3.65){(3.73) and taking into a

ount the initial
ondition (3.64), we get exa
tly the same result as in Se
tion 3.6. The path of re
ursionwhi
h follows from this pro
edure is shown in Figure 3.1.3.8 Exploiting the Symmetries | First-Order ResultsAs seen above we already have to solve nine ordinary di�erential equations for the �rst-orderimaginary-time evolution amplitude. For any order n the number p of integrals to solve isp = 2n+1Xj=1 (2j � 1) = 4n2 + 4n + 1 : (3.74)Exploiting the symmetry (3.59) we 
an 
ut down that number 
onsiderably. At �rst sight itis redu
ed top = 2n+1Xj=1 j = 2n2 + 3n+ 1 ; (3.75)so there are only six integrals left for the �rst order. But we 
an go even further. Employingthese symmetries we 
an eventually 
hange almost all re
ursive di�erential equations intopurely algebrai
 ones leaving only (2n+1) integrations. So for the �rst order we are left withthree integrations only, namely with equations (3.65), (3.70), and (3.73). These 
oeÆ
ients
(1)4j4(�), 
(1)2j2(�), and 
(1)0j0(�) are integrated re
ursively. The other 
oeÆ
ients 
an then beobtained algebrai
ally: On
e we have 
(1)4j4(�) we also know 
(1)4j0(�) be
ause of the symmetry(3.59). Comparing equation (3.62) for k = 2; l = 4 and k = 2; l = 0 we then obtainan algebrai
 equation for 
(1)4j1(�). The knowledge of 
(1)4j1(�) gives us 
(1)4j3(�) be
ause of the
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Figure 3.1: This diagram depi
ts the path of re
ursion for n = 1. We startin the top right hand side 
orner, whi
h is to be identi�ed with the 
oeÆ
ient
(1)4j4 and follow the arrows until rea
hing the bottom left hand side 
orner 
(1)0j0.
symmetry (3.59) and by 
omparing (3.62) this time for k = 2; l = 3 on the one hand andk = 2; l = 1 on the other hand we are left with an algebrai
 equation for 
(1)4j2(�). Thus weget all the 
oeÆ
ients for k = 2 only by solving one di�erential equation, namely the onefor 
(1)4j4(�). For k = 1 the pro
edure is similar, k = 0 only generates one 
oeÆ
ient anyway,namely 
(1)0j0(�), whi
h still has to be solved by evaluating one integral. The new path ofre
ursion is shown in Figure 3.2.So �nally three out of the nine �rst-order 
oeÆ
ients are obtained by integration, three moreare 
lear for symmetry reasons and three 
ome from an algebrai
 re
ursion.
3.9 Preparing the Algebrai
 Re
ursion RelationWe now generalize the algebrai
 part of our re
ursion. Consider again the symmetry property(3.59). Di�erentiation on both sides yields�
(n)2kjl(�)�� = 1sinh2k�2l !� �
(n)2kj2k�l(�)�� � 2(k � l)! 
osh!� 
(n)2kj2k�l(�)sinh2k�2l+1 !� : (3.76)
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Figure 3.2: This diagram shows whi
h of the �rst-order 
oeÆ
ients 
(1)2kjl(�)have to be integrated (bold) and whi
h ones 
an be obtained by employingsymmetry and algebrai
 re
ursions (light).Now we substitute for the two partial derivatives a

ording to equation (3.62) whi
h yields(l + 2)(l + 1) �h2M 
(n)2k+2jl+2(�)sinh2 !� + (l + 1)!
(n)2kjl+1(�)sinh2 !� � 1�h
(n�1)2k�4jl�4(�) sinh4 !�= 1sinh2k�2l !� "(2k � l + 2)(2k � l + 1) �h2M 
(n)2k+2j2k�l+2(�)sinh2 !� + (2k � l + 1)!
(n)2kj2k�l+1(�)sinh2 !��1�h
(n�1)2k�4j2k�l�4(�) sinh4 !��� 2(k � l)! 
osh!� 
(n)2kj2k�l(�)sinh2k�2l+1 !� : (3.77)Solving for the (l + 1)-st 
oeÆ
ient and shifting the index l down by one we obtain
(n)2kjl(�) = �(l + 1)�h2M! 
(n)2k+2jl+1(�) + 
(n�1)2k�4jl�5(�)�h!l sinh6 !�+ (2k � l + 3)(2k � l + 2)�h2M!l 
(n)2k+2j2k�l+3(�)sinh2k�2l+2 !� + 2k � l + 2l 
(n)2kj2k�l+2(�)sinh2k�2l+2 !�� 1�h!l 
(n�1)2k�4j2k�l�3(�)sinh2k�2l�4 !� � (2k � 2l + 2) 
osh!�l 
(n)2kj2k�l+1(�)sinh2k�2l+1 !� ; (3.78)
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h is the algebrai
 re
ursion relation for any non-diagonal 
oeÆ
ient 
(n)2kjl(�) with 0 < l � k.1The diagonal 
oeÆ
ients 
(n)2kj2k(�) still have to be integrated.3.10 Combined Di�erential and Algebrai
 Re
ursionWe now 
ombine the di�erential re
ursion with the algebrai
 one. As only the diagonal
oeÆ
ients have to be evaluated by integrating the di�erential re
ursive equation, we 
aneven further simplify our master equation (3.63). We only need it for the diagonal 
oeÆ
ients,for whi
h l + 1 = 2k + 1 is always greater than 2k. And a

ording to our index rule (ii),
oeÆ
ients of the shape 
(n)2kj2k+1 have to be negle
ted. We get
(n)2kj2k(�) = (2k + 2)(2k + 1) �h2M Z d� 
(n)2k+2j2k+2(�)sinh2 !�� 1�h Z d�
(n�1)2k�4j2k�4(�) sinh4 !� + d(n)2kj2k : (3.79)Index rules (i) and (iii) still have to be applied, k runs from 0 to 2n.Let us qui
kly summarize the 
ombined di�erential and algebrai
 re
ursion relation 
on-sidering the �rst order as an example. Figure 3.2 shows all �rst-order 
oeÆ
ients for theimaginary time evolution amplitude. Ea
h 
oeÆ
ient is represented by a little 
ir
le. Nowthe 
oeÆ
ients on the diagonal line 2k = l have to be obtained by referring to equation(3.79) together with rules (i) and (iii). These two rules tell us whi
h of the 
oeÆ
ients eitherfrom the the same order n or from the previous order n� 1 have to be integrated and whi
hones 
an be put to zero.On
e we have the diagonal 
oeÆ
ients 
(n)2kj2k(�) we 
an 
al
ulate the o�-diagonal ones withl � k with the help of equation (3.78). The 
oeÆ
ients with k < l < 2k are then 
lear forsymmetry reasons.3.11 A Maple ProgrammeWe now introdu
e a Maple programme2 whi
h analyti
ally solves equation (3.79) for theinitial 
ondition (3.64), obeying the index rules from Se
tion 3.7 and employing the symmetry(3.59). Thus we minimize the operating expense and obtain most of the 
oeÆ
ients by purealgebrai
 transformations, namelypalg = 2n+1Xj=1 (2j � 1)� (2n+ 1) = 4n2 + 2n : (3.80)1The 
oeÆ
ients with k < l < 2k are then 
lear for symmetry reasons.2We used Maple V R5 

 and also release R7.



3.11 A Maple Programme 39The number of 
oeÆ
ients whi
h still has to be integrated ispdi� = 2n+ 1 ; (3.81)where of 
ourse palg + pdi� = p is the total number of 
oeÆ
ients given by (3.74).We �rst approa
h the diagonal 
oeÆ
ients, i.e. the ones whi
h have to be integrated iter-atively. The main problem here is the representation of the results, the integration itself iseasy, as well as �xing the integration 
onstants.The algebrai
ally obtained 
oeÆ
ients then have to be seamlessly embedded into this pro-gramme as the algebrai
 re
ursion also refers to the values of some of the diagonal 
oeÆ
ients.Again the representation of the results is subtle.The expansion 
oeÆ
ients up to seventh order 
an be found at [51℄. As we aimed at themost general re
ursion relation for the anharmoni
 os
illator, a re
ursion relation for itsimaginary-time evolution amplitude, the expressions in [51℄ be
ame very large. For furtherappli
ations as e.g. for the evaluation of the free energy, some standard Maple 
ommandslike the \series"-
ommand sometimes failed. Therefore we had to write our own versions ofthis 
ommand, relying only on the most basi
 Maple s
ripts.
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Chapter 4Variational Perturbation Theory forthe Free EnergyIn this 
hapter we obtain perturbative results for the partition fun
tion by integrating thediagonal elements of our perturbative expression for the imaginary-time evolution amplitudefrom the previous 
hapter. From the partition fun
tion we then 
ompute the free energyperturbatively. Then we apply variational perturbation theory to this quantity up to the�fth order whi
h is three orders more than what has been a
hieved in previous work [18℄.By doing so we study in detail the 
onvergen
e behaviour of the variational resummation.4.1 Partition Fun
tion and Free Energy RevisitedAs dis
ussed in Chapter 2 the partition fun
tion 
an be obtained from the imaginary-timeevolution amplitude as follows:Z = Z +1�1 dx(x �h�jx 0) : (4.1)So we just have to substitute x � xa = xb into the perturbation expansion for (xb �h�jxa 0)as obtained with the help of a 
omputer algebra program, introdu
ed in Chapter 3. Thenwe integrate over x. As the free energy readsF = � 1� logZ ; (4.2)we then have to expand the logarithm in order to obtain a perturbation expansion for thefree energy F . The Taylor series for the logarithm islog(1 + x) = x� 12x2 + 13x3 � 14x4 � ::: : (4.3)



44 Variational Perturbation Theory for the Free EnergyFor the �rst order we insert (3.24) together with (3.8) into (4.1) and evaluate the integral.By taking the logarithm we get with (4.2) and with (4.3) for the free energy to �rst orderF (1)(�) = 1� log 2 sinh �h�!2 + 3g�h24M2!2 
oth2 �h�!2 : (4.4)For the se
ond order we follow the same pro
edure, taking into a

ount the higher-orderresults from [51℄ for the 
oeÆ
ients 
(n)2kjl(�) and plugging them into the ansatz (3.58). WeobtainF (2)(�) = 1� log 2 sinh �h�!2 + 3g�h24M2!2 
oth2 �h�!2� g2�h364M4!5 54�h�! + 36�h�! 
osh �h�! + 60 sinh �h�! + 21 sinh 2�h�!sinh4 �h�!2 : (4.5)The higher orders are omitted for the sake of keeping the type fa
e 
lear.4.2 A Diagrammati
al Che
kIt is possible to 
he
k the perturbative results for the partition fun
tion and the free energyfor all temperatures. Namely, we 
an expand Z in terms of harmoni
 expe
tations in asimilar way as for the imaginary-time evolution amplitude in (3.3). To that end we need thegenerating fun
tionalZ[j(�)℄ = Z +1�1 dx(x �h�jx 0)![j℄ (4.6)whi
h we get from (3.7)-(3.10). It is of the formZ[j(�)℄ = Z[0℄ exp � 12�h2 Z �h�0 d�1 Z �h�0 d�2G(p)(�1; �2)j(�1)j(�2)� ; (4.7)where the harmoni
 partition fun
tion readsZ[0℄ = 12 sinh �h�!2 (4.8)andG(p)(�1; �2) = �h2M! 
osh ��h�!2 � j�1 � �2j!�sinh �h�!2 (4.9)denotes the periodi
 Green's fun
tion of the harmoni
 os
illator. The di�erent properties ofthe periodi
 Green's fun
tion (4.9) and the Diri
hlet-Green's fun
tion (3.10) are dis
ussed



4.2 A Diagrammati
al Che
k 45in detail in Ref. [49℄. We now obtain the partition fun
tion Z of the anharmoni
 os
illatorfrom the generating fun
tional Z[j(�)℄ by di�erentiating with respe
t to the 
urrent j(�)while setting j(�) = 0 afterwards:Z = exp(�1�h Z �h�0 d� g � �hÆÆj(�)�4)Z[j(�)℄�����j=0 : (4.10)Thus we getZ = Z[0℄�1� 3g�h Z �h�0 d�1G(p)2(�1; �1) (4.11)+ g22�h2 Z �h�0 d�1 Z �h�0 d�2 h9G(p)2(�1; �1)G(p)2(�2; �2)+ 72G(p)(�1; �1)G(p)2(�1; �2)G(p)(�2; �2) + 24G(p)4(�1; �2)i+ :::o :In terms of Feynman diagrams this readsZ = Z[0℄ �1 + 3g�h + g22�h2 �9+ 72 + 24 �+ :::�= exp �12 + 3�h + g22�h2 �72 + 24 � + :::� ; (4.12)where we have introdu
ed the symbol12 � logZ[0℄ : (4.13)On
e we rewrite the partition fun
tion Z in the form of the 
umulant expansion as on theright hand side of equation (4.12), the dis
onne
ted Feynman diagrams disappear [2℄. Nowwe 
an easily take the logarithm. Following (4.2) we obtain for the free energyF = � 1� �12 + 3g�h + g22�h2 �72 + 24 � + :::� : (4.14)The above Feynman diagrams are of 
ourse 
onstru
ted with the help of the same rules asfor the imaginary-time evolution amplitude (3.16), (3.17), and (3.18), but instead of theDiri
hlet's Green's fun
tion (3.10) we have to use the periodi
 Green's fun
tion (4.9). Wenow want to evaluate the four diagrams in (4.14) so that we get a se
ond-order expressionfor the free energy for �nite temperatures. A

ording to (4.8) and (4.13) we get for thezeroth-order 
ontribution12 = log" 12 sinh �h�!2 # ; (4.15)



46 Variational Perturbation Theory for the Free Energywhereas the �rst-order diagram be
omes= Z �h�0 d�G(p)2(�; �) = �h3�4M2!2 
oth2 �h�!2 : (4.16)The integration in (4.16) is trivial, be
ause G(p)(�; �) does not depend on � any more a
-
ording to (4.9). For the se
ond order the integrations be
ome more sophisti
ated:= Z �h�0 d�1 Z �h�0 d�2G(p)(�1; �1)G(p)2(�1; �2)G(p)(�2; �2)= �h5� 
oth2 �h�!232M4!5 sinh2 �h�!2 (�h�! + sinh �h�!) : (4.17)The other 
ontribution to the se
ond order yields= Z �h�0 d�1 Z �h�0 d�2G(p)4(�1; �2)= �h5�256M4!5 sinh4 �h�!2 (sinh 2�h�! + 8 sinh �h�! + 6�h�!) : (4.18)So all in all we get for the free energy (4.14) up to se
ond order in the 
oupling 
onstant gthe result (4.5). It shows the 
orre
t low temperature behaviourlim�!1F (2)(�) = �h!2 + 3g�h24M2!2 � 21g2�h38M4!5 ; (4.19)whi
h 
an be found for instan
e in [2℄.4.3 Variational Perturbation TheoryVariational perturbation theory1 is a method that enables us to resum divergent perturbationseries in su
h a way that they 
onverge even in the 
ase that the perturbation 
ouplesin�nitely strong. To this end we add and subtra
t a trial harmoni
 os
illator with trialfrequen
y 
 to our anharmoni
 os
illator (3.2):V (x) = M2 
2x2 + gM2 !2 � 
2g x2 + gx4 : (4.20)Now we treat the se
ond term as if it was of the order of the 
oupling 
onstant g. The resultis obtained most simply by substituting for the frequen
y ! in the original anharmoni
os
illator potential (3.2) a

ording to Kleinert's square-root tri
k [2℄! ! 
p1 + gr ; (4.21)1In Se
tion 4.6 the reader 
an �nd the most general des
ription of the substitutions 
oming along withvariational perturbation theory that eventually lead to the strong-
oupling results.



