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Chapter 1IntrodutionMost physial problems are not exatly solvable. Therefore a wide variety of approximativemethods has been developed throughout the history of physis. One of them is perturbationtheory. This tehnique has proven to be extremely useful under innumerable irumstanes.Usually, however, the weak-oupling series whih are obtained through perturbation theoryare not onvergent.The ground state energy of the anharmoni osillator is the simplest example where thisphenomenon an be studied. Reursion relations �a la Bender and Wu [1℄ yield perturbationseries for the eigenvalues (energy) and eigenfuntions (wave funtions) of the Shr�odingerequation up to arbitrarily high orders. The Bender-Wu reursion relation yields a powerseries for the anharmoni part of the wave funtion both in the oupling strength g and inthe oordinate x. The power series in x an be ut o� naturally by omparing the reursiveresults with results obtained from generating Feynman diagrams. If now the value of theoupling strength g that determines the inuene of the anharmoniity is muh smaller thanone, the series in g onverges initially. To higher orders, however, the series diverges. If theoupling strength beomes too large, the series always diverges and no physial results anbe obtained at all. This thesis deals with both problems: Obtaining high-order perturbationseries and then making them onverge for all values of the oupling strength.In Part I we introdue a new reursive tehnique that extends the Bender-Wu reursion tosolutions of the time-dependent Shr�odinger equation. This new, more omprehensive re-ursion relation enables us to obtain high-order perturbative results for the imaginary-timeevolution amplitude of the anharmoni osillator by solving a set of both di�erential andalgebrai equations. This is in ontrast to the Bender-Wu reursion whih is a purely algeb-rai formalism.We treat our simple model system | the anharmoni osillator | quantum statistially byperforming a Wik rotation. In the beginning of Chapter 2, both the real- and the imaginary-time evolution amplitude and their respetive properties are reviewed. The subsequent se-tions deal with the physial quantities that an be derived from the imaginary-time evolutionamplitude, namely the partition funtion, the density matrix, the ground state wave fun-tion, and the orrelation funtions. At the end of Chapter 2 we take a look at the limits asthe temperature goes to zero and to in�nity, respetively.In Chapter 3 we derive the ombined di�erential and algebrai reursion relation for alulat-



8 Introdutioning the imaginary-time evolution amplitude. To that end we ompare two di�erent ansatzesfrom whih the seond proves to be the better one. It obeys a symmetry whih eventuallyenables us to hange many of the di�erential equations into purely algebrai ones. Thus ourreursion relation assumes a Bender-Wu [1℄ like shape. We also ut o� the power series inthe oordinates by omparison to diagrammati onsiderations.In Part II of this thesis variational perturbation theory [2℄ is applied to the perturbativeresults gained throughout the �rst part. This theory is a systemati extension of a simplevariational approah, �rst developed by Feynman and Kleinert in the path integral form-alism. Feynman introdued the path integral formalism as a quantization regulation, thatrepresents the operator properties of quantum physis by utuations of the dynamial vari-ables [3, 4℄. By extending analytially real time to imaginary time, also quantum statistialquantities an be obtained by summing over quantum mehanial and thermal utuationswith the help of path integrals [4, 5℄. In order to evaluate the path integral for the freeenergy approximatively, Feynman and Kleinert developed a variational method in 1986 [6℄.It replaes the relevant system by the exatly solvable harmoni osillator whose frequenybeomes a variational parameter whih has to be optimized. Starting with Ref. [7℄, thismethod has been systematially enhaned by Kleinert to higher orders [2, 8℄. It is nowknown as variational perturbation theory and yields results for all temperatures and alloupling strengths. It has already been applied to a broad variety of physial problemslike, for instane, to e�etive lassial partition funtions and potentials [6, 7, 9, 10℄, to theCoulomb problem with and without homogeneous magneti �eld [11, 12, 13, 14℄1, semilas-sial simulations of moleular dynamis [15, 17℄, the anharmoni osillator [18, 19, 20, 21℄,Sine-Gordon hains [22℄, Markov proesses [23, 24, 25℄, Bender-Wu singularities [26℄, the an-harmoni osillator with an xP -potential [27℄, as well as to tunneling phenomena [28, 29, 30℄,to the double-well potential [31℄, to partile distributions [11, 32, 33, 34℄, to utuating �eldsystems [35℄, and the utuation pressure of membranes [36, 37℄, to �4-theory [8, 38, 39℄ andlast but not least to the ground state wave funtion [40, 41℄. Only very reently variationalperturbation theory was applied to quantum dissipative systems [42℄. For instane Cuoli etal. applied variational perturbation theory to the density matrix [43℄ of the Caldeira-Leggettmodel [44, 45, 46, 47℄, using tehniques developed by Giahetti and Tognetti [22℄.In Chapters 4 and 5 the free energy and the ground state wave funtion of the anharmoniosillator are disussed and eah of them undergoes variational perturbation theory. Usingthe high-order results for the imaginary-time evolution amplitude from Chapter 3 we studythe onvergene behaviour of variational perturbation theory up to �fth order for the freeenergy and up to seventh order for the ground state wave funtion. As variational perturb-ation theory espeially allows for strong oupling, we onentrate on oupling strengths gequal to or greater than one. The results for the free energy are subjet to a numerialross hek and | where appropriate | to lassial onsiderations, whereas our results forthe ground state wave funtion are heked against both numerial alulations and againstthe well-known asymptoti behaviour [41℄. Moreover we study the patterns ourring in theoptimization proess [2, 48℄ for the free energy whih already have proven to be very regularin the ase of the ground state energy [2℄.1The singularity is ironed out by the thermal utuations. This proess ondensed in the smearingformula [6, 12℄. Similar potentials have been treated reverting on wave pakages [15, 16℄.