4.3 Variational Perturbation Theory 47wherer � !2 � 
2g
2 : (4.22)These substitutions are not the most general ones. The square root is just a spe
ial 
ase forthe anharmoni
 os
illator. We will dis
uss its origin at the end of this 
hapter in Se
tion4.6.We now apply the tri
k (4.21) to our �rst-order series representation for the free energy F(4.4). Substituting for the frequen
y ! a

ording to (4.21), expanding for �xed r up to the�rst order in g and resubstituting for r a

ording to (4.22) we getF (1)(�;
) = � 1� log 12 sinh �h�
2 + 3g�h24M2
2 
oth2 �h�
2 + �h
4 �!2
2 � 1� 
oth �h�
2 : (4.23)So the free energy (4.23) now depends on the trial frequen
y 
 whi
h is of no physi
alrelevan
e. In order to get rid of it, we have to minimize its e�e
t by employing the prin
ipleof least sensitivity [48℄. This prin
iple suggests to sear
h for lo
al extrema of F (�;
) withrespe
t to 
:2�F (1)(�;
)�
 = 0 : (4.24)For the �rst order F (1)(�;
) it turns out that there are several extrema for ea
h �. As weseek a 
urve 
(1)(�) that is as smooth as possible the 
hoi
e is easy | we take the lowestbran
h for the others are not bounded (see Figure 4.1). Moreover the other bran
hes leadto diverging results.To se
ond order, we pro
eed in a similar way and we �nd that there are no extrema at all forF (2)(�;
). In a

ordan
e with the prin
iple of least sensitivity we look for in
e
tion pointsinstead, i.e. we look for solutions to the equation�2F (2)(�;
)�
2 = 0 : (4.25)In general we try to solve the equation�nF (N)(�;
)�
n = 0 (4.26)for the smallest possible n. Plugging 
(N)(�) into F (N)(�;
), we �nally get ba
k a resummedexpression for the physi
al quantity F (�). The results for the �rst three orders are givenin Figure 4.2. In order to 
he
k our results we have to 
ompare them to the numeri
allyevaluated free energy F (N)num(�) whi
h is dis
ussed in the up
oming se
tion.2A
tually P. M. Stevenson restri
ted this prin
iple to minima of the variational parameter. H. Kleinertsuggested to minimize its in
uen
e by taking into a

ount extrema, in
e
tion points, and higher derivatives.
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βFigure 4.1: Bran
h of the variational parameter 
(1)(�) whi
h we 
hose. The
oupling strength is g = 1. Other bran
hes not shown in this �gure lead tohighly diverging results. Throughout this 
hapter all results are presented innatural units �h =M = kB � 1 and, additionally, we have set ! � 1.4.4 Che
king Our ResultsThe spe
tral representation of the partition fun
tion readsZ = 1Xn=0 e��En ; (4.27)where the En are the energy eigenvalues. Let us de�ne the numeri
al approximantsZ(N)num = NXn=0 e��En (4.28)andF (N)num = � 1� logZ(N) ; (4.29)respe
tively. One possibility to obtain numeri
al results for the eigenvalues En is providedfor by the so 
alled \shooting method". We integrate the S
hr�odinger equation numeri
allyfor the potential (3.2) and for a parti
ular value of the 
oupling strength g. If the energyE whi
h we plug into the program does not 
oin
ide with one of the energy eigenvalues En,the solution to the S
hr�odinger equation explodes already for relatively small values of the
oordinate x. If the energy eigenvalue is 
lose to the exa
t answer, we have j	(x)j <1 also
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Figure 4.2: Free energy of the anharmoni
 os
illator up to third order forintermediate 
oupling g = 1. The bla
k line represents the exa
t result F (9)num(�),obtained by approximating the partition fun
tion (4.28) with the help of the�rst ten energy eigenvalues. The other lines are variational perturbative results:The blue line shows the �rst order, the red line shows the se
ond order, and thenavy blue line represents the third order. Note that the se
ond and third orderare hardly distinguishable from the exa
t results. Higher orders for spe
ialvalues of the inverse temperature � 
an be found in Figure 4.5.n En n En0 0.8037701932 5 14.2030644941 2.7378891484 6 17.6339341162 5.1792814619 7 21.2362685983 7.9423804544 8 24.9947050124 10.963538555 9 28.896941521Table 4.1: The �rst ten energy eigenvalues En of the anharmoni
 os
illator forintermediate 
oupling g = 1. They were obtained by numeri
ally integratingthe S
hr�odinger equation with the initial 
ondition that 	(0) = 1, 	0(0) = 0,and j	(x)j <1 for large x.for larger values of x. This method yields the unnormalized eigenfun
tions (the wave fun
-tions whi
h still have to be normalized) and the energy eigenvalues to very high a

ura
y.Renormalization is ne
essary, for the 
omputer algebra program3 needs an initial value 	(0)whi
h we set to one. Plugging the �rst ten numeri
 energy eigenvalues into equation (4.28)and evaluating (4.29) up to N = 9, we obtain a fun
tion F (N)num(�). So let us �rst 
he
k howfast the numeri
ally obtained free energy F (N)num(�) from (4.29) 
onverges. To that end we setg = 1 and we plot F (N)num(�) for N from 0 to 9 in Figure 4.3 on the interval [0; 2℄. As one3This time we used Mathemati
a 3.1 

.
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βFigure 4.3: Convergen
e of the spe
tral representation of the partition fun
-tion (4.27). This �gure shows the approximants of the free energy F (N)num(�)from (4.29) for the �rst ten orders. One 
an see that the low temperaturebehaviour is 
orre
t even for the roughest approximant F (0)num(�) (blue line).All the 
urves 
onverge to the ground state energy E0. For high temperaturesmore and more energy eigenvalues have to be taken into a

ount to get realisti
results. Alternatively one 
an 
ompare the results with the 
lassi
al expressions(4.31) (see also Figure 4.4). The 
olour 
ode is: N = 1: blue, N = 2: gray,N = 3: violet, N = 4: navy, N = 5: olive, N = 6: whine, N = 7: light blue,N = 8: orange, N = 9: bla
k.
an see F (N)num(�) 
onverges rapidly. For low temperatures T , 
orresponding to high values of�, even the roughest approximant F (0)num(�) reprodu
es the 
orre
t 
urve. This should notsurprise us as we know that lim�!1 F (0)(�) = E0. It turns out that the �rst ten energyeigenvalues En are suÆ
ient. So we 
an probe our perturbative results by 
omparison toF (9)num(�).For high temperatures we have another 
ross 
he
k for our results. High temperatures 
or-respond to 
lassi
al statisti
al distributions su
h that we 
an evaluate the partition fun
tion(2.66) a

ording toZ
l = Z +1�1 dx�th exp [��V (x)℄ ; (4.30)with the potential (3.2) and �th =q2��h2=MkBT . This integral 
an be solved a

ording to[52℄:Z
l = 12�thsM!22g exp��M2!432g �K1=4��M2!432g � ; (4.31)
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βFigure 4.4: Third-order variational perturbative results for the free energy,F (3)(�) (red line). The blue line represents the numeri
al free energy F (9)num(�),whereas the bla
k line shows the 
lassi
al free energy. For small values of theinverse temperature � the 
lassi
al 
al
ulations 
oin
ide with the other results.Lower temperatures, 
orresponding to higher values of �, reveal di�eren
esbetween the 
lassi
al approa
h (4.31) and quantum statisti
s.where K1=4(z) is a modi�ed Bessel fun
tion. The 
lassi
al partition fun
tion (4.31) 
anbe evaluated for high temperatures whi
h 
orresponds to small values of �. Consequently,when we test our variational perturbative results, we 
ompare values � < 1=4 to the 
lassi
alpartition fun
tion (4.31), whereas we 
onsider the numeri
al free energy F (9)num(�) for highervalues of the inverse temperature �.In natural units �h = M = ! = kB = 1 a value of � = 1=4 
orresponds to a temperature ofT = 4. In these units the temperature s
ales like T = 3:16� 105K.4.5 Higher-Order Variational Perturbation TheoryWe now evaluate the 
onvergen
e behaviour for the variational perturbative results for thefree energy F (N)(�) up to the �fth order. However, in order to redu
e the 
omputationaloperating expense we restri
t ourselves to 
ertain values of the inverse temperature �. Resultsare shown in Figure 4.5. For odd variational perturbation orders we optimized the freeenergy a

ording to (4.24), i.e. we determined 
 by setting the �rst derivative of F (N)(�)with respe
t to 
 (4.24) to zero. For even orders we had to go for in
e
tion points, instead.So we had to solve equation (4.25). This pattern is repeated in the 
onvergen
e behaviourof the free energy. Odd and even orders os
illate about an exponential best �t 
urve. Thus,for ea
h value of the inverse temperature �, we get an interval of 
onvergen
e whi
h we
he
k against the numeri
al results F (9)num(�) and against the 
lassi
al result (4.31) if the
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NFigure 4.5: The free energy of the anharmoni
 os
illator for intermediate
oupling g = 1 for � = 0:1, � = 1, and for � = 2 up to �fth variationalperturbative order. The values 
onverge exponentially towards the numeri
alvalues F (9)num(�). In the 
ase of high temperatures (� = 0:1) the solid line rep-resents the 
lassi
al results (4.31) as a 
ross 
he
k, as the fun
tion F (9)num(�)be
omes rather ina

urate for su
h high temperatures.
temperature is high enough. For � = 0:1, � = 1, and � = 2 the exa
t results always turnout to lie within the interval of 
onvergen
e, as shown in Figure 4.5. Clearly the variationalperturbative results 
onverge exponentially. For � = 0:1 the interval is [�13:49;�13:46℄whi
h 
ontains the exa
t 
lassi
al value F
l(0:1) = �13:511 if we 
onsider the threefoldstandard deviation. For � = 1:0 we obtain the interval [0:6572; 0:6585℄ whi
h in
ludes thenumeri
al result F (9)num(1:0) = 0:6571. And �nally for very low temperatures � = 2:0 theinterval reads [0:7928; 0:7935℄ 
ontaining F (9)num(2:0) = 0:79335.
4.6 On the Square-Root Tri
kAs mentioned at the beginning of this 
hapter, the square root (4.21) substituted into thefree energy is only a spe
ial 
ase for the anharmoni
 os
illator potential. Here we qui
kly gothrough the general 
ase [2, 8℄. Consider the trun
ated weak-
oupling series of some quantityf as a fun
tion of some 
oupling 
onstant g

fN(g) = NXn=0 fngn : (4.32)



4.6 On the Square-Root Tri
k 53Let us now rewrite this weak-
oupling expansion by introdu
ing an auxiliary s
aling para-meter � [8, 38℄fN(g) = �p NXn=0 fn � g�q�n ; (4.33)whi
h we later set to one. The generalized square root tri
k now reads�!pK2 + �2 �K2 = Kp1 + gr ; (4.34)where K is a \dummy" s
aling parameter generalizing the trial frequen
y 
 andr = 1g � �2K2 � 1� : (4.35)Substituting (4.34) into the trun
ated weak-
oupling series (4.33) we obtainfN(g;K) = NXn=0 fnKp�nq(1 + gr)(p�nq)=2gn : (4.36)The fa
tor (1+gr)� (with � � (p�nq)=2) 
an be expanded by means of generalized binomialsa

ording to(1 + gr)� = N�nXk=0 ��k�(gr)kgn= N�nXk=0 ��k�� 1K2 � 1�k gn ; (4.37)where we have used (4.35) and �nally have set � � 1. The binomial is de�ned as��k� � �(� + 1)�(k + 1)�(� + k + 1) : (4.38)So we read o� that the fun
tion fN(g;K) 
an now be written asfN(g;K) = NXn=0 "N�nXk=0 �12(p� jq)k �� 1K2 � 1�kKp�nq# fngn : (4.39)To �rst order this expression redu
es tof1(g;K) = �1� p2� f0Kp + p2f0Kp�2 + f1gKp�q : (4.40)



54 Variational Perturbation Theory for the Free EnergyApplying the prin
iple of least sensitivity [48℄ leaves us with�f1(g;K)�K � p�1� p2� f0 + p(p� 2)2 f0K�2 + (p� q)f1gK�q � 0 : (4.41)Making the strong-
oupling ansatzK(1)(g) = g1=q �k0 + k1g�2=q + :::� ; (4.42)we obtain the following equation from (4.41):p�1� p2� f0 + p(p� 2)2 f0(k(1)0 g1=q)�2 + (p� q)f1g(g1=qk(1)0 )�q = 0 : (4.43)The se
ond term is a subleading 
ontribution in the limit as the 
oupling g goes to in�nitywhi
h we 
an negle
t. Solving for k(1)0 we getk(1)0 = �2f1f0 p� qp(p� 2)�1=q : (4.44)Assuming that the ansatz (4.42) for the variational parameter K(g) also holds for higherorders we obtain from the fun
tion fN(g;K) in (4.39)fN(g) = g pq �b(N)0 (k(N)0 ) + b(N)1 (k(N)0 )� g�q�� 2q + :::� ; (4.45)where the leading strong-
oupling 
oeÆ
ient b(N)0 (k(N)0 ) is given byb(N)0 (k(N)0 ) = NXn=0 N�nXk=0 �12(p� iq)k �(�1)kfn(k(N)0 )p�nq : (4.46)The inner sum 
an be further simpli�ed a

ording to [52℄, yieldingmXk=0(�1)k�nk� = (�1)m�n� 1m � : (4.47)Thus the strong-
oupling 
oeÆ
ient (4.46) redu
es tob(N)0 (k(N)0 ) = NXn=0(�1)N�n�12(p� nq)� 1N � n �fn(k(N)0 )p�nq : (4.48)So looking at equation (4.45) we see that the fra
tion p=q tells us the leading power behaviourin g and 2=q indi
ates the approa
h to s
aling.



4.7 S
aling Behaviour 554.7 S
aling BehaviourFor the ground state energy of the anharmoni
 os
illator we 
an derive the values of p and qfrom the s
aling behaviour of its ground state wave fun
tion. Consider the time-independentreal S
hr�odinger equation for the ground state wave fun
tion of the anharmoni
 os
illator(3.2):�� �h22M �2�x2 + M2 !2x2 + gx4�	0(x) = E	0(x) : (4.49)We now res
ale the 
oordinate x a

ording tox = �x0 ; (4.50)su
h that the new derivative reads��x = 1� ��x0 : (4.51)The ground state wave fun
tion transforms like	00(x0) = 	0(�x0) : (4.52)Thus the transformed time-independent S
hr�odinger equation reads� �h22M �2�x02 + M2 !2�4x02 + g�6x04�	00(x0) = �2E0	00(x0) : (4.53)We now impose that the fa
tor in front of the anharmoni
ity x04 is equal to one, so we obtainfor �� = g�1=6 : (4.54)Consequently �2 is proportional to g�1=3. In order to get the units right, we now needE(0)0 (g) = g1=3�0 : (4.55)The supers
ript indi
ates that equation (4.55) only is a zeroth-order approximation. Takinginto a

ount higher order 
orre
tions we get for the ground state energyE0(g) = g1=3 ��0 + g�2=3�1 + g�4=3�2 + :::� : (4.56)Corresponding 
onsiderations for the wave fun
tion yield the expansion	00(x0) = �0(x0) + g�2=3�1(x0) + ::: ; (4.57)



56 Variational Perturbation Theory for the Free Energysu
h that the leading power behaviour of the ground state energy is p=q = 1=3 and theapproa
h to s
aling is 2=q = 2=3 whi
h lies well in the range12 < 2q < 1 ; (4.58)for whi
h the 
onvergen
e proof in Ref. [8℄ holds. So all in all for the anharmoni
 os
illatorwe havep = 1 ; q = 3 : (4.59)The di�erential equation for the zeroth-order expansion 
oeÆ
ient of the ground state wavefun
tion (4.57) reads� �h22M�000(x0) + x04�000(x0) = �0�0(x0) : (4.60)The derivation of the numbers p and q was originally invented for the ground state energy[2, 27℄. In this 
hapter we studied the free energy. As the low-temperature limit of the freeenergy is just the ground state energy, we 
an assume that the numbers p and q 
an beextended to our �nite temperature 
al
ulation.



Chapter 5Variational Perturbation Theory forGround State Wave Fun
tionIn this 
hapter we improve the �rst-order variational 
al
ulations for the ground state wavefun
tion 
arried out by T. Hatsuda, T. Tanaka, and T. Kunihiro [41℄ and our se
ond-orderresults [40℄. First we use our perturbative results for the imaginary-time evolution amplitudeto drive the perturbation expression for the ground state wave fun
tion up to seventh order,so that we reobtain results from the original Bender-Wu re
ursion [1℄. Then we applyvariational perturbation theory up to this order and we study the asymptoti
 behaviour ofthe ground state wave fun
tion in order to investigate the 
onvergen
e of our variationalresults.5.1 Perturbative ResultsAs dis
ussed before in Se
tion 2.5 the density matrix is de�ned as�(xb; xa) � (xb �h�jxa 0)Z (5.1)and the ground state wave fun
tion follows from the low temperature limit of its diagonalelements:	0(x) =q lim�!1�(x; x) : (5.2)Evaluating the ansatz (3.29) for the �rst-order result (3.24) together with the harmoni
imaginary-time evolution amplitude (3.8), we get the diagonal elements of the imaginary-time evolution amplitude (3.29) in the low temperature limitlim�!1(x �h�jx 0)(1) = lim�!1rM!��h exp��M!�h x2 + �h�!2 ��1� g�h � 9�h28M2!3� 3�h3�4M2!2 � 3�h2M!2x2 � 12!x4�� : (5.3)



58 Variational Perturbation Theory for Ground State Wave Fun
tionThe tra
e of this �rst-order expression yields the partition fun
tion in the low temperaturelimit [40℄lim�!1Z(1) = Z +1�1 dx lim�!1(x �h�j0 x)(1) = lim�!1 exp���h�!2 � 3g�h2�4M2!2� : (5.4)So the diagonal elements of the density matrix (5.1) up to �rst order readlim�!1 �(1)(x; x) =rM!��h exp��M!�h x2��1� g�h � 9�h28M2!3 � 3�h2M!2x2 � 12!x4�� : (5.5)Now the ground state wave fun
tion 
an easily be 
omputed a

ording to (5.2). We obtain	(1)0 (x) = �M!�h� �1=4 exp��M!2�h x2�� �1� g�h �� 9�h216M2!3 + 3�h4M!2x2 + 14!x4�� : (5.6)To �rst order this leads to the 
umulant expansion	(1)0 (x) = �M!�h� �1=4 exp ��M!2�h x2 + g�h � 9�h216M2!3 � 3�h4M!2x2 � 14!x4�� : (5.7)The higher orders 
an be obtained in the same way: From the seventh-order imaginary-timeevolution amplitude [51℄ we get the partition fun
tion up to seventh order following de�nition(2.35). Then we 
ompute the density matrix a

ording to (5.1), take the low-temperaturelimit and the square-root, yielding a perturbation expression for the seventh-order groundstate wave fun
tion whi
h is then transformed into the 
umulant expansion:	(7)0 (x) = �M!�h� �1=4 exp "� M!2�h x2 + g�h � 9�h216M2!3 � 3�h4M!2x2 � 14!x4�+g2�h2 �� 205�h464M4!6 + 21�h38M3!5x2 + 11�h216M2!4x4 + �h12M!3x6�+g3�h3 � 8049�h6256M6!9 � 333�h516M5!8x2 � 45�h48M4!7x4 � 7�h38M3!6x6 � �h216M2!5x8�+g4�h4�� 849887�h82048M8!12 + 30885�h7128M7!11x2 + 8669�h6128M6!10x4



5.2 Che
king Our Results | Bender-Wu Re
ursion 59+ 1159�h596M5!9x6 + 163�h4128M4!8x8 + �h316M3!7x10�+g5�h5 � 68941527�h1010240M10!15 � 916731�h9256M9!14x2 � 33171�h832M8!13x4� 6453�h732M7!12x6 � 823�h632M6!11x8 � 319�h5160M5!10x10 � 7�h496M4!9x12�+g6�h6 ��3156181949�h1224576M12!18 + 65518401�h111024M11!17 x2 + 19425763�h101024M10!16 x4 + 752825�h9192M9!15x6+ 143783�h8256M8!14x8 + 3481�h764M7!13x10 + 1255�h6384M6!12x12 + 3�h532M5!11x14�+g7�h7 �1287421536711�h14458752M14!21 � 2723294673�h132048M13!20 x2 � 411277893�h121024M12!19 x4�44413183�h11512M11!18 x6 � 3440609�h10256M10!17 x8 � 190735�h9128M9!16x10� 7317�h864M8!15x12 � 2477�h7448M7!14x14 � 33�h6256M6!13x16�# : (5.8)We now 
he
k our results against the well known Bender-Wu results [1℄.5.2 Che
king Our Results | Bender-Wu Re
ursionIn 1969, C. Bender and T. Wu developed an algebrai
 re
ursion formula for energy eigen-fun
tions and energy eigenvalues of the anharmoni
 os
illator [1℄. In this se
tion we want tosket
h their method for the ground state wave fun
tion.Consider the stationary S
hr�odinger equation for the ground state wave fun
tion of theanharmoni
 os
illator:�� �h22M �2�x2 + M2 !2x2 + gx4�	0(x) = E0	0(x) : (5.9)The unnormalized solution to the harmoni
 problem g = 0 reads	0(x) = e�M!2�h x2H0(x) ; (5.10)where H0 is the zeroth Hermite polynomialH0(x) = 1 : (5.11)For the solution to the anharmoni
 problem (5.9) we 
hoose the ansatz [2℄	0(x) = e�M!2�h x2 1Xk=0(�g)k�(0)k (x) (5.12)



60 Variational Perturbation Theory for Ground State Wave Fun
tionandE0 = 1Xk=0 gkE(0)k : (5.13)In order to 
larify the type fa
e we now drop the supers
ripts. Plugging our ansatz (5.12)and (5.13) into the S
hr�odinger equation (5.9) we obtain��h!2 + gx4� 1Xk=0(�g)k�k(x) + �h!x 1Xk=0 �0k(x)� �h22M 1Xk=0(�g)k�00k(x)� 1Xk0=0 1Xk=0 gk0(�g)kEk0�k(x) = 0 : (5.14)For the di�erent powers of g we get�h!2 �k(x)� x4�k�1(x) + �h!x�0k(x)� �h22M�00k(x) = kXk0=0(�1)k0Ek0�k�k0(x) : (5.15)We know that the (k0 = 0)-term on the right hand side is E0 = �h!=2, so we 
an absorb the�rst term on the left hand side into the summation, thereby obtaining�h!x�0k(x) = x4�k�1(x) + �h22M�00k(x) + kXk0=1(�1)k0Ek0�k�k0(x) ; (5.16)where �k(x) = 0 for k < 0. For the kth-order 
ontribution to the ground state wave fun
tion(5.12) we 
an assume the shape of a power series with 
ontributions from even powers only,for the potential (3.2) is even. Moreover the power series breaks o� at 4k. A similar breako� has already been dis
ussed in Se
tion 3.5 for the imaginary-time evolution amplitude.Thus our ansatz for �k(x) reads�k(x) = 2kXp=0 A(2p)k x2p ; (5.17)where �k(0) = A(0)k is subje
t to the normalizationZ +1�1 dxj	0(x)j2 � 1 : (5.18)Performing the Gaussian integration to zeroth order we 
an �x A(0)0 toA(0)0 = �M!��h �1=4 : (5.19)



5.2 Che
king Our Results | Bender-Wu Re
ursion 61Inserting the power series ansatz (5.17) into equation (5.16) we get for the di�erent evenpowers of x to �rst order:�h2MA(2)1 = E1A(0)0 ;2�h!A(2)1 = 6�h2M A(4)1 ;4�h!A(4)1 = A(0)0 : (5.20)This set of re
ursive algebrai
 equations 
an easily be solved:A(2)1 = 14�h!A(0)0 ;A(4)1 = 34M!2A(0)0 ;E1 = 3�h24M2!2 ; (5.21)where A(0)0 is given by (5.19). Again the 
oeÆ
ient A(0)1 has to be �xed by �rst-order nor-malization of the wave fun
tion a

ording to (5.18) and leads toA(1)0 = � 9�h216M2!3A(0)0 : (5.22)Inserting all the 
oeÆ
ients A(2p)1 , p = 0; 1; 2, from (5.21) and (5.22) into equation (5.17) andthen plugging �k(x) into the ground state wave fun
tion (5.12), we �nally reobtain (5.6) bypulling out the overall fa
tor A(0)0 .More generally, for any order k, plugging the ansatz (5.17) into the di�erential equation(5.16) leads to2�h! 2kXp=1 pA(2p)k x2p = 2k�2Xp=0 A(2p)k�1x2p+4 + �h2M 2kXp=1 p(2p� 1)A(2p)k x2p�2+ kXk0=1(�1)k0Ek0 2(k�k0)Xp=0 A(2p)k�k0x2p : (5.23)Shifting the summation indi
es in su
h a way that all terms are proportional to x2p, we 
anwrite down the equations for ea
h (even) power x2p:2�h!pA(2p)k = A(2p�4)k�1 + �h22M (2p+ 2)(2p+ 1)A(2p+2)k + kXk0=1(�1)k0A(2p)k�k0 ; (5.24)where A(2p)k � 0 for p < 0 and for p > 2k. This is the Bender-Wu re
ursion. With the helpof a Maple programme we 
ompared the results for the ground state wave fun
tion of our
ombined di�erential and algebrai
 re
ursion relation in (5.8) to the Bender-Wu results. Upto seventh order no deviations 
ould be found.
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tion5.3 First-Order Variational ResultsIn this se
tion we apply variational perturbation theory to the ground state wave fun
tion.To that end, as seen in the previous 
hapter on the free energy, we exe
ute Kleinert's squareroot tri
k (4.21) together with (4.22) in the 
umulant expansion of the ground state wavefun
tion (5.7). Then we expand the result in powers of g for �xed r up to the �rst orderand �nally we resubstitute for r a

ording to (4.22). Thus we obtain an expression for theground state wave fun
tion whi
h now additionally depends on the trial frequen
y 
. In the�rst order we get	(1)0 (x;
) = exp[W (1)0 (x;
)℄ ; (5.25)where the 
umulant isW (1)0 (x;
) = 14 log�M
�h� �� 18 + !28
2 � M
4�h �1 + !2
2� x2+g�h � 9�h216M2
3 � 3�h4M
2x2 � 14
x4� : (5.26)Analogously to the pro
edure in Chapter 4 we now eliminate the 
-dependen
e by applyingthe prin
iple of least sensitivity [48℄. To that end we look for extrema of the 
umulantW (1)0 (x;
) with respe
t to 
. To �rst order we �nd that the equation�W (1)0 (x;
)�
 = 0 (5.27)has two bran
hes of solutions, separated by a gap in the domain of 
(x) [40, 41℄. As suggestedby H. Kleinert, in a

ordan
e with the prin
iple of least sensitivity [48℄, in the gap we sear
hfor in
e
tion points instead [40℄:�2W (1)0 (x;
)�
2 = 0 : (5.28)Figure 5.1 shows the di�erent bran
hes and our �nal 
hoi
e for the variational parameter
(x) on the various intervals. Plugging 
(x) into (5.26), we gain an expression for the groundstate wave fun
tion whi
h is at �rst not normalized. This normalization 
an be reassureda

ording to	(1)0 (x) = 	(1)0 (x;
(x))Z +1�1 dx0 ���	(1)0 (x0;
(x0))���2 : (5.29)The results for three di�erent 
oupling strengths g 
an be found in Figure 5.2. A 
omparisonof these variational results to numeri
al 
al
ulations obtained with the \shooting method"from Se
tion 4.4 shows no visible deviations. Indeed, the standard deviation for intermediate
oupling g = 1=2 is 1:1� 10�5, whi
h is already very small.
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Ω(1)
(x)

Figure 5.1: The variational parameter 
(x) to �rst order for intermediate
oupling g = 1=2. The bran
hes for x < 0:684 and x > 0:780 (solid line anddashed line) are solutions to the equation �	(1)0 (x;
)=�
 = 0. For 0:684 <x < 0:780 there are no real positive solutions to that equation. That is why welook for in
e
tion points on that interval instead, i.e. we look for real positivesolutions to the equation �2	(1)0 (x;
)=�
2 = 0. The 
urve for the in
e
tionpoints lies between the two other bran
hes and it neatly �lls the gap. So we
hoose those bran
hes 
(1)(x) whi
h provide us with the smoothest 
urve onthe entire interval, whi
h is the solid line.

0 1 2 3 4
x

0

1

2

Ψ(x)

Figure 5.2: The normalized �rst-order results for the ground state wave fun
-tion 	0(x) of the anharmoni
 os
illator for weak 
oupling (dashed line, g = 0:1),for intermediate 
oupling (solid line, g = 1=2), and for strong 
oupling (dottedline, g = 50).
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0,6

0,8
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Ψ
0

(N)(x)

xFigure 5.3: The �rst seven orders of the unnormalized ground state wave fun
-tion 	(N)(x) for strong 
oupling g = 50. N=1: bla
k, N=2: red, N=3: blue,N=4: navy, N=5: purple, N=6: olive, N=7: violet. The 
urves are hardly dis-tinguishable. For simpli
ity the ground state wave fun
tion is now normalizeda

ording to 	(N)0 (0) = 1.5.4 Higher-Order Variational ResultsOrder by order we now apply variational perturbation theory to the 
umulant expansion (5.8)of the wave fun
tion. As variational perturbation theory espe
ially allows for strong 
oupling,we 
on
entrate on the example g = 50 in this se
tion. The �rst-order ground state wavefun
tion for that 
oupling strength has already been shown in Figure 5.2. All seventh-orderresults are depi
ted in Figure 5.3. The 
urves are hardly distinguishable. More interestingis the 
olle
tion of the physi
al bran
hes of the variational parameter 
(N)(x) for N fromone to seven (see Figure 5.4). In Table 5.1 pointwise 
onvergen
e of the wave fun
tion isdis
ussed for x = 0:5 and x = 1:0. The orders exponentially 
onverge to the 
orre
t limitingvalues. However, odd and even order 
an best be �tted separately (see Figure 5.5). Itturns out that the equation�W (N)(x)�
 = 0 (5.30)has real positive solutions for odd N only. For even values of N we have to go for in
e
tionpoints:�2W (N)(x)�
2 = 0 ; (5.31)
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xFigure 5.4: The physi
al bran
hes of the variational parameter 
(N)(x) forthe �rst seven orders for the ground state wave fun
tion of the anharmoni
os
illator for strong 
oupling g = 50. N=1: bla
k/squares, N=2: red/dots,N=3: blue/triangles, N=4: navy/triangles upside down, N=5: purple/hashes,N=6: olive/triangles left, N=7: violet/triangles right. For N = 1; 3; 5; 7 theparameter 
(N)(x) 
an be obtained from the �rst derivative (5.30). For evenN = 2; 4; 6 we have to sear
h for in
e
tion points (5.31) instead.x = 0:5 x = 1:0	(1)0 (x) 0.474293 0.016468	(2)0 (x) 0.477367 0.017073	(3)0 (x) 0.477825 0.017050	(4)0 (x) 0.477384 0.017013	(5)0 (x) 0.477923 0.017038	(6)0 (x) 0.477385 0.017002	(7)0 (x) 0.477928 0.017029	(num)0 (x) 0.478128 0.016997Table 5.1: Pointwise 
onvergen
e of the unnormalized ground state wave fun
-tion at x = 0:5 and at x = 1:0 for g = 50. Clearly, the 
onvergen
e of oddand even orders of variational perturbation theory are varying (see Figure 5.5).Fitting odd and even orders separately yields intervals of 
onvergen
e for therespe
tive value of x. The best �ts are exponentials. Exa
t results for theground state wave fun
tion, 	(num)0 (x), obtained numeri
ally with the shootingmethod (
ompare Se
tion 4.4), lie within these intervals (see Figure 5.5). Thenormalization is done a

ording to 	(N)0 (0) = 1 in this example.
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NFigure 5.5: Odd and even orders of variational perturbation theory separately
onverge to the limiting value. The �gures show the best �t 
urves for all orders.Fitting separately, however, yields the following intervals of 
onvergen
e. Forx = 0:5 we get: 	(1)0 (0:5) 2 [0:47793; 0:492℄. The upper boundary 
annot bedetermined more a

urately, for we 
an only 
onsider three points. For x = 1:0we get: 	(1)0 (1:0) 2 [0:1698; 0:1702℄. Again the statisti
al errors prevent usfrom a more a

urate evaluation of the intervals. However, for both 
ases theexa
t numeri
al results 	(num)0 (x) lie within the respe
tive intervals.as in the 
ase of the free energy in Chapter 4. This phenomenon has been observed before[2℄, namely for the ground state energy. It is already re
e
ted in the 
onvergen
e behaviourof the ground state wave fun
tion. As shown in Figure 5.5, odd and even orders 
an bestbe �tted separately. Extrapolation to in�nity for both odd and even orders thus yields aninterval of 
onvergen
e instead of just one limiting value with a purely statisti
al deviation.Comparing to numeri
al results obtained using the \shooting method" (
ompare Se
tion4.4), we �nd that the exa
t results lie within that interval for all orders.In the up
oming se
tion we analyze the asymptoti
 ground state wave fun
tion, i.e. theground state wave fun
tion in the limit as x goes to in�nity.5.5 Asymptoti
 LimitWe now 
he
k whether variational perturbation theory preserves the asymptoti
 behaviour ofthe ground state wave fun
tion. The asymptoti
 behaviour is of spe
ial interest as variationalperturbation theory is most likely to 
onverge rather slowly at jxj ! 1. In order to �ndthe asymptoti
 behaviour of the ground state wave fun
tion we have to 
onsider the time-independent S
hr�odinger equation (4.49) in the limit jxj ! 1. In this limit the harmoni




5.5 Asymptoti
 Limit 67term, proportional to x2, and the energy eigenvalue are negligible, so we obtain� �h22M	000(x) + gx4	0(x) = 0 : (5.32)In the limit jxj ! 1 the wave fun
tion behaves like	0(x) � exp (�Cjxj�) (jxj ! 1) ; (5.33)where C is some 
onstant depending on the 
oupling strength g. The absolute value ofthe 
oordinate x re
e
ts the symmetry of the anharmoni
 os
illator potential (3.2). As thepotential is symmetri
, the wave fun
tion 
an either be symmetri
 or antisymmetri
. As weonly 
onsider the ground state wave fun
tion, we have to 
hoose the one with the lowestenergy whi
h is the symmetri
 one. Di�erentiating the asymptoti
 wave fun
tion (5.33) twi
ewith respe
t to the 
oordinate x and plugging it into the asymptoti
 S
hr�odinger equation(5.32) yields� �h22M ��C�(�� 1)x��2 + C2�2x2��2�	0(x) + gx4	0(x) = 0 : (5.34)In the limit jxj ! 1 only the se
ond term in the square bra
kets survives, so we 
an negle
tthe �rst one. Comparing the powers of x we see that there is a 
onstraint on the value of �2�� 2 = 4 ; (5.35)whi
h �xes the power � to be � = 3. With this value for � the time-independent asymptoti
S
hr�odinger equation (5.32) be
omes�� 9�h22MC2 + g�	0(x) = 0 ; (5.36)so we get for the 
onstant C in equation (5.33)C =r2Mg9�h2 : (5.37)Thus the strong-
oupling asymptoti
 wave fun
tion looks like	0(x) � exp �r2Mg9�h2 jxj3! (jxj ! 1) ; (5.38)whi
h is the same as in Ref. [41℄.1 Now we 
he
k whi
h asymptoti
 behaviour is generatedby variational perturbation theory. A

ording to the prin
iple of least sensitivity [48℄ we1Please note that Tanaka et al. use a di�erent de�nition for the 
oupling 
onstant, su
h that the numbersin the square root look a bit di�erent.