9In Chapter 6 we take a look at a problem from outside quantum statistis, namely the prop-erties of boundary-layers. They an be alulated on a lattie in the limit as the lattiespaing goes to zero. Understanding this limit would enable us to swith from di�ereneequations and numeris to di�erential equations and symboli evaluations and vie versa.Here we ompare variational perturbation theory with Pad�e methods. It turns out thatthey both produe good approximative results, but they do not onverge. However, bothresummations reveal speial properties whih have not been observed before. We also studythe large-order behaviour of two boundary-layer problems in order to better understand thestrong-oupling limit.Chapter 7 �nally skethes advantages and disadvantages of our ombined di�erential and al-gebrai reursion relation and disusses the onvergene of variational perturbation theory.It also provides an outlook on very promising future appliations of both reursion relationsand variational perturbation theory.
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Chapter 2Quantum StatistisIn this hapter we review the de�nitions of some quantum statistial quantities based onthe time evolution amplitude in quantum mehanis and in quantum statistis. From theimaginary-time evolution amplitude we derive the partition funtion and the free energy asglobal quantities of a system. Thereafter we examine loal quantities suh as the densitymatrix and orrelation funtions whih an also be derived from the imaginary-time evolutionamplitude. We �nally go bak to quantum mehanis by taking the low-temperature limitfrom whih we obtain the ground state wave funtion and energy. We shall also study thehigh-temperature limit in whih we obtain the lassial statistial properties of the system.2.1 Real-Time Evolution AmplitudeIn the Shr�odinger piture, the time evolution of a state vetor j	(ta)i at a time tb is givenby the equationj	(tb)i = e�i(tb�ta)Ĥ=�hj	(ta)i : (2.1)The operatorÛ(tb; ta) � e�i(tb�ta)Ĥ=�h (2.2)is alled the time evolution operator. Here Ĥ = Ĥ(x̂; p̂) is a Hermitean Hamilton operatorwhih depends on the anonial variables, position and momentum of the system. We assumethat there is no expliit time-dependene. The operator Û(tb; ta) is unitary by onstrution,so Û�1(tb; ta) = Û y(tb; ta) (2.3)holds for all times ta, tb. Also, it ful�lls the group multipliation lawÛ(tb; ta) = Z +1�1 dt Û(tb; t)Û(t; ta) : (2.4)



14 Quantum StatistisThe time evolution operator obeys the equation of motionddtb Û(tb; ta) = � i�hĤÛ(tb; ta) (2.5)with the initial onditionÛ(ta; ta) = 1 : (2.6)We now introdue another quantity derived from the time evolution operator, namely thereal-time evolution amplitude. It is de�ned by(xb tbjxa ta) � hxbjÛ(tb; ta)jxai ; (2.7)where the bra hxbj and the ket jxai denote the eigenstates of the position operator x̂ to theeigenvalue x, obeying the eigenvalue equationx̂jxi = xjxi : (2.8)The eigenvetors are orthonormalhxjx0i = Æ(x� x0) ; (2.9)and ompleteZ +1�1 dxjxihxj = 1 : (2.10)The operator Û(tb; ta) obeys the unitarity property (2.3), suh that the matrix elements havethe propertyhxbjÛ(tb; ta)jxai = hxajÛ y(tb; ta)jxbi�= hxajÛ�1(tb; ta)jxbi�= hxajÛ(ta; tb)jxbi� : (2.11)For the amplitude (2.7) this implies(xb tbjxa ta) = (xa tajxb tb)� : (2.12)



2.2 Spetral Representation 152.2 Spetral RepresentationLike any funtion of an operator, the time evolution amplitude has a spetral representationwhih turns out to be helpful for a lot of alulations at a later stage of this work. Bymultiplying equation (2.5) with a bra hxbj from the left and with a ket jxai from the rightwe obtain the Shr�odinger equationi�h ��t (xb tjxa 0) = Ĥ(xb; p̂b)(xb tjxa 0) ; (2.13)wherep̂b � �i�h ��xb : (2.14)The initial ondition is(xb 0jxa 0) = Æ(xb � xa) ; (2.15)whih omes from equation (2.6) together with (2.9). Suppose now that we have found aomplete and orthonormal set of eigenfuntions of the stationary Shr�odinger equationĤ(xb; p̂b)	n(xb) = En	n(xb) : (2.16)The ompleteness relation in this ase readsXn 	�n(xb)	n(xa) = Æ(xb � xa) ; (2.17)and the orthonormality property isZ +1�1 dxb	�n(xb)	n0(xb) = Ænn0 : (2.18)Beause of ompleteness, we an expand the time evolution amplitude (xb tjxa 0) in terms ofthe eigenfuntions 	n(xb):(xb tjxa 0) =Xn n(t)	n(xb) : (2.19)Inserting this ansatz into the Shr�odinger equation (2.13), and using (2.16), we obtaini�hXn _n(t)	n(xb) =Xn Enn(t)	n(xb) : (2.20)