68 Variational Perturbation Theory for Ground State Wave Fun
tiondi�erentiate W (1)0 (x;
) from (5.26) with respe
t to 
 and look for zeros:�W (1)0 (x;
)�
 = 14
 � 14
3 � M4�hx2 + g�� 27�h16M2
4 + 32M
3x2 + 14�h
2x4� = 0 : (5.39)As the harmoni
 ground state wave fun
tion	0(x) = exp��M
2�h x2� (5.40)has to turn into (5.38) in the limit jxj ! 1, we assume for 

(x) = ~Cg1=2jxj (5.41)as an ansatz. Taking into a

ount this ansatz in (5.39), we 
an drop a lot of terms, as jxjgoes to in�nity. We obtainM4�hx2 � g4�h
2x4 � M4�hx2 � 14�h ~C2x2 = 0 : (5.42)All other terms do not 
ontribute, for they vanish in the limit jxj ! 1. Solving equation(5.42) for ~C we get~C =M�1=2 : (5.43)In order to obtain the asymptoti
 ground state wave fun
tion we plug ~C ba
k into theansatz (5.41). Then we evaluate the 
umulant (5.26) for that fun
tion for 
(1)(x) in thelimit jxj ! 1, whi
h yieldsW (1)0 (x) = �M4�hM�1=2g1=2jxj3 � g4�hM1=2g�1=2jxj3 = �C(1)jxj3 ; (5.44)where of 
ourse the 
onstant C(1) isC(1) = 12rMg�h2 : (5.45)This is a very good �rst-order approximation for the exa
t value (5.37), whi
h isC = 0:471404520:::�rMg�h2 : (5.46)The higher orders 
an be found in Table 5.2. The numbers are 
onverging to the 
orre
tlimiting value (5.46). However they do not 
onverge algebrai
ally, for Ri
hardson extrapola-tions [53℄ os
illate wildly around the 
orre
t value. The 
onvergen
e is exponentially as 
an



5.5 Asymptoti
 Limit 69N C(N)1 0.52 0.48713928983 0.47916666674 0.47768220785 0.47526041676 0.47490494957 0.4737955740C 0.471404520Table 5.2: The 
oeÆ
ients C(N) whi
h determine the asymptoti
 behaviourof the ground state wave fun
tion for strong 
oupling. The numbers 
onvergeto the 
orre
t limiting value C =p2=9.
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NFigure 5.6: Asymptoti
 ground state wave fun
tion showing exponential 
on-vergen
e. The 
orre
t limiting value is in good a

ordan
e with the exponential�tted to the seven numbers from Table 5.2. Fitting odd and even orders sep-arately we get an interval of 
onvergen
e: C(1)=C = [1:00496; 1:00505℄. Thisdoes not ex
lude the 
orre
t limiting value, for the statisti
al errors asso
iatedwith these extrapolations are still very large.
be seen in Figure 5.6. As in the 
ase of the ground state wave fun
tion for g = 50 dis
ussedin the previous se
tion, odd and even orders s
atter a bit around the best �t 
urve whi
h isan exponential. Taking into a

ount all the seven orders we get for the ratio of extrapolated
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onstant C(1) to the exa
t value C =p2=9 from (5.37)C(1)p2=9 = 1:005� 0:002 ; (5.47)where the deviation is purely statisti
al. Extrapolating odd and even orders separately weget the intervalC(1)p2=9 2 [1:00496; 1:00505℄ : (5.48)This seems to ex
lude the 
orre
t limiting value (5.37). However, the statisti
al errorsasso
iated with the upper and lower boundary of this interval are very large. Going tohigher orders will 
ertainly 
orre
t for that, and in
lude the 
orre
t result (5.37)



Chapter 6Boundary-Layer Theory,Strong-Coupling Series, andLarge-Order BehaviourIn this 
hapter we report some progress in understanding (albeit not a 
omplete solution to)a general 
lass of problems in mathemati
al physi
s. We 
onsider here the 
onversion of a
ontinuum problem into a dis
rete problem by the insertion of a latti
e spa
ing parametera, the perturbative solution of the 
ontinuum problem on the latti
e, and the subsequentextremely subtle 
ontinuum limit a! 0.Almost every 
ontinuum physi
s problem is singular as a fun
tion of the parameters in theproblem. As a result, only rarely does the perturbation series take the form of a Taylor serieshaving a nonzero radius of 
onvergen
e. As an elementary example, 
onsider the algebrai
polynomial equation�x3 + x� 1 = 0: (6.1)This problem is singular in the limit � ! 0. In this limit, the degree of the polynomial
hanges from three to one and thus two of the roots abruptly disappear. As a 
onsequen
e,a perturbative solution to this problem (expressing the roots x(�) as series in powers of �)yields expressions that are more 
ompli
ated than Taylor series:x(�) = ��1=2x�1 + x0 + �1=2x2 + �x3 + �3=2x4 + ::: (6.2)would be the real root to the problem (6.1) expressed as a series in �.A more elaborate example of a singular problem is the time-independent S
hr�odinger equa-tion� �h22Mr2	(x) + [V (x)� E℄	(x) = 0: (6.3)In the 
lassi
al limit �h! 0 this di�erential equation abruptly be
omes an algebrai
 equation,and thus the general solution no longer 
ontains any arbitrary 
onstants or fun
tions and, as



72 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behavioura result, it 
an no longer satisfy the initial 
onditions. We know that for small �h the solutionis not Taylor-like but rather is a singular exponential in WKB form:	(x) � eiS(x)=�h (�h! 0): (6.4)In the study of quantum �eld theory, it is well known that in�nities appear in the perturb-ative expansion in powers of the 
oupling 
onstant. There are two kinds of in�nities. The�rst kind, whi
h is due to the point-like nature of the intera
tion, requires the use of renor-malization. The se
ond kind, whi
h is due to singularities in the 
omplex-
oupling-
onstantplane, for
es the perturbation series to have a zero radius of 
onvergen
e.A quantum �eld theory 
an be regulated by introdu
ing a latti
e spa
ing. The resultingdis
rete theory is 
ompletely �nite and 
an be studied numeri
ally by using various kindsof numeri
al methods su
h as Monte Carlo integration. However, the underlying singularnature of the 
ontinuum quantum �eld theory resurfa
es in the 
ontinuum limit a ! 0.The introdu
tion of a latti
e spa
ing and the singular nature of the 
ontinuum limit wasinvestigated in a series of papers by Bender et al. [54, 55, 56, 57, 58, 59, 60, 61, 62℄.A quantum �eld theory is just one instan
e in whi
h dis
retization regulates and eliminatesthe singular nature of the problem. Another example is provided by a boundary-layer prob-lem, whi
h is a singular perturbation problem, as introdu
ing a latti
e spa
ing 
onverts itinto a regular perturbation problem [63, 64, 65℄. A boundary-layer problem is a di�erential-equation-boundary-value problem in whi
h the highest derivative of the di�erential equationis multiplied by a small parameter �. Consider as an example�y00(x) + a(x)y0(x) + b(x)y(x) = 
(x) ; (6.5)where the boundary 
onditions on the fun
tion y(x) typi
ally have a form su
h asy(0) = A; y(1) = B: (6.6)This boundary-value problem is singular be
ause in the limit �! 0 one of the solutions ab-ruptly disappears and the limiting solution is not able to satisfy the two boundary 
onditionsin (6.6). The usual way to solve the boundary-value problem (6.5) { (6.6) is to de
omposethe interval 0 � x � 1 into two regions, an outer region, in whi
h the solution varies slowlyas a fun
tion of x, and an inner region or boundary-layer region, in whi
h the solution variesrapidly as a fun
tion of x. The boundary-layer region is a narrow region whose thi
kness istypi
ally of order � or some power of � [53℄.An important example of a boundary-layer problem is the instanton equation�2f 00(x) + f(x)� f 3(x) = 0 ; (6.7)with the asso
iated boundary 
onditionsf(0) = 0; f(1) = 1 : (6.8)



73The exa
t solution to this instanton problem isf(x) = tanh x�p2 : (6.9)Note that the solution f(x) varies rapidly at the origin x = 0 over a region of thi
kness �;this is the boundary-layer region. The solution varies slowly (it is approximately 1) outsideof this region. The outer region 
onsists of those x not near the origin.A novel way to solve the instanton problem is to dis
retize it by introdu
ing a latti
e. Onthe latti
e, the di�erential equation be
omes a di�eren
e equation that 
an easily be solvedperturbatively. In the 
ontinuum limit, as the latti
e spa
ing vanishes, we then obtaina strong-
oupling expansion that must be evaluated by means of a Pad�e or a variationalperturbation theory method. To illustrate the approa
h our obje
tive will be to 
al
ulatethe slope of the instanton at x = 0, whi
h from (6.9) has the valuef 0(0) = 1�p2 : (6.10)We introdu
e a latti
e with latti
e spa
ing a so that the real axis is dis
retized in steps ofwidth a. The spatial 
oordinate reads xn = na, where the fun
tion f(x) assumes the valuefn = f(xn). On the latti
e the se
ond spatial derivative in (6.7) be
omesf 00(x) ! fn+1 � 2fn + fn�1a2 : (6.11)Thus, from the instanton equation (6.7) we obtain the di�eren
e equation�2a2 (fn+1 � 2fn + fn�1) + fn � f 3n = 0 ; (6.12)where the boundary values follow from (6.8):f0 = 0 ; f1 = 1 : (6.13)The natural expansion parameter in (6.12) is �2=a2, to whi
h we assign the name Æ:Æ � �2a2 : (6.14)The singular perturbation problem in the 
ontinuum (whose solution f(x) in (6.9) does notpossess a Taylor expansion in powers of �), has be
ome a regular perturbation problem. Thatis, we 
an now expand the solution fn to the di�eren
e equation (6.12) as a Taylor series inpowers of Æ:fn = an;0 + an;1Æ + an;2Æ2 + : : : : (6.15)



74 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourWe impose the boundary values (6.13) by requiring thata0;0 � 0 and an;0 � 1 (n � 1): (6.16)Inserting the ansatz (6.15) into the di�eren
e equation (6.12), we get the re
ursion relation[63℄an;j = 12an+1;j�1 + an;j�1 + 12an�1;j�1 � j�1Xk=1 an;kan;j�k � 12 j�1Xk=1 j�kXl=1 an;kan;lan;j�k�l: (6.17)For the �rst derivative at the origin x = 0 this leads to the seriesf 0(0) = lima!0 f1 � f0a = lima!0 f1a = lima!0 1a 1Xj=0 a1;jÆj= lima!0 1a �1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.18)We have 
al
ulated the 
oeÆ
ients an;j with the help of Maple V R7 up to order j = 200. A
omplete list of these 
oeÆ
ients 
an be found on the webpage of the author FW [66℄. The�rst 20 numbers are given in Table 6.1. Note that the expansion parameter Æ in (6.18) isnot small but rather tends to in�nity in the limit as the latti
e spa
ing a approa
hes zero.Using the parameter Æ de�ned in (6.14) we rewrite the series (6.18) asf 0(0) = 1� limÆ!1pÆ�1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.19)Taking into a

ount the exa
t result (6.10), we obtain the identity1p2 = limÆ!1pÆ�1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.20)The purpose of this 
hapter is to examine equations like (6.20). This equation shows thatthe singular nature of the instanton problem has resurfa
ed in the 
ontinuum limit Æ !1of the latti
e expansion. The expression on the right side of (6.20) should have the value1=p2 = 0:7071067812 : : :, but it is not at all obvious why this is so, and the obje
tive of this
hapter is to analyze this diÆ
ult and subtle limit.This 
hapter is organized as follows. In Se
tion 6.1 we use Pad�e te
hniques [63℄ to performthe limit in (6.20). We will see that while the results are not bad (the a

ura
y is about1%), better methods are needed. We perform the Pad�e analysis to mu
h higher order thanhas ever been done before and we dis
over a new qualitative behaviour that has not yet beenobserved. In Se
tion 6.2 we use of the variational perturbation theory te
hniques introdu
edby H. Kleinert to perform the sum in (6.20). These te
hniques in
rease the a

ura
y by afa
tor of about 10, but they still do not give the exa
t result. While variational perturbation



6.1 Pad�e Resummation for the Instanton Equation 75j a1;j j a1;j1 �18 11 �28877472621442 18 12 9939247141943043 0 13 �21579829541943044 11128 14 3781670831335544325 � 23128 15 �8349041385335544326 2951024 16 118812928579521474836487 � 5891024 17 �265910413229121474836488 3920332768 18 47890245452569171798691849 �8072332786 19 �1083837531791671717986918410 1354949262144 20 39433620359113981274877906944Table 6.1: The �rst 20 weak-
oupling 
oeÆ
ients a1;j for the instanton prob-lem (6.16) and (6.17).theory works very well in summing the strong-
oupling series for the ground state energy ofthe anharmoni
 os
illator [2℄, and for 
riti
al exponents of se
ond-order phase transitions [8℄,we show that the series in (6.20) is at the very edge of validity for Kleinert's methods. Wethen examine the large-order behaviour of the terms of the sum in (6.20) in Se
tion 6.3. Weshow de�nitively that the Taylor expansion has a nonzero radius of 
onvergen
e and thus,on the latti
e, the instanton problem is a regular perturbation problem.In Se
tion 6.4 we turn to a more diÆ
ult singular perturbation problem; namely, the Blasiusequation of 
uid dynami
s. We use the same approa
h as for the instanton equation. InSe
tions 6.5, 6.6, and 6.7 we study the summation of the latti
e perturbation expansionusing Pad�e and variational methods and we examine the large-order behaviour of the latti
eperturbation series. We �nd that Pad�e methods give good but not ex
ellent results andthat variational perturbation theory is better than Pad�e. Again, the series that we needto evaluate in the 
ontinuum limit lies at the very edge of validity for Kleinert's methods.We also �nd that, unlike the latti
e perturbation expansion 
oeÆ
ients for the instantonproblem, the sign pattern of the Blasius weak-
oupling series does not alternate. Rather, itis governed by a 
osine fun
tion with a frequen
y di�erent from �.6.1 Pad�e Resummation for the Instanton EquationIn this se
tion we examine what happens if we attempt to evaluate the right side of (6.20)by using Pad�e te
hniques. Pad�e resummation has already been applied to the instantonproblem up to 50th order [63℄. However, we have been able to perform the pro
edures to



76 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourN SN N SN1 1 11 0.7099984112 0.840896415 12 0.7082354223 0.781934407 13 0.7067899354 0.757237797 14 0.7056595055 0.740759114 15 0.7047346056 0.731210449 16 0.7040069457 0.723927185 17 0.7034198628 0.719045188 18 0.7029647179 0.715146335 19 0.70261022010 0.712308458 20 0.702349024Table 6.2: The �rst 20 Pad�e approximants for the solution to the instantonproblem (6.20).mu
h higher order. We have dis
overed that remarkable and unsuspe
ted new phenomenao

ur just a few orders beyond what has been 
omputed previously.The pro
edure is as follows. Consider the formal Frobenius seriesS(Æ) = ÆM 1Xn=0 anÆn; (6.21)where M is a non-negative number. Raising this series to the power 1=M , inverting the righthand side and re-expanding, we obtainS1=M (Æ) = Æ1Xn=0 bnÆn ; (6.22)with new expansion 
oeÆ
ients bn. Assuming we know the �rst N + 1 terms of the originalpower series in (6.21), we raise equation (6.22) to the power N . We then trun
ate thesummation at n = N , �nally gettingSN=M (Æ) = ÆNNXn=0 
(N)n Æn ; (6.23)
where we have re-expanded and obtained new expansion 
oeÆ
ients 
(N)n . In the limit Æ !1,only the Nth term in the denominator survives and we obtain the approximant(SN)N=M � limÆ!1SN=M (Æ) = limÆ!1 ÆNNXn=0 
(N)n Æn = 1
(N)N : (6.24)
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NFigure 6.1: The real part of the Pad�e approximants SN up to 200th order.Note that the approximants do not 
onverge to the exa
t solution, whi
h isrepresented by the horizontal solid line. The phases where the approximantsbe
ome 
omplex are marked by spikes.The approximant SN = �
(N)N ��M=N is the zeroth-order survivor of the limiting pro
ess. Also,taking into a

ount the �rst-order 
orre
tion we observe that, as in the 
ase of variationalperturbation theory (see Se
tion 6.2), there is an approa
h to s
aling. In the limit Æ !1 the Frobenius series S(Æ) in equation (6.21) 
onverges to a 
onstant C. Additionally,the approa
h to s
aling, following from the Pad�e resummation (6.24), reveals how fast it
onverges:S(Æ) � C + C 0Æ�1 (Æ !1): (6.25)We now apply this pro
edure to the boundary-layer problem (6.12). (Re
all that the weak-
oupling 
oeÆ
ients for the �rst 20 
oeÆ
ients a1;j obtained from (6.17) are shown in Table6.1 and that more 
an be found in [66℄.) Resumming the series (6.15) for n = 1,f1 = NXj=0 a1;jÆj; (6.26)a

ording to the Pad�e pro
edure (6.24) with M = 1=2 as follows from (6.20) and evaluatingthe approximants SN = �
(N)N ��M=N , we get the numbers listed in Table 6.2.



78 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourCompared with the numeri
al solution 1=p2 � 0:7171067812:::, this strong-
oupling expan-sion seems to 
onverge quite well. However, when we go to higher orders, we �nd that thenumbers drop below the exa
t solution and assume a minimum at N = 24, where the approx-imant has the value S24 � 0:70198319. The approximants then rise again, 
ross the exa
tsolution at N = 41 and be
ome 
omplex at N = 52. The appearan
e of 
omplex numbers isa 
onsequen
e of taking the Nth root in equation (6.24) when the 
oeÆ
ients 
(N)N be
omenegative. This phenomenon has not been observed before in the 
ourse of using this Pad�epro
edure. The imaginary part then be
omes smaller and smaller as N rises. Abruptly, atN = 68, the approximants be
ome real again. As one 
an see from the spikes in Figure 6.1this pattern is repeated for higher N . Note that the �gure only shows the real part of thePad�e approximant SN .Apparently, the sequen
e of approximants SN does not 
onverge. The singular nature of theinstanton equation has the e�e
t of making the Pad�e approximants behave like the partialsums of a divergent (asymptoti
) series; at �rst the partial sums appear to 
onverge to alimit, and then they veer o�. In the 
ase of the Pad�e's shown in Figure 6.1 the approximantsapproa
h to within 1% of the 
orre
t limit before veering o�. It appears that another morepowerful resummation te
hnique is needed to treat the expression in (6.20). In the nextse
tion we apply a te
hnique due to Kleinert.6.2 Variational Perturbation Theory for the InstantonEquationAs seen in Chapter 4 where we dis
ussed the free energy of the anharmoni
 os
illator wenow have to derive the numbers p and q again in order to �x the leading power behaviourp=q and the approa
h to s
aling 2=q a

ording to [2℄:1Xj=0 ajÆj � Æp=q �b0 + b1Æ�2=q + :::� (Æ !1): (6.27)For the instanton equation we do this by re-obtaining the di�erential equation (6.7) fromthe di�eren
e equation (6.12). The positive real axis is dis
retized in steps of width a, sothat we let xn � na. The power series expansion for the dis
rete fun
tion fn = f(xn) hasthe formfn�1 = f(xn)� f 0(xn)a+ 12f 00(xn)a2 � 16f 000(xn)a3 + 124f 0000(xn)a4 � ::: : (6.28)Thus, the numerator of the se
ond derivative (6.11) be
omesfn+1 � 2fn + fn�1 = f 00na2 + 112f 0000n a4 + ::: ; (6.29)



6.2 Variational Perturbation Theory for the Instanton Equation 79N b(N)0 N b(N)0180 0.707530492 190 0.707471024181 0.707524250 191 0.707465419182 0.707518076 192 0.707459872183 0.707511970 193 0.707454384184 0.707505930 194 0.707448952185 0.707499955 195 0.707443575186 0.707494044 196 0.707438253187 0.707488197 197 0.707432986188 0.707482412 198 0.707427771189 0.707476687 199 0.707422609Table 6.3: The last 20 variational strong-
oupling 
oeÆ
ients b(N)0 from equa-tion (6.40). order value for b(N)0 
onvergen
e1 0.70640049 de
reasing2 0.70639983200 in
reasing3 0.706399832082 in
reasing4 0.7063998320858658 in
reasing5 0.706399832085884411 in
reasing6 0.70639983208588446498 in
reasingTable 6.4: Six orders of Ri
hardson extrapolations for the strong-
oupling
oeÆ
ient b(N)0 (k0) up to N = 200 for the instanton problem. The last value isonly 0:099% away from the 
orre
t limiting value 1=p2 = 0:7071067812::: :so the zeroth-, �rst-, and third-order 
ontributions 
an
el. Translating the latti
e result forfn ba
k to the 
ontinuous fun
tion f(xn) = fn, the di�eren
e equation (6.12) reads�2 �f 00(x) + 112f 0000(x)a2 + :::�+ f(x)� f 3(x) = 0 : (6.30)Writing out the power seriesf(x) = f0(x) + a2f1(x) + a4f2(x) + ::: ; (6.31)and 
omparing even powers of a, we get from equation (6.30) for a0�2f 000 (x) + f0(x)� f 30 (x) = 0 ; (6.32)whi
h is just the original instanton equation (6.7), whereas for a2 we have�2f 001 (x) + f1(x) �1� 3f 20 (x)� = � 112�2f 00000 (x) : (6.33)
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0Figure 6.2: The fun
tion b(N)0 (k(N)0 ) from (6.40) for N = 200 (solid line) andits se
ond derivative with respe
t to k(N)0 (dotted line). The upper horizontalline equals 1=p2, the 
orre
t limiting value of the instanton problem. All ex-trema of b(N)0 (k(N)0 ) are far from this value. Only the in
e
tion point on theright-hand side 
omes 
lose. The value for k(N)0 , for whi
h the se
ond derivat-ive vanishes, is k(N)0 = 18:42510. Substituting that number into the fun
tionb(N)0 (k(N)0 ), we obtain b(200)0 = 0:707417. The 
orresponding Ri
hardson extra-polations 
an be found in Table 6.4.The boundary values readf0(0) = 0 ; f0(1) = 1 ; (6.34)andf1(0) = f1(1) = 0 ; (6.35)respe
tively. The solution to equation (6.32) with the boundary values (6.34) is of 
oursef0(x) = tanh x�p2 : (6.36)So, �nally from (6.31) we get for the derivative at the origin x = 0:f 0(0) = f 00(0) + �2Æ f 01(0) + ::: = 1�p2 + �2Æ f 01(0) + ::: : (6.37)



6.2 Variational Perturbation Theory for the Instanton Equation 81Comparing equation (6.37) with (6.19), we resum the weak-
oupling series in (6.19) as1� Æ2 + Æ28 + ::: = Æ�1=2 � 1p2 + �3f 01(0)Æ�1 + :::� : (6.38)Also, 
omparing with (6.27), we 
on
lude that the leading power and the approa
h to s
alingare given bypq = �12 ; 2q = 1 ; (6.39)respe
tively. So we read o� p = �1 and q = 2.We now evaluate the leading strong-
oupling 
oeÆ
ient b0 from (6.27) a

ording to (4.48),b(N)0 (k(N)0 ) = NXn=0(�1)N�m�12(p� nq)� 1N � n �fn(k(N)0 )p�iq; (6.40)with p = �1 and q = 2. To that end we substitute our 200 weak-
oupling 
oeÆ
ients intothe formula using a 
omputer algebra program. Now we are 
onfronted with the followingproblem: The prin
iple of least sensitivity 
annot be unambiguously applied. Optimizingwith respe
t to extrema, in
e
tion points, or higher derivatives does yield 
onverging resultsfor the strong-
oupling limit. However, all these strong-
oupling series 
onverge to the wrongvalues.There is one very unpleasant 
ase: The se
ond derivative with respe
t to k(N)0 for the largestk(N)0 where this derivative exists (see Figure 6.2) gives a 
onvergent strong-
oupling series.The numbers 
ome extremely 
lose to 1=p2 as one 
an see from the 20 numbers in Table 6.3.The 200th leading strong-
oupling 
oeÆ
ient is b(200)0 = 0:707417:::. However, a Ri
hardsonextrapolation [53℄ based on the �rst 200 orders then unfortunately shows that variationalperturbation theory produ
es a value slightly smaller than 1=p2. The �rst six orders ofRi
hardson extrapolations are presented in Table 6.4. Hen
e, the strong-
oupling series b(N)0does 
onverge, but it 
onverges to the wrong number, only one part per 1000 away from thetrue value:f (VPT)1 � limÆ!1 200Xn=0 a1;nÆn = b(1)0 = 0:7063998320858845� 0:0000000000000001 (6.41)
ompared with f 0(0) = 1=p2 = 0:7071067812::: . The deviation is just 0:099%, but 1=p2
an unfortunately be ruled out.Given p = �1 and q = 2, the failure of variational perturbation theory is not surprising.A

ording to Ref. [8℄ the fra
tion 2=q must lie within the open interval (1=2; 1). Otherwise,one 
annot prove that variational perturbation theory 
onverges. Thus, this problem liesexa
tly on the boundary of the region in whi
h the summation method is known to work.We 
an understand the upper edge of the range of the parameter 2=q that des
ribes theapproa
h to s
aling 2=q by looking at the standard deviation from the a
tual limiting value.



82 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourorder value for A 
onvergen
e1 -1.4998 in
reasing2 -1.500017 de
reasing3 -1.5000011 de
reasing4 -1.49999874 in
reasing5 -1.5000004 de
reasing6 -1.499999893 in
reasingTable 6.5: Six orders of Ri
hardson extrapolations for the exponent A of thelarge-order instanton weak-
oupling 
oeÆ
ients, based on the �rst 200 weak-
oupling 
oeÆ
ients. The value A = �3=2 is quite plausible.It turns out [8℄ that the deviation in the limit as the perturbative order N goes to in�nityassumes the shape�����b(N)0 � b0b0 ����� � exp ��CN1�2=q� (N !1) ; (6.42)where C is a 
onstant. So, to obtain exponential 
onvergen
e for the sequen
e formed bythe b(N)0 , we need 1� 2=q > 0. In other words, the approa
h to s
aling 2=q is bounded andit must be smaller than one. The lower edge is more subtle and is dis
ussed in Ref. [8℄.In 
on
lusion, we have applied variational perturbation theory to a 
ase that lies at the veryedge of its appli
ability. We see that variational perturbation theory gives better results byabout a fa
tor of 10 than the Pad�e approximations examined in Se
tion 6.1. However, wehave not yet found a systemati
 method for resumming (6.20) that enables us to performthe 
ontinuum limit of the dis
rete latti
e theory up to an arbitrary a

ura
y. Therefore, wenow lay the foundation for further investigations by analyzing the large-order behaviour ofthe instanton series.6.3 Large-Order Behaviour for the Instanton EquationIt 
an be seen from the numeri
al results in [66℄ that the instanton weak-
oupling series isof Borel type. That is, it exhibits an alternating sign pattern. From the ratio test we 
ansee that the 
oeÆ
ients an;j do not grow fa
torially fast. The large-order behaviour of an;jhas the general forman;j � (�1)n+j+1KjnjAnBn (j !1): (6.43)The 
onstant An 
an be obtained by evaluating the limitAn = limj!1 log an;j+2 an;j(an;j+1)2log j(j + 2)(j + 1)2 ; (6.44)



6.3 Large-Order Behaviour for the Instanton Equation 83order value for K 
onvergen
e1 2.46692 de
reasing2 2.4668283 in
reasing3 2.46682911 de
reasing4 2.466829065 de
reasing5 2.4668290597 in
reasing6 2.4668290635 de
reasingTable 6.6: Six orders of Ri
hardson extrapolations for the inverse radius of
onvergen
eK of the large-order instanton weak-
oupling 
oeÆ
ients, based onthe �rst 200 weak-
oupling 
oeÆ
ients under the assumption that A = �3=2.order value for B1 
onvergen
e1 0.0170837 in
reasing2 0.0170864 in
reasing3 0.017087 in
reasing4 0.0170893 in
reasing5 0.0170908 in
reasing6 0.0170922 in
reasingTable 6.7: Six orders of Ri
hardson extrapolations for the overall fa
tor B1of the large-order instanton weak-
oupling 
oeÆ
ients, based on the �rst 200weak-
oupling 
oeÆ
ients and under the assumption that K = 2:4482906 andA = �3=2. The value of B1 strongly depends on the numeri
al values for Aand K. Changing K in the sixth de
imal pla
e in
uen
es the third signi�
ant�gure of B1. Also, all the Ri
hardson extrapolations are in
reasing so, stri
tlyspeaking, we only have a lower boundary for B1. Thus, the a

ura
y of B1may not be very good.and the re
ipro
al of the radius of 
onvergen
e isKn = � limj!1 an;j+1an;j � jj + 1�An : (6.45)Also, the overall fa
tor Bn is determined fromBn = limj!1 jan;jjKjnjAn : (6.46)Using the 200 weak-
oupling 
oeÆ
ients, we �nd that the exponent An and the re
ipro
alradius of 
onvergen
e Kn are independent of n. The value of K2 = 2:46682906 
oin
ideswith K1 = 2:46682906 for all signi�
ant digits. The same is true for A1 = �1:500000and A2 = �1:500000. Thus, it appears that we may omit the subs
ripts n for Kn andAn. In 
ontrast, the data suggests that Bn strongly depends on n. Bn is the numeri
alvalue asso
iated with the largest un
ertainty. In fa
t, equation (6.46) suggests that small



84 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourorder value for B2 
onvergen
e1 0.119069 in
reasing2 0.119083 in
reasing3 0.119093 in
reasing4 0.119054095 in
reasing5 0.119054125 in
reasing6 0.119054146 in
reasingTable 6.8: Six orders of Ri
hardson extrapolations for the overall fa
tor B2of the large-order instanton weak-
oupling 
oeÆ
ients based on the �rst 200weak-
oupling 
oeÆ
ients under the same assumptions as in the 
ase of B1 (seeTable 6.7). The value of B2 depends strongly on A and K.deviations in K and A lead to dramati
 
hanges in the value of Bn. Therefore Bn = B
annot be ruled out 
ompletely. We 
al
ulated A, K, B1, and B2 up to 200th order withthe help of Maple V R7. We then extrapolated these 200 orders to in�nity using Ri
hardsonextrapolation [53℄. We obtainedA = �1:500000� 0:000001 ;K = 2:46682906� 0:0000001 ;B1 = 0:0171� 0:0001 ;B2 = 0:1190� 0:0001 : (6.47)Detailed numeri
al results for the �rst three Ri
hardson extrapolations for the exponent A,the inverse radius of 
onvergen
e K, and the overall fa
tors B1, B2 
an be found in Tables6.5, 6.6, 6.7, and 6.8. The 
al
ulation of B1 and B2 is extremely deli
ate; 
hanging theinverse radius of 
onvergen
e in the sixth de
imal pla
e in
uen
es the third signi�
ant �gureof B1.Unfortunately, there is no way to derive these values by applying an asymptoti
 analysis tothe re
ursion relation (6.17). The problem is that the double summation in this equationin
ludes small j, so we 
annot let j go to in�nity and use the large-order behaviour (6.43).Substituting the ansatz (6.43) into equation (6.17) and taking the limit leads to 
ontradi
toryresults. For n = 1 we getKjAB1 = 12(j � 1)AB2 + (j � 1)AB1 � 32B21K j�1Xk=1 kA(j � k)A�12B31K j�1Xk=1 j�kXl=1 kAlA(j � k � l)A : (6.48)Pulling out some fa
tors and letting x � k=j, we obtain for the �rst summationlimj!1 jXk=1 �kj�A�1� kj�A = Z 10 dx [x(1� x)℄A = �2(A+ 1)�(2A+ 2) ; (6.49)
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an obtain the inverse ratio of 
onvergen
e K by apply-ing methods normally used for 
riti
al exponents. Plotting the ratio Rn =a1;n+1=a1;n versus 1=n gives K as the o�set of the linear regression and itsslope is the exponent �, a

ording to (6.55).if and only if A > �1. For A < �1 whi
h is strongly favored by the data we obtainZ 10 dx [x(1� x)℄A = 2� (�A) : (6.50)The double summation redu
es tolimj!1 jXk=1 j�kXl=1 kAlAj2A �1� kj � lj� = Z 10 dx Z 10 dy [xy(1� x� y)℄A = �3(A+ 1)�(3A+ 3) ; (6.51)where y � l=j and A > �1. For A < �1 the result isZ 10 dx Z 10 dy [xy(1� x� y)℄A = 3�2 (�A) : (6.52)Substituting the results in (6.50) and (6.52) into (6.48) leads to a 
ontradi
tion: The inverseradius of 
onvergen
e then turns out to beK = 1 + B22B11 + 3� �32�B1 + 32�2 �32�B21 ; (6.53)



86 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourwhi
h would imply that, given B1 = 0:0171 and B2 = 0:1190, the value of K would beK = 3:940 : (6.54)This result 
an be ruled out be
ause of the numeri
al result (6.47). Also, (6.53) does not
ontain the exponent A be
ause all the fa
tors jA in (6.48) 
an
el. So A 
annot be determinedanalyti
ally using this asymptoti
 analysis.The inverse radius of 
onvergen
e K 
an also be obtained in a di�erent manner from thatusually employed for 
riti
al phenomena. A

ording to Ref. [8℄, the ratio Rj � aj+1=ajapproa
hes the inverse radius of 
onvergen
e asRj = �K �1 + 1j�� ; (6.55)where � is some exponent. So, if we plot Rn versus 1=n, then the slope of the linear regressionis � and the o�set is K, as one 
an see in Figure 6.3. We getK = 2:46656� 0:00001 and � = 3:6598� 0:0007 : (6.56)This value for K di�ers from the number in (6.47) in the �fth digit. The di�eren
e is dueto not taking into a

ount the fa
tor jA as in (6.43) and (6.45).6.4 Boundary-Layers on the Latti
e | Blasius Equa-tionThe Blasius equation [67℄ arises in the study of 
uid dynami
s. It is a spe
ial limiting 
aseof the Navier-Stokes equation and determines the 
ow of an in
ompressible 
uid a
ross asemi-in�nite 
at plate. The Blasius equation reads2�y000(x) + y(x)y00(x) = 0 : (6.57)Assuming that the tangential velo
ity y0(x) at the outer limit of the boundary layer is
onstant, the boundary 
onditions read [68℄y(0) = y0(0) = 0 ; y0(1) = 1 : (6.58)Our obje
tive here is to 
al
ulate the se
ond derivative y00(0), whi
h represents the stress onthe plate. We dis
retize the Blasius equation (6.57) by introdu
ing a latti
e spa
ing a:2Æ(fn+1 � 3fn + 3fn�1 � fn�2) + fn(fn+1 � 2fn + fn�1) = 0 ; (6.59)where we de�ne fn � y(na)=a and Æ � �=a2. The boundary 
onditions (6.58) now readf0 = f�1 = 0 ; fn � n (n!1) : (6.60)



6.5 Pad�e Resummation for the Blasius Equation 87Expanding fn as a series in powers of Æ as in equation (6.15), we obtain the re
ursion relation[63℄an+1;j � 2an;j + an�1;j = � 2n (an+1;j�1 � 3an;j�1 + 3an�1;j�1 � an�2;j�1)� 1n j�1Xk=1 an;k (an+1;j�k � 2an;j�k + an�1;j�k) : (6.61)The boundary values arean;0 = n (n � 0) ;a�1;0 = 0 ;a�n�1;j = an;j (n � 0) : (6.62)Equations (6.61) and (6.62) 
an be solved order by order by using a 
omputer algebraprogram. Table 6.9 shows the �rst 20 weak-
oupling 
oeÆ
ients a1;j. All 
oeÆ
ients up tothe 300th order 
an be found at [69℄.6.5 Pad�e Resummation for the Blasius EquationWe now resum the weak-
oupling 
oeÆ
ients using the Pad�e method (6.24) withM = �1=2.This value of M will be derived in Se
tion 6.6 in equation (6.69). The exa
t solution [63℄to the Blasius equation (6.57), obtained numeri
ally up to �ve digits, is y00(0) = 0:33206.Unfortunately, the sequen
e formed by the approximants SN appears to 
onverge, but notto the 
orre
t value. A

ording to Table 6.10 the sequen
e be
omes very 
at and Ri
hardsonextrapolation [53℄ shows that the SN approa
h the wrong limiting value (see Table 6.11). Athird-order Ri
hardson gives S1 = 0:3430, based on the �rst 70 weak-
oupling 
oeÆ
ients.This value is signi�
antly higher than the 
orre
t value y00(0) = 0:33206.The failure of the Pad�e resummation is not surprising be
ause the Pad�e method assumes theapproa
h to s
aling Æ�1 a

ording to (6.25). However, in the 
ase of the Blasius equationthe approa
h to s
aling is Æ�1=2, as we will see in equation (6.69) in the next se
tion.6.6 Variational Perturbation Theory for the BlasiusEquationVariational perturbation theory for the Blasius equation fails to 
onverge to the 
orre
tanswer in the same way as for the instanton problem. We determined the leading strong-
oupling term (6.40) up to 300th order and again it was impossible to �nd extrema, in
e
tionpoints, or higher derivatives that yield the 
orre
t result. By determining the values of pand q we show why variational perturbation is likely to fail for this problem.
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oupling 
oeÆ
ients for the Blasius re
ursionrelation (6.61) and (6.62). Observe that the 
oeÆ
ients a1;j are not of Boreltype (they do not alternate in sign). A 
osine fun
tion with a frequen
y di�erentfrom � governs the sign pattern (see Se
tion 6.7).Consider again the Taylor expansions for fn�1 in (6.28) together with the Taylor series forfn�2 = f(xn � 2a), namelyfn�2 = f(xn)� 2f 0(xn)a+ 2f 00(xn)a2 � 43f 000(xn)a3 + 23f 0000(xn)a4 � ::: : (6.63)Inserting these expressions into the di�eren
e equation for the Blasius problem (6.59) andtranslating ba
k to the 
ontinuous fun
tion f(xn) = fn, we get2��f 000(x)a� 12f 0000(x)a2 + :::� + f(x)�f 00(x)a2 + 12f 0000(x)a4 + :::� = 0 : (6.64)Next we transform ba
k to the fun
tion y(x) = af(x) and assume the Taylor seriesy(x) = y0(x) + ay1(x) + a2y2(x) + ::: : (6.65)To zeroth order in a we obtain2�y0000 (x) + y0(x)y000(x) = 0 ; (6.66)whi
h is just the Blasius equation (6.57). The small parameter a, whi
h is the latti
e spa
ing,relates � and Æ by a = p�=Æ. Thus, if we evaluate the Taylor series (6.65) for the se
ond