16 Quantum StatistisMultiplying (2.20) by 	�n0(xb) and integrating over xb yieldsi�hXn _n(t) Z +1�1 dxb	�n0(xb)	n(xb) =Xn Enn(t) Z +1�1 dxb	�n0(xb)	n(xb) ; (2.21)whih | employing the orthormality property (2.18) | transforms toi�h _n(t) = Enn(t) : (2.22)The solution to this di�erential equation simply isn(t) = n(0)e� i�hEnt : (2.23)Inserting (2.23) into the expansion (2.19), the real-time evolution amplitude beomes(xb tjxa 0) =Xn n(0)e� i�hEnt	n(xb) : (2.24)The onstants n(0) are now �xed by applying the initial ondition (2.15):(xb 0jxa 0) =Xn n(0)	n(xb) = Æ(xb � xa) : (2.25)Multipliation by 	�n0(xb) and integration over xb leads ton0(0) = 	�n0(xa) : (2.26)So all in all we get for the real-time evolution amplitude(xb tjxa 0) =Xn 	�n(xa)e� i�hEnt	n(xb) ; (2.27)whih is its spetral representation.Generally, every funtion of an operator F (Ô) an be spetrally expanded asF (Ô) =Xn f(�n)	n	�n ; (2.28)where the �n are eigenvalues of the operator Ô.



2.3 Imaginary-Time Evolution Amplitude 172.3 Imaginary-Time Evolution AmplitudeIn order to make the transition from quantum mehanis to quantum statistis1, we performa so-alled Wik rotation of the time:t! �i� : (2.29)Thus the real-time evolution amplitude (xb tbjxa ta) turns into the imaginary-time evolutionamplitude (xb �bjxa �a). The imaginary-time evolution amplitude an also be expanded as(xb �bjxa �a) = hxbjÛ(�b; �a) xai ; (2.30)where Û(�b; �a) is the imaginary-time evolution operatorÛ(�b; �a) � e�(�b��a)Ĥ=�h : (2.31)In ontrast to the real-time evolution operator Û(tb; ta), its imaginary ounterpart Û(�b; �a)is not unitary, but Hermitean:Û y(�b; �a) = Û(�b; �a) : (2.32)That is why we get a slightly di�erent time reversal behaviour for the imaginary-time evol-ution amplitude ompared to the real one in (2.12). De�ning � � 1=kBT , we get(xb �h�jxa 0) = hxbje��Ĥ jxai= hxaj�e��Ĥ�y jxbi�= hxaje��Ĥ jxbi�= (xa �h�jxb 0)� ; (2.33)while it is known that the imaginary-time evolution amplitude is real for one-dimensionalproblems.The imaginary-time evolution amplitude has a spetral representation whih an easily beobtained from the spetral representation of the real-time evolution amplitude (2.27). Wejust have to replae real time by imaginary time aording to the Wik rotation (2.29) inthe spetral representation (2.27), yielding(xb �h�jxa 0) =Xn 	�n(xa)e��En	n(xb) : (2.34)1We are onsidering equilibrium systems only.



18 Quantum Statistis2.4 Partition Funtion and Free EnergyHaving de�ned the imaginary-time evolution amplitude, we now want to study one of theglobal quantities whih an be derived from it, namely the partition funtion. The partitionfuntion Z is de�ned as the trae of the imaginary-time evolution amplitude,Z � Z +1�1 dx(x �h�jx 0) : (2.35)The partition funtion is a useful quantity, as it de�nes the free energy via its logarithmF = � 1� logZ : (2.36)The derivatives of the free energy F lead to all the important thermo dynamial quantities,like e. g. pressure, entropy, or heat apaity.From the spetral representation of the imaginary-time evolution amplitude (2.34) we seethat the partition funtion Z also has a simple spetral representation, namelyZ =Xn Z +1�1 dxb	�n(xb)e��En	n(xb) =Xn e��En ; (2.37)whih follows from the normalization integrals in equation (2.18).2.5 Density MatrixLet us now disuss an important loal quantity whih an be obtained from the imaginary-time evolution amplitude. The density matrix allows us to treat pure and mixed quantummehanial states simultaneously. Often we have to deal with a statistial mixture of purequantum states. For instane, the density matrix would be the appropriate formalism to dealwith a ontinuous (not fully) polarized proton beam with proton spins pointing in variousdiretions. The ensemble of the protons in the beam should be treated in a onventionalstatistial way, while a single proton obeys quantum mehanis.Consider a time-independent base j	ni that is omplete (2.17) and orthonormal (2.18). Thenany state vetor an be expanded in this base aording toj	(t)i =Xn n(t)j	ni ; (2.38)where normalization of j	(t)i implies thatXn jn(t)j2 = 1 : (2.39)