6.6 Variational Perturbation Theory for the Blasius Equation 89N SN N SN1 0.5 11 0.35746321212 0.4204482076 12 0.35633266513 0.3948201830 13 0.35538480484 0.3819443732 14 0.35457959445 0.3742062309 15 0.35388828426 0.3690504811 16 0.35328915097 0.3653779673 17 0.35276558138 0.3626359060 18 0.35230465889 0.3605155915 19 0.351896192910 0.3588309707 20 0.3515320399Table 6.10: The �rst 20 Pad�e approximants for the solution to the Blasiusequation (6.61). The sequen
e formed by the SN 
onverges extremely slowly.order value of y00(0) 
onvergen
e1 0.3445 de
reasing2 0.3436 de
reasing3 0.3430 os
illatingTable 6.11: Three orders of Ri
hardson extrapolations for the Blasius equation(6.57), based on the �rst 70 Pad�e approximants SN .derivative at the origin, we see thaty00(0) = y000(0) + ay001(0) + ::: = 0:33206p� +r �Æ y001(0) + ::: : (6.67)Comparing this series to the original weak-
oupling seriesy00(0) =rÆ� �1� 2Æ + 2Æ2 + :::� ; (6.68)we 
an now determine the leading power p=q and the approa
h to s
aling 2=q:1� 2Æ + 2Æ2 + ::: = Æ�1=2 �0:33206 + Æ�1=2�y001(0) + :::� ; (6.69)so we obtain p = �2 and q = 4.Again we �nd that the approa
h to s
aling 2=q = 1=2 lies just on the boundary of the openinterval (1=2; 1), for whi
h the proof of 
onvergen
e [8℄ holds. This situation here is theopposite of the instanton 
ase in that it sits at the lower boundary of the open interval inwhi
h variational perturbation theory works. Table 6.12 shows some variational results for(6.27) in the Blasius 
ase. The numbers were obtained by sear
hing for extrema. Unfortu-nately they do not aim at the 
orre
t limiting value, as one 
an see from the Ri
hardson



90 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourN b(N)0 N b(N)0180 0.33696017793094 190 0.33695971119646181 0.33696012777085 191 0.33695966849139182 0.33696007843082 192 0.33695962644843183 0.33696002989308 193 0.33695958505396184 0.33695998214034 194 0.33695954429471185 0.33695993515575 195 0.33695950415774186 0.33695988892292 196 0.33695946463046187 0.33695984342591 197 0.33695942570058188 0.33695979864918 198 0.33695938735612189 0.33695975457760 199 0.33695934958540Table 6.12: The last 20 variational strong-
oupling 
oeÆ
ients b(N)0 for theBlasius equation. The very last 
oeÆ
ient is b(200)0 = 0:33695931237713, asopposed to the 
orre
t value y00(0) = 0:33206.order value for b(N)0 
onvergen
e1 0.3369518 in
reasing2 0.336955563 in
reasing3 0.336955600539 in
reasing4 0.3369556008803 in
reasing5 0.336955600883462 in
reasing6 0.33695560088349232 in
reasingTable 6.13: Six orders of Ri
hardson extrapolations for the strong-
oupling
oeÆ
ient b(N)0 (k0) up to N = 200 for the Blasius equation. The last value is1:5% away from the 
orre
t limiting value y00(0) = 33206.extrapolations in Table 6.13.Still the a

ura
y of the variational perturbative 
al
ulations is 
onsiderably higher than theone of the Pad�e resummation. The latter one is 5:9% away from the 
orre
t result whereasvariational perturbation theory only deviates by 1:5%.6.7 Large-Order Behaviour for the Blasius EquationThe Blasius equation exhibits a large-order behaviour whi
h is a more subtle than for theinstanton problem (6.43). As one 
an see from Table 6.9, the Blasius weak-
oupling 
oef-�
ients are not of Borel type; that is, the sign pattern is not alternating. Rather, the signstru
ture is governed by a 
osine fun
tion with a frequen
y that is signi�
antly di�erent from�. Remarkably, it turns out that a pure 
osine 
os(an) 
annot reprodu
e all signs 
orre
tly.Up to 300th order the sign stru
ture given by 
os(an) is broken twi
e: The signs at n = 62and at n = 212 are not 
orre
t. So we must 
onsider an additional phase shift 
os(an + b).



6.7 Large-Order Behaviour for the Blasius Equation 91a b1.3941 3.091.3939 3.117.67830 3.0317.67686 3.130Table 6.14: Examples of the parameters a and b that give the �rst 300 signs ofthe Blasius weak-
oupling 
oeÆ
ients 
orre
tly, assuming that the sign stru
-ture of the underlying large-order behaviour is of the form 
os(an + b). Thelast two values for a 
an be obtained approximately by summing 2� to the �rsttwo values.The parameter b turns out to be slightly smaller than �, but it reprodu
es all 300 signs
orre
tly.In order to determine the numeri
al values of a and b we de�nef(a; b) � NXn=1 
os(an+ b)j 
os(an + b)j a1;nja1;nj : (6.70)The sum ends at N = 300 be
ause this is as high as we 
an 
al
ulate using Maple; we knowthe �rst 300 weak-
oupling 
oeÆ
ients a1;j [69℄. For the 
orre
t values of a and b the fun
tionf(a; b) must be equal to 300. We then plot the fun
tion f(a; b) over the a{b plane and sear
hfor peaks. A 
areful study of the peaks yields values for a and b whi
h allow the fun
tionf(a; b) to assume its maximum at 300. These numbers are given in Table 6.14.The large-order behaviour of the Blasius weak-
oupling 
oeÆ
ients (unlike the large-orderbehaviour of the instanton 
oeÆ
ients) has an additional overall fa
tor 
os(an + b), andwe 
an now see that the remaining stru
ture di�ers from the stru
ture of the instantonweak-
oupling 
oeÆ
ients. Dividing by the 
osine, we observe that the 
oeÆ
ientsa0j � a1;j
os(aj + b) (6.71)grow fa
torially fast. Thus, we also divide by j!:bj � a1;j
os(aj + b)j! : (6.72)The 
oeÆ
ients bj are unstable under a ratio test. That is, the ratio bj+1=bj de
reases andthen begins to os
illate. This re
e
ts the ina

ura
y that results from the deli
ate signpattern of the �rst 300 
oeÆ
ients a1;j.





Chapter 7Dis
ussionHaving gone through the re
ursive 
al
ulation of the imaginary-time evolution amplitudeand through several appli
ations of variational perturbation theory we now want to dis
ussa few properties of both of them.First of all we 
riti
ally rate our re
ursion relation from Chapter 3 in Se
tion 7.1, 
omparingit to other methods like for instan
e evaluating Feynman diagrams. In Se
tion 7.2 we willdis
uss its limitations. Then we review the 
onvergen
e behaviour of variational perturba-tion theory in Se
tion 7.3. In Se
tion 7.4 we will overview possible further appli
ations ofthe re
ursion relation and of variational perturbation theory su
h as Bose-Einstein 
ondens-ates, Type-II super 
ondu
tors, Markov pro
esses, and sto
hasti
 resonan
e. Thereafter wequi
kly look at the results obtained for the two boundary-layer problems in Se
tion 7.5.7.1 Bearing of the Combined Di�erential and Algeb-rai
 Re
ursionThe re
ursive te
hnique that has been developed throughout Chapter 3 of this thesis de�n-itely out 
lasses all diagrammati
al perturbative 
al
ulations. Using the 
onventional evalu-ation of Feynman diagrams, the partition fun
tion and the free energy have been evaluatedup to third order [18℄. Diagrammati
al results for the density matrix 
ame as far as up tose
ond order [33℄. In 
ontrast to that we 
ould drive our re
ursive 
al
ulations up to seventhorder for the free energy and for the ground state wave fun
tion. Variationally we 
ame ushigh as the �fth order in the 
ase of the free energy and up to seventh order for the wavefun
tion. The free energy requires more 
omputational resour
es due to the subtle expan-sion of the logarithm (4.3). State of the art 
omputer algebra programmes su
h as Maple
an evaluate the imaginary-time evolution amplitude up to the seventh order perturbativelywithin a 
ouple of hours, whereas the integrals represented by eight loop Feynman diagramsare not solvable with su
h programmes, nor by hand. Variational perturbation theory 
ostseven more time and �ve variational orders for the free energy is at the edge of what 
an bedone at the moment.Possible future appli
ations of the 
ombined di�erential and algebrai
 re
ursion are dis
ussed



94 Dis
ussionin Se
tion 7.4.7.2 LimitationsThe 
ombined di�erential and algebrai
 re
ursion de�nitely is a 
hallenge for every 
omputeralgebra program. Going up order by order and thus making use of the 
a
he memory ofour PCs it still took Maple 15 hours to 
al
ulate the seventh order of the imaginary-timeevolution amplitude.1 Comparing the 
omputation times for ea
h order roughly yields anexponential growth. Also the further simpli�
ation pro
edures and espe
ially the \series"-
ommand (Maple) required a lot of 
omputation time again. This was the pri
e we hadto pay for the idea, to get one universal re
ursion relation for all the quantum statisti
alanharmoni
 os
illator quantities at the same time.Still it is easy to over
ome diagrammati
al 
al
ulations and further streamlining of the Maples
ript should probably push the limits further.7.3 Exponential Convergen
e of Variational Perturba-tion TheoryFor the free energy as well as for the ground state wave fun
tion the 
onvergen
e of vari-ational perturbation theory was found to be exponential. The fa
t that the prin
iple of leastsensitivity [48℄ as interpreted by Kleinert produ
es extrema for the odd variational ordersand in
e
tion points for even orders, both in the 
ase of the free energy and in the 
ase of theground state wave fun
tion, is re
e
ted in the respe
tive 
onvergen
e behaviours: Odd andeven orders 
an best be �tted separately by exponentials. Thus we obtained intervals of 
on-vergen
e for 
ertain values of the free energy or the ground state wave fun
tion whi
h alwaysturned out to 
ontain the exa
t numeri
al result when taking into a

ount the statisti
al er-rors asso
iated with the boundaries of the intervals. For the free energy the numeri
al resultswere obtained using its spe
tral representation reverting on the �rst ten energy eigenvaluesobtained with the \shooting method", sket
hed in Se
tion 4.4. And for high temperaturesthe 
lassi
al free energy was available for 
omparison. For the ground state wave fun
tionnumeri
al results 
ould be obtained dire
tly from the \shooting method".7.4 Next StepsThere are quite a few interesting problems whi
h 
ould now be ta
kled with either re
ursivete
hniques or with variational perturbation theory or both:1We used a Pentium III, 450MHz and later an AMD with 1.5GHz whi
h was mu
h qui
ker. But at thatstage this thesis was almost �nished.



7.4 Next Steps 95Quantum statisti
sRe
ently a lot of resear
h has been done on the sto
hasti
 and dynami
 properties of 
uxlines in high-T
 super 
ondu
tors with arbitrary pinning 
entres [70, 71℄. Of all the possiblepinning me
hanisms, one seems to be most promising, namely the intera
tion of the 
uxlines with 
olumnar defe
ts [72, 73℄. From a theoreti
al point of view, this me
hanismhas been examined by Nelson and Vinokur [74℄ on the foundation of the Bose analogy[75, 76℄. Only re
ently Ettouhami su

eeded in des
ribing the physi
s of a single 
ux linewithout using 
olumnar defe
ts and their pinning e�e
t [77℄, but instead he employed theFeynman-Kleinert variational perturbation theory [6℄, to generate the partition fun
tion andthe e�e
tive pinning energy. It turned out that the mean square deviation of the 
ux linesfrom the pinning 
entre diverges for a 
ertain 
riti
al temperature. This was taken as a hintfor a lo
alization-non lo
alization phase transition. The �nal experimental and theoreti
aleviden
e of su
h a phase transition is still missing though [77℄.Therefore it would be very interesting to investigate the question whether other pinningpotentials than the Gaussian potential 
hosen by Ettouhami 
ould 
reate a phase transition.Also the 
ompeting in
uen
es of di�erent pinning 
entres on the lo
alization properties of the
ux line 
an be studied. Finally one 
ould 
he
k, whether the results of the Feynman-Kleinertvariational perturbation theory is altered for higher orders. Espe
ially for a Gaussian pinningpotential 
orre
tions from higher variational perturbative orders 
ould be evaluated by meansof the smearing formula [12℄.Bose-Einstein 
ondensates, Type-II super 
ondu
torsAfter the pioneering work, that has been done to realize Bose-Einstein 
ondensates of atomi
gases in magneti
 traps [78, 79, 80℄, these 
ondensates are now routinely produ
ed in labsaround the world.2 Therefore s
ienti�
 interest has shifted from produ
tion and stru
tureof these 
ondensates to a deep understanding of their dynami
s [83℄. Espe
ially for theinterpretation of experimental data it is indispensable to examine the dynami
s of 
ollapsingand exploding Bose-Einstein 
ondensates and the in
uen
e of intera
tion between the matterin the 
ondensate and the radiation. For low temperatures the mean-�eld theory has provedto be su

essful. It assumes that all atoms are in the same one-parti
le state [84℄. TheBose-Einstein 
ondensate is then des
ribed by a ma
ros
opi
 wave fun
tion 	(r; t) whi
his the order parameter. Its modulus squared is interpreted as the residen
e probability ofthe atoms in the 
ondensate. The unitary time evolution of the ma
ros
opi
 wave fun
tion	(r; t) obeys the Gross-Pitaevskii equation [85℄, whi
h readsi�h ��t	(r; t) = ���h2�2M + Vext(r) + g j	(r; t)j2�	(r; t) : (7.1)2In De
ember 2001, for the se
ond time in ten years, the Nobel Prize was awarded to three physi
istswho worked on Bose-Einstein 
ondensates [81, 82℄.



96 Dis
ussionWe have to solve equation (7.1) with the wave fun
tion 	(r; t) being normalized for all times:Z d3xj	(r; t)j2 = 1 : (7.2)Contrarily in experiments atoms 
an be s
attered out of the trap inelasti
ally. We 
ana

ount for that loss by adding imaginary loss terms to the Gross-Pitaevskii equation (7.1)whi
h then destroy the normalization of 	(r; t) [85℄.Up to now the Gross-Pitaevskii equation has been solved either numeri
ally [84℄ or in theThomas-Fermi approximation [86, 87℄. In the latter 
ase one assumes that the evaluationof the wave fun
tion of the 
ondensate 
an be simpli�ed by negle
ting the term for thekineti
 energy in the limiting 
ase of many atoms. It turns out that the Thomas-Fermiapproximation is quite rough [86℄ and, moreover, it depends on the properties of the trap[87℄. It is therefore ne
essary to improve the Thomas-Fermi approximation with the help ofvariational te
hniques [87℄. It would be worth a try to solve the Gross-Pitaevskii equationby means of a Bender-Wu like double expansion ansatz. Afterwards one 
ould resum theperturbative result with the help of variational perturbation theory. We expe
t that thispro
edure would improve the a

ura
y of the results for the Bose-Einstein 
ondensate as wellas in other appli
ations of the Thomas-Fermi approximation like for instan
e the physi
s ofatoms and mole
ules [2℄.As the Gross-Pitaevskii equation is also used to des
ribe super 
uid Helium and super
ondu
tivity in the mean-�eld approa
h [88℄, a re
ursive ansatz would be very promising inthese �elds, too.Dissipative quantum me
hani
sThe re
ursive methods whi
h have been developed in 
hapter 3 of this thesis 
an also beextended to dissipative quantum systems. Su
h a system 
onsists of a few ma
ros
opi
 de-grees of freedom whi
h are 
oupled to a large number of mi
ros
opi
 degrees of freedom andis usually des
ribed by the path integral quantization [2, 42℄. As the mi
ros
opi
 stru
tureof the reservoir is of no importan
e, one usually integrates over these degrees of freedom.For simpli
ity the reservoir is modeled by independent os
illators. What is left over is theredu
ed density matrix whi
h now depends on the 
oordinates of the ma
ros
opi
 degrees offreedom only. The essential kernel of the path integral is the so 
alled in
uen
e fun
tionalthat e�e
tively 
ontains the 
omplete in
uen
e of the reservoir [89℄. Both the Caldeira-Leggett model [43, 44, 42, 90℄ and the model of opti
al and a
ousti
 polarons [5, 42, 91℄ areof this general form. The a
tual evaluation of the redu
ed density matrix in the frameworkof these models unfortunately is very diÆ
ult, be
ause the underlying a
tion is bilo
al.One 
ould try to �nd more eÆ
ient methods for this 
omputation. A double expansionansatz for the imaginary-time evolution amplitude would solve the S
hr�odinger equation.Again one would obtain a set of re
ursive ordinary di�erential equations. Taking the tra
eover the reservoir 
oordinates in the imaginary-time evolution would yield a perturbativeresult for the redu
ed density matrix, whi
h 
ould then undergo variational perturbationtheory. The re
ursive te
hnique would allow for higher orders, su
h that the �rst-order res-ults [43℄ based on the variational methods by Gia
hetti and Tognetti [22℄ 
ould be ex
eeded.