2.5 Density Matrix 19The oeÆients n(t) are given by the salar produtsn(t) = h	nj	(t)i : (2.40)The time evolution is governed by the Shr�odinger equationĤj	(t)i = i�h ddt j	(t)i : (2.41)Expanding the j	(t)i aording to (2.38) and multiplying from the left by h	mj we getXn h	mjĤj	nin(t) = i�hXn h	mj	ni _n(t) = i�h _m(t) ; (2.42)beause the j	ni are orthonormal (2.18). Introduing the matrix elements of the Hamiltonianwith respet to the base vetors Hmn � h	mjĤj	ni we an rewrite equation (2.42) asXn Hmnn(t) = i�h _m(t) : (2.43)Sine Ĥ is a Hermitean operator, the matrix elements Hmn form a Hermitean matrix:Hmn = h	mjĤj	ni = h	njĤyj	mi� = h	njĤj	mi� = H�nm : (2.44)We now introdue the density matrix for pure states by its matrix elements�mn(t) � m(t)�n(t) : (2.45)This quantity has the following properties:(i) It has unit trae: tr�(t) =Pn �nn(t) =Pn jn(t)j2 = 1 :(ii) It is Hermitean: �y = � .(iii) The expetation value in the state j	(t)i readsh	(t)jA	(t)i =Xmn Amnn(t)�m(t) =Xmn �mn(t)Amn = tr[�(t)A℄ : (2.46)(iv) Aording to (2.43), it obeys an equation of motion:i�h _�mn(t) = i�h _m(t)�n(t) + i�hm(t) _�n(t)= Xp Hmpp(t)�n(t)�Xp Hpnm(t)�p(t)= Xp (Hmp�pn(t)�Hpn�mp(t))= [H; �(t)℄mn : (2.47)This equation is known as the von Neumann equation.



20 Quantum Statistis(v) We have �2 = � for pure states.With respet to the fourth property one should remark that �(t) and Hmn are de�ned in theShr�odinger piture. One should not be deeived by the striking similarity to the Heisenbergequation i�h _̂F = [F̂ ; Ĥ℄ for �F̂ =�t = 0, where F̂ ; Ĥ are operators in the Heisenberg piture.This is the reason why the density matrix �(t) hanges with the opposite sign with respetto the operator F̂ .One we know the initial value �(0) � �0, the von Neumann equation (2.47) enables us toalulate �(t) for all times. For the time-independent Hamiltonian under onsideration Ĥthe time evolution of the density matrix simply is�(t) = e� iĤt�h �0e iĤt�h : (2.48)We now want to extend the de�nition of the density matrix to statistial mixtures of purestates. Therefore we de�ne�mn �X� p�(�)m (�)�n ; (2.49)with the real probabilities p� obeyingX� p� = 1 ; (2.50)and p� � 0.The above properties of the density matrix for pure states remain the same exept for itssquare: �2 6= �. This provides us with a onvenient way to distinguish pure states frommixed quantum states.In quantum statistis we only onsider time-independent density matries �(t) = �. Thismatrix is diagonal in the energy eigenstates j	ni. The anonial density matrix an berepresented as�(xb; xa) = Xn 	�n(xa)e��En	n(xb)Xn e��En ; (2.51)whih is the imaginary-time evolution amplitude (2.34), normalized by the partition funtion(2.37):�(xb; xa) = (xb �h�jxa 0)Z : (2.52)



2.6 Correlation Funtion 212.6 Correlation FuntionCorrelation funtions of the path x(�) arry important information of quantum statistialsystems. They are de�ned as expetations of produts of path positions at di�erent times.For instane the two-point orrelation funtion readshx(�1)x(�2)i = Z +1�1 dx Z +1�1 dx1 Z +1�1 dx2(x �h�jx2 �2)x2(x2 �2jx1 �1)x1(x1 �1jx 0) : (2.53)Correlation funtions are observable in sattering experiments. All n-point orrelation fun-tions an be expanded aording to Wik's rule. A generalization of that formalism an befound in Setion 3.2.2.7 Quantum Mehanial Limit � !1Quantum mehanial quantities an be reobtained from quantum statistis by letting thetemperature go to zero or � ! 1. In this limit the imaginary-time evolution amplitudebeomes(xb �h�jxa 0) � 	�0(xa)e��E0	0(xb) (� !1) ; (2.54)beause the term with the lowest energy in the summation in the spetral representation(2.34) | the ground state energy E0 | is the one whih deays slowest.The low-temperature limit of the partition funtion (2.37) is of ourseZ � e��E0 (� !1) ; (2.55)suh that the low temperature limit of the free energy (2.36) beomeslim�!1F = E0 : (2.56)The ground state wave funtion 	0(x) an be obtained from the diagonal elements of thedensity matrix �(x; x) in a straight-forward way. Aording to (2.54) and (2.55) the lowtemperature limit of the diagonal elements of the density matrix (2.52) an be written aslim�!1 �(x; x) = lim�!1 	�0(x)e��E0	0(x)e��E0 = j	0(x)j2 : (2.57)So the ground state wave funtion simply is the square-root of the low-temperature limit ofthe diagonal elements of the density matrix	0(x) =q lim�!1�(x; x) ; (2.58)for the one-dimensional wave funtion is real.



22 Quantum Statistis2.8 Classial Limit � ! 0The lassial limit is reahed as the inverse temperature � goes to zero. In this limit, thenon-diagonal elements of the density matrix �(xb; xa) vanishlim�!0 �(xb; xa) = 0 ; xb 6= xa ; (2.59)and the diagonal elements approah the lassial on�guration spae distribution �l(x):�(x; x) � �l(x) (� ! 0) : (2.60)The latter is related to the lassial phase spae distribution�l(x; p) = 1Zl exp [��H(x; p)℄ ; (2.61)where H(x; p) is the Hamilton funtionH(x; p) = p22M + V (x) : (2.62)The normalization of the phase spae distribution (2.61) is ensured by the lassial partitionfuntion Zl whih �xes the integral over positions and momenta to be one. So the partilemust be somewhere in phase spae:Z dxdp2��h �l(x; p) = 1 : (2.63)Integrating over the momenta, we get the lassial on�guration spae distribution�l(x) = Z +1�1 dp2��h�l(x; p) : (2.64)Inserting in the phase spae distribution (2.61) with the Hamiltonian (2.62), we obtain�l(x) = e��V (x)Zl ; (2.65)where the lassial partition funtion readsZl = Z +1�1 dx�th e��V (x) ; (2.66)with the thermal wavelength �th =q2��h2=MkBT .



Chapter 3Imaginary-Time Evolution AmplitudeFeynman diagrams enable us to ompute physial quantities of interating theories in theform of perturbation series. In the beginning of this hapter we use this diagrammatiapproah to alulate the imaginary-time evolution amplitude of the anharmoni osillatorto �rst perturbative order. For higher orders this approah beomes quite umbersome.Therefore we develop a more eÆient tehnique. We alulate the imaginary-time evolutionamplitude reursively by hoosing an ansatz whih solves its Shr�odinger equation. Thus wederive a set of reursive di�erential equations similar to the algebrai Bender-Wu reursionfor quantum mehanial eigenfuntions and eigenvalues [1℄. We then streamline the ansatz aswell as the equations by proposing a strategy to exploit the symmetry (2.33) of the imaginary-time evolution amplitude. This way we redue the number of reursive di�erential equationsand transform most of them into algebrai ones. Finally we evaluate the equations up toseventh order with the help of a Maple programme.
3.1 Path Integral RepresentationThe path integral representation for the imaginary-time evolution amplitude of a partile ofmass M moving in a one dimensional potential V (x) reads [2℄(xb �h�jxa 0) = Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d� �M2 _x2(�) + V (x(�))�� : (3.1)For the anharmoni osillator potentialV (x) = M2 !2x2 + gx4 (3.2)



24 Imaginary-Time Evolution Amplitudethe imaginary-time evolution amplitude (3.1) an be expanded in powers of the ouplingonstant g. Thus we obtain the perturbation series(xb �h�jxa 0) = (xb �h�jxa 0)!� �1� g�h Z �h�0 d�1hx4(�1)i! + g22�h2 Z �h�0 d�1 Z �h�0 d�2 hx4(�1) x4(�2)i! + :::� ; (3.3)where we have introdued the harmoni imaginary-time evolution amplitude(xb �h�jxa 0)! � Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d� �M2 _x2(�) + M2 !2x2(�)�� ; (3.4)and the harmoni expetation value for an arbitrary funtional F [x℄ of the path x(�):hF [x℄i! � 1(xb �h�jxa 0)! Z x(�h�)=xbx(0)=xa DxF [x℄� exp��1�h Z �h�0 d� �M2 _x2(�) + M2 !2x2(�)�� : (3.5)The latter is evaluated with the help of the generating funtional for the harmoni osillator,whose path integral representation reads(xb �h�jxa 0)![j℄ = Z x(�h�)=xbx(0)=xa Dx exp��1�h Z �h�0 d�� �M2 _x2(�) + M2 !2x2(�)� j(�)x(�)�� ; (3.6)leading to [2℄(xb �h�jxa 0)![j℄ = (xb �h�jxa 0)! exp �1�h Z �h�0 d�1 xl(�1)j(�1)+ 12�h2 Z �h�0 d�1 Z �h�0 d�2 G(D)(�1; �2)j(�1)j(�2)� (3.7)with the harmoni imaginary-time evolution amplitude(xb �h�jxa 0)! =s M!2��h sinh �h�! exp�� M!2�h sinh �h�! [(x2a + x2b) osh �h�! � 2xaxb℄� : (3.8)In equation (3.7) we have introdued the lassial pathxl(�) � xa sinh(�h� � �)! + xb sinh!�sinh �h�! ; (3.9)