7.4 Next Steps 97Espe
ially a study of the g-dependen
e of the density of states of the damped harmoni
os
illator [92℄ would be interesting.Markov pro
esses, Brownian motionBender-Wu like re
ursive solutions may also be useful for Markov pro
esses [93, 94, 95, 96, 24℄.Following Ref. [23℄ for a nonlinear drift 
oeÆ
ient [97℄K(x) = ��x� gx3 ; (7.3)the probability density will fa
torize a

ording toP (xb tbjxa ta) = P�(xb tbjxa ta)F (xb tbjxa ta) ; (7.4)where P�(xb tbjxa ta) denotes the probability density of a Brownian parti
le. The resultingFokker-Plan
k equation for the 
orre
tion F (xb tbjxa ta) then reads��tbF (xb tbjxa ta) = �D �2�x2b + ��xb + gx3b � 2�xb � xae��(tb�ta)1� e�2�(tb�ta) � ��xb+ �3gx2b � �Dgx3b xb � xae��(tb�ta)1� e�2�(tb�ta) ��F (xb tbjxa ta) : (7.5)Diagrammati
al 
onsiderations suggest to solve this partial di�erential equation with theansatzF (xb tbjxa ta) = 1 + 1Xn=1 4nXm=0 gn
(n)m (xa; tb; ta)xmb : (7.6)Similar to the re
ursion whi
h was developed in 
hapter 3 of this thesis, the expansion
oeÆ
ients 
(n)m (xa; tb; ta) should obey an ordinary partial di�erential equation. With the helpof a 
omputer algebra program it should be possible to drive this perturbative 
al
ulationto very high orders as seen in the 
ase of the quantum statisti
al imaginary-time evolutionamplitude. Initial results leading in this dire
tion have now been shown in Ref. [24℄.Sto
hasti
 resonan
eNormally an in
rease of the noise ba
kground leads to a higher signal-to-noise ratio. Some20 years ago it was dis
overed that under 
ertain 
ir
umstan
es also the opposite 
ounterin-tuitive e�e
t 
an happen. This phenomenon is know as sto
hasti
 resonan
e [98℄. Sto
hasti
resonan
e is believed to explain many physi
al problems, as well as it has appli
ations in
hemistry and biology. Even the periodi
ity of the i
e ages 
an be modeled by means ofsto
hasti
 resonan
e.



98 Dis
ussionConsider a parti
le in the double well potential together with a periodi
 external weak for
e.This weak for
e 
an indu
e periodi
 movements of the parti
le. This sto
hasti
 syn
hroniz-ation o

urs when the mean time between two noise indu
ed transitions is of the order ofhalf the period of the external for
e. This model of sto
hasti
 resonan
e has been studiedin the adiabati
 limit, in the fully non-adiabati
 regime and by means of linear-responseapproximation (
ompare the bibliography in [98℄).So similarly to the above des
ribed approa
h to Markov pro
esses one 
ould in this 
asesolve the Fokker-Plan
k equation for the expli
itly time-dependent drift 
oeÆ
ientK(x; t) = ��x� gx3 + F (t) (7.7)for arbitrary for
es F (t) and espe
ially for periodi
 for
es F (t) = A 
os(!t + �). But alsoother time dependen
ies as, for instan
e, the 
ompetition between two Fourier modes 
ouldbe interesting.Theory of rea
tion ratesOne of the most important appli
ations of Markov theory is the des
ription of thermallya
tivated transitions between meta stable states. This pro
ess is espe
ially signi�
ant forthe theory of rea
tion rates in 
hemistry and biology whi
h was founded by Kramers [98℄. Atypi
al model is the over damped Brownian motion of a parti
le in a double well potentialwhere the position of the parti
le is identi�ed with the rea
tion rate 
oordinate. By solvingthe underlying Fokker-Plan
k equation, the mean transition rate between the two minima
an be 
al
ulated. Using several di�erent approximations one 
an show that the mean trans-ition rate grows with a de
reasing damping whereas the rate drops again for strong damping[99℄. Variational perturbation theory would enable us to investigate this interesting trans-ition further on the s
a�olding of the results obtained for Markov theory mentioned earlier.For low temperatures also quantum me
hani
al tunneling be
omes more important 
om-pared to thermally a
tivated transitions. The 
ompeting in
uen
e of these two phenomena isdes
ribed by the Caldeira-Leggett model. It predi
ts a 
riti
al temperature: Above this tem-perature thermally a
tivated transitions are dominant, below this temperature only quantumme
hani
al tunneling pro
esses are relevant. A variational perturbative study of these phe-nomena 
ould refer to previous work [2, 28, 29, 30, 100℄ where purely quantum me
hani
altunneling has been des
ribed. For instan
e one 
ould 
ompute the splitting in the doublewell potential by resumming the weak 
oupling perturbation series into a strong 
ouplingseries with the help of variational perturbation theory whi
h then is analyti
ally 
ontinuedto negative 
oupling 
onstants. The results are pra
ti
al for low barriers and high tunnelingrates. Combining variational perturbation theory with the semi
lassi
al approximation, one
ould extend their pra
ti
ability to high barriers and low tunneling rates.Brownian motorsIs it possible to transform the arbitrary mi
ros
opi
 
u
tuations of Brownian motion intome
hani
al work? This basi
 question 
an be studied by means of the sto
hasti
 rat
het
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h is based on a gedanken experiment by Smolu
howski [101℄ and Feynman[102℄. Consider the over damped Brownian motion of a parti
le in a spatially periodi
potential V (x) = V (x + L) with spatially broken symmetry. This 
ould be realized forinstan
e by superimposing two Fourier modesV (x) = A sin 2�xL +B sin 4�xL : (7.8)Then one solves the underlying Fokker-Plan
k equation with the drift 
oeÆ
ientK(x) = �V 0(x) : (7.9)The rat
het e�e
t o

urs when appropriately 
hosen system parameters do not let the parti
le
urrent vanishh _x(t)i = � Z +1�1 dx ��V 0(x) +D ��x�P (x tjx0 t0) : (7.10)Investigating su
h sto
hasti
al systems with rat
het e�e
ts, whi
h are also referred to asBrownian motors, has be
ome very important espe
ially for the biology of 
ells. Re
entlyit was dis
overed that the rat
het e�e
t is responsible for the intra 
ellular transport ofso-
alled mole
ular motors, whi
h migrate along polymer �laments (
ompare the extensivebibliography in [99℄).This rat
het e�e
t 
an be studied with the help of variational perturbation theory. To thisend one of the few exa
tly solvable 
ases of the sto
hasti
 rat
het model [99℄ 
an be 
hosenas the referen
e system, around whi
h one 
an then expand perturbatively. Its parametersbe
ome the variational parameters. The results 
ould be 
ompared with approximativeresults [99℄ for the parti
le 
urrent (7.10). Moreover it would be interesting to �nd outwhi
h system parameters 
an 
hange the 
urrent (7.10) most eÆ
iently.Also one 
ould extend the studies on quantum rat
hets. Their mi
ros
opi
 
u
tuations areboth of thermal and quantum me
hani
al origin. Important experimental realizations areJosephson jun
tions and SQUIDS [103℄. Quantum rat
hets are des
ribed in the frameworkof the Caldeira-Leggett model of dissipative quantum me
hani
s, whi
h has already beenmentioned in 
onne
tion with quantum dissipation.7.5 Boundary-Layer Theory, Strong-Coupling Series,Large-Order StudiesUnfortunately we did not su

eed in �nding a systemati
 resummation algorithm for theinstanton problem and for the Blasius equation, solved on the latti
e in the limit as the latti
espa
ing goes to zero. This would have enabled us to qui
kly swit
h from di�eren
e equationsto di�erential equations and vi
e versa. Also our analyti
 understanding of �eld theorieswould have bene�ted. However, we 
ould study the respe
tive large-order behaviours. Maybe these 
onsiderations will enable us, to at least push the 
onvergen
e radii further out. Or
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ussionthey might tell us whi
h set of base fun
tions 
an be used to re-expand the two weak-
ouplingseries in su
h a way that they 
onverge even for in�nite 
oupling. What de�nitely 
an besaid at this stage is, that the numeri
s have been pushed to the limits. Our Maple programsblo
ked various 
omputer 
lusters on both sides of the Atlanti
3 for periods of time as longas two weeks.7.6 Con
luding ThoughtsWe have seen that re
ursive te
hniques in quantum statisti
s together with powerful 
om-puter algebra systems enhan
e our possibilities to obtain high-order perturbative results forall the relevant quantities. Furthermore we 
ould use these results to study variational per-turbation theory for the anharmoni
 os
illator systemati
ally. It is now about time to applythe two formalisms | the re
ursion te
hniques and variational perturbation theory | tothe very interesting problems that have been mentioned in Se
tion 7.4.The boundary-layer problems from Chapter 6, solved on the latti
e in the limit as the latti
espa
ing goes to zero, still wait for a suitable systemati
 resummation algorithm.

3At the Freie Universit�at in Berlin and at the Washington University in St. Louis, Missouri.



A
knowledgementsI am deeply grateful to Prof. Hagen Kleinert whom I �rst met in winter 1999, when I at-tended his le
tures on \Advan
ed Quantum Me
hani
s". The main theoreti
al tool of thisthesis, variational perturbation theory, was an integral part of this 
ourse as well as of hisseminar on path integrals taught in the same semester. Prof. Kleinert later enthusiasti
allyagreed to supervise this diploma thesis. He always kept up the spirits by 
oming up withnew 
reative ideas whi
h always turned out to work. And he always found time for veryfruitful dis
ussions.In autumn 2001 I had the possibility to visit Prof. Carl Bender at Washington University inSt. Louis, Missouri. After I had presented preliminary results from Chapters 3, 4, and 5 tohim and his 
olleagues from the Physi
s Department at WashU, he o�ered several ideas howI 
ould round o� this work. Moreover, he taught me a lot of te
hniques whi
h then layedthe foundation for Chapter 6 of this thesis whi
h is a result of our 
lose 
ollaboration. Forthis and for the warm re
eption at Washington University I want to thank him deeply.Prof. Bodo Hampre
ht provided me with his perturbative results for the free energy whi
hhe had obtained with Mathemati
a. Thus I had an ex
ellent 
ross 
he
k for the expressionsI generated with Maple. Prof. Hampre
ht's generousity will not be forgotten.Also Dr. Axel Pelster's advi
e was extremely helpful. Espe
ially his well edu
ated guesses
on
erning Maple helped to over
ome many problems. And even the most te
hni
al math-emati
al question 
ould not puzzle him. He also sa
ri�
ed a 
ouple of publi
 holidays todis
uss this work with me.Moreover I appre
iate my parents' generous support. They made my life easier and more
omfortable by ameliorating the in
ome I get as a tutor at the Physi
s Department of FreieUniversit�at Berlin. They also 
heered me up during the dark phases, and their additional�nan
ial support �nally enabled me to go to St. Louis. And even when I had a 
rash withmy mother's sta� 
ar on the o

asion of her 50th birthday in De
ember 2001, neither mymother nor my father lost patien
e.The money I got from my parents was also spent in the \Cafe Atlanti
". My sessions thereyielded quite a few ideas whi
h are now part of this thesis. Moreover their kit
hen wasopen till midnight | that helped me to survive this work physi
ally. And Katharina was(and still is) a very warm-hearted waitress. However, I am disappointed that the \Atlanti
"shamelessly raised all pri
es by 10 per
ent after 
onversion to Euros.My grandparents always kept tra
k of my a
ademi
 e�orts and they, too, helped me over�nan
ial obsta
les. Therefore I want to thank them from the bottom of my heart and Ipromise to try to explain to them in plain German what this diploma thesis is all about.My sister Julia kept distra
ting me from work with endless telephone 
alls. Still I am grateful



102 Dis
ussionto her as she also joined me in the \Atlanti
". So did Christian Joas, Rolf Minkwitz, andAlekos Tsamaloukas. Alekos also gave me innumerable valuable hints 
on
erning TEX. AndKonstantin Glaum, Ceyda �O�
al�r, as well as Sebastian S
hmidt were pleasant and easy-goingoÆ
e mates. Berlin, in the Year of the Lord MMIIFlorian Wei�ba
h



List of Figures3.1 Path of re
ursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.2 Symmetry leads to a 
ombined di�erential and algebrai
 re
ursion relation . 374.1 Variational parameter 
(1)(�) for intermediate 
oupling . . . . . . . . . . . . 484.2 Free energy F (�) up to third order for intermediate 
oupling . . . . . . . . . 494.3 Convergen
e of the spe
tral representation of the free energy . . . . . . . . . 504.4 Classi
al, numeri
al and variational perturbative free energy . . . . . . . . . 514.5 Free energy F (�) up to �fth order for intermediate 
oupling . . . . . . . . . 525.1 Variational parameter 
(1)(x) for intermediate 
oupling. . . . . . . . . . . . 635.2 Ground state wave fun
tion for weak 
oupling, intermediate 
oupling, and forstrong 
oupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635.3 Ground state wave fun
tion 	(N)(x) for the �rst seven orders for strong 
oupling 645.4 Variational parameter 
(N)(x) for the ground state wave fun
tion for the �rstseven orders for strong 
oupling . . . . . . . . . . . . . . . . . . . . . . . . . 655.5 Exponential 
onvergen
e of the ground state wave fun
tion . . . . . . . . . . 665.6 Exponential 
onvergen
e of the asymptoti
 ground state wave fun
tion . . . 696.1 Approximants for the instanton problem up to 200th order . . . . . . . . . . 776.2 Fun
tion b(200)0 (k(N)0 ) and its se
ond derivative with respe
t to k(N)0 . . . . . . 806.3 Exponent for the instanton problem . . . . . . . . . . . . . . . . . . . . . . . 85





List of Tables4.1 The �rst ten energy eigenvalues En of the anharmoni
 os
illator for interme-diate 
oupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495.1 Pointwise 
onvergen
e of the ground state wave fun
tion for the �rst sevenorders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.2 The asymptoti
 wave fun
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 696.1 The �rst 20 weak-
oupling 
oeÆ
ients for the instanton problem . . . . . . . 756.2 The �rst 20 Pad�e approximants for the instanton problem . . . . . . . . . . 766.3 The last 20 variational strong-
oupling 
oeÆ
ients for the instanton problem 796.4 Six orders of Ri
hardson extrapolation for the strong-
oupling 
oeÆ
ient b(N)0 (k0)for the instanton problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.5 Six orders of Ri
hardson extrapolation for the exponent A for the large-orderinstanton weak-
oupling 
oeÆ
ients . . . . . . . . . . . . . . . . . . . . . . . 826.6 Six orders of Ri
hardson extrapolation for the inverse radius of 
onvergen
eK of the large-order instanton weak-
oupling 
oeÆ
ients . . . . . . . . . . . 836.7 Six orders of Ri
hardson extrapolation for the overall fa
tor B1 of the large-order instanton weak-
oupling 
oeÆ
ients . . . . . . . . . . . . . . . . . . . . 836.8 Six orders of Ri
hardson extrapolation for the overall fa
tor B2 of the large-order instanton weak-
oupling 
oeÆ
ients . . . . . . . . . . . . . . . . . . . . 846.9 The �rst 20 weak-
oupling 
oeÆ
ients for the Blasius equation . . . . . . . . 886.10 The �rst 20 Pad�e approximants for the Blasius equation . . . . . . . . . . . 896.11 Three orders of Ri
hardson extrapolation for the Blasius equation . . . . . . 896.12 The last 20 variational strong-
oupling 
oeÆ
ients for the Blasius equation . 906.13 Six orders of Ri
hardson extrapolation for the strong-
oupling 
oeÆ
ient b(N)0 (k0)for the Blasius equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906.14 Parameters for the large-order behaviour of the Blasius weak-
oupling 
oeÆ-
ients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