3.2 Wik's Theorem 25and the Dirihlet Green's funtionG(D)(�1; �2) � �hM! 1sinh �h�! [�(�1 � �2) sinh(�h� � �1)! sinh!�2+ �(�2 � �1) sinh(�h� � �2)! sinh!�1℄ ; (3.10)whose properties are disussed in detail in Ref. [49℄.3.2 Wik's TheoremWe follow Ref. [40, 50℄ and evaluate harmoni expetation values of polynomials in x arisingfrom the generating funtional (3.7) aording to Wik's theorem. Let us illustrate theproedure to redue the power of polynomials by the example of the harmoni expetationvalue hxn(�1) xm(�2)i!:(i) Contrating x(�1) with xn�1(�1) and xm(�2) leads to Green's funtions G(D)(�1; �1)and G(D)(�1; �2) with multipliity n � 1 and m, respetively. The rest of the polyno-mial remains within the harmoni expetation value, leading to hxn�2(�1) xm(�2)i! andhxn�1(�1) xm�1(�2)i!.(ii) If n > 1, extrat one x(�1) from the expetation value giving xl(�1) multiplied byhxn�1(�1)xm(�2)i!.(iii) Add the terms from (i) and (ii).(iv) Repeat the previous steps until only produts of expetation values hx(�1)i! = xl(�1)remain.With the help of this proedure, the �rst-order harmoni expetation value hx4(�1)i! isredued tohx4(�1)i! = xl(�1) hx3(�1)i! + 3G(D)(�1; �1)h x2(�1)i! : (3.11)Furthermore, we �ndhx3(�1)i! = xl(�1)hx2(�1)i! + 2G(D)(�1; �1) xl(�1) ; (3.12)andhx2(�1)i! = x2l(�1) +G(D)(�1; �1) : (3.13)Combining equations (3.11){(3.13) we obtain in �rst orderhx4(�1)i! = x4l(�1) + 6 x2l(�1)G(D)(�1; �1) + 3G(D)2(�1; �1) : (3.14)



26 Imaginary-Time Evolution AmplitudeThe seond order harmoni expetation value requires onsiderably more e�ort and �nallyleads tohx4(�1) x4(�2)i! = x4l(�1) x4l(�2) + 16 x3l(�1)G(D)(�1; �2) x3l(�2)+ 12 x2l(�1)G(D)(�1; �1) x4l(�2) + 72 x2l(�1)G(D)2(�1; �2) x2l(�2)+ 36 x2l(�1)G(D)(�1; �1)G(D)(�2; �2) x2l(�2) + 96 x3l(�1)G(D)(�1; �2)G(D)(�2; �2) xl(�2)+ 6G(D)2(�1; �1) x4l(�2) + 96 xl(�1)G(D)3(�1; �2) xl(�2)+ 144 xl(�1)G(D)(�1; �1)G(D)(�1; �2)G(D)(�2; �2) xl(�2) + 9G(D)2(�1; �1)G(D)2(�2; �2)+ 36G(D)2(�1; �1) x2l(�2)G(D)(�2; �2) + 144 x2l(�1)G(D)2(�1; �2)G(D)(�2; �2)+ 72G(D)(�1; �1)G(D)2(�1; �2)G(D)(�2; �2) + 24G(D)4(�1; �2) : (3.15)
3.3 Feynman DiagramsThese ontrations an be illustrated by Feynman diagrams with the following rules: Avertex represents the integration over �= Z �h�0 d� ; (3.16)a line denotes the Dirihlet Green's funtion1 2 = G(D)(�1; �2) ; (3.17)and a ross or a \urrent" pitures a lassial path1 = xl(�1) : (3.18)Inserting the harmoni expetation values (3.14) and (3.15) into the perturbation expansion(3.3) leads in �rst order to the diagramsZ �h�0 d�1hx4(�1)i! = + 6 + 3 ; (3.19)



3.3 Feynman Diagrams 27whereas the seond-order terms areZ �h�0 d�1 Z �h�0 d�2 hx4(�1) x4(�2)i! = + 16+12 + 72 + 36+96 + 6 + 96+144 + 36 + 144+ 72 + 24 + 9 : (3.20)We now want to evaluate the �rst-order Feynman diagrams in (3.19) for �nite temperaturesand arbitrary xa; xb. Thus we will get a �rst-order result for the imaginary-time evolutionamplitude in (3.3):= Z �h�0 d�x4l(�)= 1sinh4 �h�! Z �h�0 d� [xa sinh(�h� � �)! + xb sinh �h�!℄4= 132! sinh4 �h�! �(x4a + x4b) (sinh 4�h�! � 8 sinh 2�h�! + 12�h�!)+ (x3axb + xax3b) (4 sinh 3�h�! + 36 sinh �h�! � 48�h�! osh �h�!)+ x2ax2b (�36 sinh 2�h�! + 48�h�! + 24�h�! osh 2�h�!)� : (3.21)The seond diagram redues to= Z �h�0 d�x2l(�)G(D)(�; �)= �h2M! sinh3 �h�! Z �h�0 d� [xa sinh(�h� � �)! + xb sinh!� ℄2[osh �h�! � osh(�h� � 2�)!℄= �h32M!2 sinh3 �h�! �(x2a + x2b) (sinh 3�h�! + 9 sinh �h�! � 12�h�! osh �h�!)+ xaxb (�12 sinh 2�h�! + 16�h�! + 8�h�! osh 2�h�!)℄ ; (3.22)



28 Imaginary-Time Evolution Amplitudewhereas the last diagram turns out to be= Z �h�0 d�G(D)2(�; �)= �h24M2!2 sinh2 �h�! Z �h�0 d� [osh �h�! � osh(�h� � 2�)!℄2= �h216M2!3 sinh2 �h�! (�3 sinh 2�h�! + 4�h�! + 2�h�! osh 2�h�!) : (3.23)So all in all we get for the imaginary-time evolution amplitude(xb �h�jxa 0) = (xb �h�jxa 0)!��1� g�h � �h2M2!3 sinh2 �h�! �� 916 sinh 2�h�! + 34�h�! + 38�h�! osh 2�h�!�+ �hM!2 sinh3 �h�! �(x2a + x2b)� 316 sinh 3�h�! + 2716 sinh �h�! � 94�h�! osh �h�!�+ xaxb��94 sinh 2�h�! + 3�h�! + 32�h�! osh 2�h�!��+ 1! sinh4 �h�! �(x4a + x4b)� 132 sinh 4�h�! � 14 sinh 2�h�! + 38�h�!�+(x3axb + xax3b)�18 sinh 3�h�! + 98 sinh �h�! � 32�h�! osh �h�!�+ x2ax2b ��98 sinh 2�h�! + 32�h�! + 34�h�! osh 2�h�!���+ :::� : (3.24)As expeted the imaginary-time evolution amplitude (3.24) has the time reversal behaviour(2.33) disussed in Setion 2.3.3.4 Partial Di�erential EquationConsider the Shr�odinger equation (2.13) for the real-time evolution amplitudei�h ��t(xb tjxa 0) = � �h22M �2�x2b (xb tjxa 0) + V (xb) (xb tjxa 0) : (3.25)In order to get a orresponding quantum statistial Shr�odinger equation we now have tohange from real time to imaginary time, i.e. we have to perform the Wik rotation t! �i� ,as disussed earlier. Thus the Shr�odinger equation (3.25) beomes��h ��� (xb � jxa 0) = � �h22M �2�x2b (xb � jxa 0) + V (xb) (xb � jxa 0) : (3.26)



3.5 General Ansatz 29To solve that equation we need an initial ondition. For both the real and the imaginary-timeevolution amplitude this ondition reads(xb 0jxa 0) = Æ(xb � xa) : (3.27)Plugging the anharmoni osillator potential (3.2) into the Shr�odinger equation (3.26) we�nally get���h ��� + �h22M �2�x2b � M2 !2x2b � gx4b� (xb � jxa 0) = 0 : (3.28)3.5 General AnsatzMaking the ansatz(xb � jxa 0) = (xb � jxa 0)! F (xb; xa; �) ; (3.29)where (xb � jxa 0)! is the harmoni imaginary-time evolution amplitude (3.8), we onludefrom (3.28) a partial di�erential equation for F (xb; xa; �):� ��� � �h2M �2�x2b + !xb osh!� � xasinh!� ��xb + g�hx4b�F (xb; xa; �) = 0 : (3.30)In order to solve equation (3.30) we expand at �rst F (xb; xa; �) in powers of the ouplingstrength g:F (xb; xa; �) = 1 + 1Xn=1 gnf (n)(xb; xa; �) : (3.31)From our previous perturbative results we know that the nth order f (n)(xb; xa; �) an atmost ontain the powers 4n of xa and xb, respetively, for the orresponding diagram withthe most urrents onsists of n ross diagrams:::: : (3.32)So when expanding f (n)(xb; xa; �) in powers of xb, the sum has to break o� at m = 4n:f (n)(xb; xa; �) = 4nXm=0C(n)m (xa; �)xmb : (3.33)Thus our ansatz for F (xb; xa; �) is a double expansion:F (xb; xa; �) = 1 + 1Xn=1 4nXm=0 gnC(n)m (xa; �)xmb : (3.34)



30 Imaginary-Time Evolution AmplitudeThe initial ondition (3.27) implies that the expansion oeÆients C(n)m (xa; �) must not di-verge in the limit � ! 0:lim�!0 ��C(n)m (xa; �)�� <1 : (3.35)
3.6 First-Order ResultsTo �rst order in g the above ansatz (3.34) implies that F (xb; xa; �) readsF (1)(xb; xa; �) = 1 + g nC(1)0 (xa; �) + C(1)1 (xa; �) xb + C(1)2 (xa; �) x2b+C(1)3 (xa; �) x3b + C(1)4 (xa; �) x4bo : (3.36)Inserting this into the partial di�erential equation (3.30) we get �ve reursive ordinary dif-ferential equations for the �rst-order oeÆients C(1)m (xa; �) (m = 0; :::; 4):�C(1)4 (xa; �)�� + 4! oth!� C(1)4 (xa; �) = �1�h ; (3.37)�C(1)3 (xa; �)�� + 3! oth!� C(1)3 (xa; �) = 4!xasinh!� C(1)4 (xa; �) ; (3.38)�C(1)2 (xa; �)�� + 2! oth!� C(1)2 (xa; �) = 6�hM C(1)4 (xa; �) + 3!xasinh!� C(1)3 (xa; �) ; (3.39)�C(1)1 (xa; �)�� + ! oth!� C(1)1 (xa; �) = 3�hM C(1)3 (xa; �) + 2!xasinh!� C(1)2 (xa; �) ; (3.40)�C(1)0 (xa; �)�� = �hM C(1)2 (xa; �) + !xasinh!� C(1)1 (xa; �) : (3.41)These equations are easy to solve by �nding solutions to both the homogeneous set of equa-tions and the inhomogeneous ones. We an give these equations an easier shape by makingthe following transformation:C(1)m (xa; �) = (1)m (xa; �)sinhm !� ; (3.42)