Bibliography[1℄ C. M. Bender and T. T. Wu: Anharmoni
 os
illator, Phys. Rev. 184, 1231 (1969);Anharmoni
 os
illator. II. A study of perturbation theory in large order, Phys. Rev. D7, 1620 (1973)[2℄ H. Kleinert: Path integrals in me
hani
s, statisti
s, polymer physi
s, and sto
k markets,3rd edition, World S
ienti�
, Singapore (2002)http://www.physik.fu-berlin.de/~kleinert/kleiner reb3/3rded.html[3℄ R. P. Feynman: Spa
e-time approa
h to non-relativisti
 quantum me
hani
s, Rev. Mod.Phys. 20, 367 (1948)[4℄ R. P. Feynman and A. R. Hibbs: Quantum me
hani
s and path integrals, M
Graw-Hill,In
., New York (1965)[5℄ R. P. Feynman: Statisti
al me
hani
s, Reading, Massa
husetts (1972)[6℄ R. P. Feynman and H. Kleinert: E�e
tive 
lassi
al partition fun
tions, Phys. Rev. A34, 5080 (1986)[7℄ H. Kleinert: Systemati
 
orre
tions to variational 
al
ulation of e�e
tive 
lassi
al po-tential, Phys. Lett. A 173, 332 (1993)[8℄ H. Kleinert and V. S
hulte-Frohlinde: Criti
al properties of �4-theories, World S
ienti�
,Singapore (2001)[9℄ J. Jaeni
ke and H. Kleinert: Loop 
orre
tions to the e�e
tive 
lassi
al potential, Phys.Lett. A 176, 409 (1993)[10℄ H. Kleinert: E�e
tive potentials from e�e
tive 
lassi
al potentials, Phys. Lett. B 181,324 (1986)[11℄ W. Janke and H. Kleinert: E�e
tive 
lassi
al potential and parti
le distribution of aCoulomb system, Phys. Lett. A 118, 371 (1986)[12℄ H. Kleinert, A. Pelster, and W. K�urzinger, Smearing formula for higher-order e�e
tive
lassi
al potentials, J. Phys. A 31, 8307 (1998)[13℄ M. Ba
hmann, H. Kleinert, and A. Pelster: Quantum statisti
s of hydrogen in strongmagneti
 �elds, Phys. Lett. A 279, 23 (2001)



108 Bibliography[14℄ M. Ba
hmann, H. Kleinert, and A. Pelster: Variational approa
h to hydrogen atom inuniform magneti
 �eld of arbitrary strength, Phys. Rev. A 62, 52509 (2000)[15℄ D. Klakow, C. Toep�er, and P.-G. Reinhard: Semi
lassi
al mole
ular dynami
s forstrongly 
oupled Coulomb-systems, Journal of Chemi
al Physi
s 101, 10766 (1994)[16℄ D. Klakow, C. Toep�er, and P.-G. Reinhard: Hydrogen under extreme 
onditions, Phys.Lett. A 192, 55 (1994)[17℄ W. Ebeling and B. Militzer: Quantum mole
ular dynami
s of partially ionized plasmas,Phys. Lett. A 226, 298 (1996)[18℄ H. Kleinert and H. Meyer: Variational 
al
ulation of e�e
tive 
lassi
al potential at T 6= 0to higher orders, Phys. Lett. A 184, 319 (1994)[19℄ W. Janke and H. Kleinert: Convergent strong-
oupling expansions from divergent weak-
oupling perturbation theory, Phys. Rev. Lett. 75, 2787 (1995)[20℄ H. Kleinert: Variational interpolation algorithm between weak- and strong-
oupling ex-pansions, Phys. Lett. A 207, 133 (1995)[21℄ H. Kleinert: Variational resummation of divergent series with known large-order beha-viour, Phys. Lett. B 360, 65 (1995)[22℄ R. Gia
hetti and V. Tognetti: Variational approa
h to quantum statisti
al me
hani
sof nonlinear systems with appli
ations to Sine-Gordon 
hains, Phys. Rev. Lett. 55, 912(1985)[23℄ H. Kleinert, A. Pelster, and M. Putz: Variational perturbation theory for Markov pro-
esses, a

epted for publi
ation in Phys. Rev. E[24℄ J. Dreger: Untersu
hung des Starkkopplungsverhaltens der Fokker-Plan
k-Glei
hung mitanharmonis
her Drift, diploma thesis at Freie Universit�at Berlin (2002)[25℄ A. Okopinska: The Fokker-Plan
k equation for bistable potential in the optimized ex-pansion, e-print: 
ond-mat/0111389 (2001)[26℄ H. Kleinert and W. Janke: Convergen
e behavior of variational perturbation expansion{ A method for lo
ating Bender-Wu singularities, Phys. Lett. A 206, 283 (1995)[27℄ W. Janke and H. Kleinert: S
aling property of variational perturbation expansion forgeneral anharmoni
 os
illator with xP -potential, Phys. Lett. A 199, 287 (1995)[28℄ H. Kleinert: Variational approa
h to tunneling. Beyond the semi
lassi
al approximationof Langer and Lipatov { perturbation 
oeÆ
ients to all orders, Phys. Lett. B 300, 261(1993)[29℄ R. Karrlein and H. Kleinert: Pre
ise variational tunneling rates of anharmoni
 os
illatorfor g < 0, Phys. Lett. A 187, 133 (1994)



Bibliography 109[30℄ H. Kleinert and I. Mustapi
: De
ay rates of metastable states in 
ubi
 potential byvariational perturbation theory, Int. J. Mod. Phys. A 11, 4383 (1996)[31℄ H. Kleinert: Higher-order variational approa
h to non-Borel systems. The energies ofthe double-well potential, Phys. Lett. A 190, 131 (1994)[32℄ H. Kleinert: Parti
le distribution from e�e
tive 
lassi
al potential, Phys. Lett. A 118,267 (1986)[33℄ M. Ba
hmann, H. Kleinert, and A. Pelster: Variational perturbation theory for densitymatri
es, Phys. Rev. A 60, 3429 (1999)[34℄ A. Okopinska: Optimized perturbation method for the propagation in the anharmoni
os
illator potential, Phys. Lett. A 249, 259 (1998)[35℄ H. Kleinert: E�e
tive 
lassi
al potential for 
u
tuating �eld systems of �nite size, Phys.Lett. A 118, 195 (1986)[36℄ M. Ba
hmann, H. Kleinert, and A. Pelster: Strong-
oupling 
al
ulation of the 
u
tuationpressure of a membrane between walls, Phys. Lett. A 261, 127 (1999)[37℄ M. Ba
hmann, H. Kleinert, and A. Pelster: Flu
tuation pressure of a sta
k of mem-branes, Phys. Rev. E 63, 051709 (2001)[38℄ H. Kleinert: Strong-
oupling behaviour of �4-theories and 
riti
al exponents, Phys. Rev.D 57, 2264 (1998), Add. Phys. Rev. D 58, 107702 (1998)[39℄ H. Kleinert: Criti
al exponents without �-fun
tion, Phys. Lett. B, 463, 69 (1999)[40℄ A. Pelster and F. Wei�ba
h: Variational perturbation theory for the ground state wavefun
tion, in: W. Janke, A. Pelster, H.-J. S
hmidt, M. Ba
hmann (Editors): Flu
tuatingPaths and Fields { Fests
hrift dedi
ated to Hagen Kleinert on the o

asion of his 60thbirthday, World S
ienti�
, Singapore (2001), p. 315[41℄ T. Hatsuda, T. Kunihiro, and T. Tanaka: Optimized perturbation theory for wave fun
-tions of quantum systems, Phys. Rev. Lett. 78, 3229 (1997)[42℄ U. Weiss: Quantum dissipative systems, 2nd edition, World S
ienti�
, Singapore (2000)[43℄ A. Cu

oli, A. Rossi, V. Tognetti, and R. Vaia: Thermodynami
s of dissipative quantumsystems by e�e
tive potential, Phys. Rev. E 55, 4849 (1997)[44℄ A. O. Caldeira and A. J. Leggett: In
uen
e of dissipation on quantum tunneling inma
ros
opi
 systems, Phys. Rev. Lett. 46, 211 (1982)[45℄ A. O. Caldeira and A. J. Leggett: Path integral approa
h to quantum Brownian motion,Physi
a A 121, 587 (1983)[46℄ D. Cohen: Quantum dissipation versus 
lassi
al dissipation for generalized Brownianmotion, Phys. Rev. Lett 78, 2878 (1997)



110 Bibliography[47℄ Y. C. Chen, M. P. A. Fisher, and A. J. Leggett: The return of a hystereti
 Josephsonjun
tion to the zero-voltage state: I-V 
hara
teristi
 and quantum retrapping, Journalof Applied Physi
s 64, 3119 (1988)[48℄ P. M. Stevenson: Optimized perturbation theory, Phys. Rev. D 23, 2916 (1981)[49℄ C. �O�
al�r: Correlation fun
tions in quantum statisti
s, diploma thesis at Freie Uni-versit�at Berlin (2003)[50℄ H. Kleinert, A. Pelster, and M. Ba
hmann: Generating fun
tional for harmoni
 ex-pe
tation values of paths with �xed end points: Feynman diagrams for nonpolynomialintera
tions, Phys. Rev. E 60, 2510 (1999)[51℄ The expansion 
oeÆ
ients 
(n)2kjl(�) up to seventh order 
an be found athttp://www.physik.fu-berlin.de/~weissba
h/
oeff.html[52℄ I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and produ
ts, 
orre
tedand enlarged edition, A
ademi
 Press, New York (1980)[53℄ C. M. Bender, and S. Orszag: Advan
ed mathemati
al methods for s
ientists and en-gineers, M
Graw-Hill, In
., New York (1978)[54℄ C. M. Bender, F. Cooper, G. S. Guralnik, and D. H. Sharp: Strong-
oupling expansionin quantum �eld theory, Phys. Rev. D 19, 1865 (1979)[55℄ C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. H. Sharp: Improvement ofan extrapolation s
heme for strong-
oupling expansions in quantum �eld theory, Phys.Rev. Lett. 43, 537 (1979)[56℄ C. M. Bender, F. Cooper, G. S. Guralnik, H. Rose, and D. H. Sharp: Strong 
ouplingexpansion for 
lassi
al statisti
al dynami
s, Jour. Stat. Phys. 22, 647 (1980)[57℄ C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. H. Sharp: "Renormalizingthe strong-
oupling expansion for quantum �eld theory: Present status, in Re
ent Devel-opments in High-Energy Physi
s, Ed. by B. Kursunoglu, A. Perlmutter, and L. F. S
ott(Plenum, New York, 1980), p. 211.[58℄ C. M. Bender, F. Cooper, R. Kenway, and L. M. Simmons, Jr.: Continuum regulationof the strong 
oupling expansion for quantum �eld theory, Phys. Rev. D 24, 2693 (1981)[59℄ C. M. Bender and R. Z. Roskies: E�e
t of renormalization of the large-order behaviorof weak- and strong-
oupling perturbation theory, Phys. Rev. D 25, 427 (1982)[60℄ C. M. Bender, F. Cooper, R. Kenway, and L. M. Simons, Jr.: Problems with 
ontinuumregulation of strong-
oupling expansions, Phys. Lett B 109, 63 (1982)[61℄ C. M. Bender, L. R. Mead, and L. M. Simmons, Jr.: Large-order behavior of latti
estrong-
oupling expansions, Phys. Rev. D 28, 936 (1983)



Bibliography 111[62℄ C. M. Bender, F. Cooper, and A. Das: Continuum limit of supersymmetri
 �eld theorieson a latti
e, Phys. Rev. Lett. 50, 397 (1983)[63℄ C. M. Bender, F. Cooper, G. S. Guralnik, E. Mjolsness, H. A. Rose, and D. H. Sharp:A novel approa
h to the solution of boundary-layer problems, Adv. Appl. Mathemati
s1, 22 (1980)[64℄ C. M. Bender: A novel approa
h to boundary-layer problems, Los Alamos S
ien
e 2, 76(1981)[65℄ C. M. Bender and A. Tovbis: Continuum limit of latti
e approximation s
hemes,J. Math. Phys. 38, 3700 (1997)[66℄ The �rst 200 weak-
oupling 
oeÆ
ients for the instanton equation 
an be found athttp://www.physik.fu-berlin.de/~weissba
h/inst.html .[67℄ H. Blasius: Grenzs
hi
hten in Fl�ussigkeiten mit kleiner Reibung, Z. Math. Phys. 56, 1(1908)[68℄ Z. Belha
hmi, B. Brighi, and K. Taous: On the 
on
ave solutions of the Blasius equation,A
ta Math. Univ. Comenianae, Vol. LXIX, 199 (2000)[69℄ The �rst 300 weak-
oupling 
oeÆ
ients for the Blasius equation 
an be found athttp://www.physik.fu-berlin.de/~weissba
h/blas.html .[70℄ G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur:Vorti
es in high-temperature super
ondu
tors, Rev. Mod. Phys. 66, 1125 (1994)[71℄ T. Nattermann and S. S
heidl: Vortex-glass phases in type II-super
ondu
tors, Advan
esin Physi
s 49, 607 (2000)[72℄ L. Civale et al.: Vortex 
on�nement by 
olumnar defe
ts in Y Ba2Cu3O7 
rystals: En-han
ed pinning at high �elds and temperatures, Phys. Rev. Lett. 67, 648 (1991)[73℄ M. Kon
zykowski et al.: E�e
t of 5.3GeV Pb-ion irradiation on irreversible magnetiz-ation in Y-Ba-Cu-O 
rystals, Phys. Rev. B 44, 7167 (1991)[74℄ D. R. Nelson and V. M. Vinokur: Boson lo
alization and 
orrelated pinning of super-
ondu
ting vertex arrays, Phys. Rev. B 48, 13060 (1993)[75℄ D. R. Nelson: Vortex entanglement in high-T
 super
ondu
tors, Phys. Rey. Lett. 60,1973 (1988)[76℄ D. R. Nelson and H. S. Seung: Theory of melted 
ux liquids, Phys. Rev. B 39, 9153(1989)[77℄ A. M. Ettonhami: Possible depinning transition of a single 
ux line near a 
olumnardefe
t in type II-super
ondu
tors, 
ond-mat/0106322 (2001)



112 Bibliography[78℄ M. H. Anderson et al.: Observation of Bose-Einstein 
ondensate in a dilute atomi
 gas,S
ien
e 269, 198 (1995)[79℄ K. B. Davis et al.: Bose-Einstein 
ondensation in a gas of sodium atoms, Phys. Rev.Lett. 75, 3969 (1995)[80℄ C. C. Bradley et al.: Eviden
e of Bose-Einstein 
ondensation in an atomi
 gas withattra
tive intera
tions, Phys. Rev. Lett. 75, 1687 (1995)[81℄ E. Cornell, and C. E. Wiemann: Physi
ists 
reate new state of matter at re
ord lowtemperature, joint press release by The National Institute of Standards and Te
hnologyand The Univereity of Colorado (1995)[82℄ W. Ketterle: MIT physi
ists demonstrate �rst atom laser, MIT News OÆ
e (1997)[83℄ L. Ginzburg, and L. P. Pitaevskii: On the theory of super
uidity, Sov. Phys. JETP7, 858 (1958); F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari: Theory ofBose-Einstein 
ondensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999)[84℄ H. Saito and M. Ueda: Mean-�eld analysis of 
ollapsing and exploding Bose-Einstein
ondensates, 
ond-mat/0107248[85℄ E. P. Gross: Stru
ture of a generalized vortex in boson systems, Nuovo Cimento 20,454 (1961); J. Math. Phys. 4, 195 (1963); L. P. Pitaevskii: Vortex lines in an imperfe
tBose gas, Sov. Phys. JETP 13, 451 (1961); A. J. Leggett: Bose-Einstein 
ondensationin the alkali gases: Some fundamental 
on
epts, Rev. Mod. Phys. 73, 307 (2001)[86℄ I. Haering and J. M. Rost: Atomi
 s
attering from Bose-Einstein 
ondensates, quant-ph/0108027 (2001)[87℄ A. L. Zubarev and Y. E. Kim: Beyond the Thomas-Fermi approximation for nonlineardynami
s of trapped Bose-
ondensed gases, 
ond-mat/0107512[88℄ H. Kleinert: Gauge �elds in 
ondensed matter, vol. 1: Super
ow and vortex lines -disorder �elds, phase transitions, World S
ienti�
, Singapore (1989)[89℄ R. P. Feynman and F. L. Vernon: The theory of a general quantum system intera
tingwith a linear dissipative system, Ann. of Phys. 24, 118 (1963)[90℄ A. O. Caldeira and A. J. Leggett: Quantum tunneling in a dissipative system, Ann. ofPhys. 149, 374 (1983)[91℄ R. P. Feynman: Slow ele
trons in a polar 
rystal, Phys. Rev. 97, 660 (1955)[92℄ A. Hanke and W. Zwerger: Density states of a damped quantum os
illator, Phys. Rev.E 52, 6875 (1994)[93℄ R. L. Stratonovi
h, Topi
s in the theory of random noise, vol. 1 | General theoryof random pro
esses, nonlinear transformations of signals and noise, Se
ond Printing,Gordon and Brea
h (1967)



Bibliography 113[94℄ N. G. van Kampen, Sto
hasti
 pro
esses in physi
s and 
hemistry, North-Holland Pub-lishing Company (1981)[95℄ H. Haken, Synergeti
s | An introdu
tion, nonequilibrium phase transitions and self-organization in physi
s, 
hemistry and biology, third revised and enlarged edition,Springer, Berlin (1983)[96℄ H. Risken, The Fokker-Plan
k equation { Methods of solution and appli
ations, se
ondedition, Springer, Berlin (1988)[97℄ H. Haken, Laser theory, En
y
lopedia of Physi
s, Vol. XXV/2
, Springer, Berlin (1970)[98℄ L. Gammaitoni, P. H�anggi, P. Jung, and F. Mar
hesoni: Sto
hasti
 resonan
e, Rev.Mod. Phys. 70, 223 (1998)[99℄ P. Reimann: Brownian motors: noisy transport far from equilibrium, 
ond-mat/0010237[100℄ P. H�anggi, P. Talkner, and M. Borkove
: Rea
tion-rate theory: Fifty years afterKramers, Rev. Mod. Phys. 62, 251 (1990)[101℄ M. v. Smolu
howski: Experimentell na
hweisbare, der �ubli
hen Thermodynamik wider-spre
hende Molekularph�anomene, Physik. Zeits
hr. 13, 1069 (1912)[102℄ R. P. Feynman, R. B. Leighton, and M. Sands: The Feynman le
tures on physi
s,vol. 1, 
hapter 46, Addison Wesley, Reading MA (1963)[103℄ S. Weiss et al.: Rat
het e�e
ts in d
 SQUIDs, Europhys. Lett. 51, 499 (2000)