3.6 First-Order Results 31where m runs from 0 to 4. Thus the �ve equations (3.37){(3.41) beome�(1)4 (xa; �)�� = �1�h sinh4 !� ; (3.43)�(1)3 (xa; �)�� = 4!xasinh2 !� (1)4 (xa; �) ; (3.44)�(1)2 (xa; �)�� = 3!xasinh2 !� (1)3 (xa; �) + 6�hM sinh2 !� (1)4 (xa; �) ; (3.45)�(1)1 (xa; �)�� = 2!xasinh2 !� (1)2 (xa; �) 3�hM sinh2 !� (1)3 (xa; �) ; (3.46)�(1)0 (xa; �)�� = !xasinh2 !� (1)1 (xa; �) + �hM sinh2 !� (1)2 (xa; �) : (3.47)These new equations an easily be solved by diret integration. First we get from (3.43)(1)4 (xa; �) = �1�h Z d� sinh4 !� + d(1)4 ; (3.48)where d(1)4 denotes the integration onstant as the integral hooses any stem funtion. Eval-uating the integral and dividing by sinh4 !� aording to equation (3.42) we �ndC(1)4 (xa; �) = 1�h! sinh4 !� ��14 sinh3 !� osh!�+38 sinh!� osh!� � 38!� + �h!d(1)4 � : (3.49)Investigating the behaviour of this oeÆient for � ! 0 we see that the onstraint (3.35)�xes the integration onstant d(1)4 to zero, so we obtainC(1)4 (xa; �) = 1�h! sinh4 !� �� 132 sinh 4!� + 14 sinh 2!� � 38!�� : (3.50)Integrating the seond di�erential equation (3.44) we get(1)3 (xa; �) = 4!xa Z d� (1)4 (xa; �)sinh2 !� + d(1)3= 4xa�h Z d� ��14 sinh!� osh!� + 38 oth!� � 38 !�sinh2 !��+ d(1)3= xa�h! ��12 sinh2 !� + 32!� oth!��+ d(1)3 : (3.51)Dividing by sinh3 !� we derive from (3.42):C(1)3 (xa; �) = xa�h! sinh3 !� (�12 sinh2 !� + 32!� oth!� + �h!d(1)3xa ) : (3.52)



32 Imaginary-Time Evolution AmplitudeTaking the limit � ! 0 we see that the onstraint (3.35) leads tod(1)3 = � 3xa2�h! ; (3.53)otherwise C(1)3 (xa; �) would diverge for � ! 0. Thus from (3.52) and from (3.53) we obtain:C(1)3 (xa; �) = xa�h! sinh4 !� ��18 sinh 3!� � 98 sinh!� + 32!� osh!�� : (3.54)The same proedure is now applied to determine (1)2 (xa; �) and C(1)2 (xa; �), respetively. Itis a straightforward alulation whih yieldsC(1)2 (xa; �) = 1M!2 sinh3 !� �� 316 sinh 3!� � 2716 sinh!� + 94!� osh!��+ x2a�h! sinh4 !� �98 sinh 2!� � 32!� � 34!� osh 2!�� : (3.55)Correspondingly, the oeÆient C(1)1 (xa; �) readsC(1)1 (xa; �) = xaM!2 sinh3 !� �94 sinh 2!� � 3!� � 32!� osh 2!��+ x3a�h! sinh4 !� ��18 sinh 3!� � 98 sinh!� + 32!� osh!�� : (3.56)Finally we determine the last oeÆient C(1)0 (xa; �) to beC(1)0 (xa; �) = �hM2!3 sinh2 !� � 916 sinh 2!� � 34!� � 38!� osh 2!��+ x2aM!2 sinh3 !� �� 316 sinh 3!� � 2716 sinh!� + 94!� osh!��+ x4a�h! sinh4 !� �� 132 sinh 4!� + 14 sinh 2!� � 38!�� : (3.57)After having evaluated the integrals, we insert them into (3.36) and obtain a �rst-orderperturbation expansion for the imaginary-time evolution amplitude (3.29). The result is seento fully oinide with the earlier result (3.24) obtained from evaluating Feynman diagramsin the ase that � = �h�.3.7 Higher OrdersWe now hange our ansatz (3.34) for F (xb; xa; �) slightly by introduing a third expansionin powers of xa. Thus the expressions for the oeÆients beome smaller. Also we take out



3.7 Higher Orders 33the fator sinh�l !� right from the beginning suh that the ordinary di�erential equationsfor the expansion oeÆients are simpli�ed:F (xb; xa; �) = 1Xn=0 2nXk=0 2kXl=0 gn (n)2kjl(�)sinhl !� x2k�la xlb : (3.58)In order to obtain the unperturbed result F (xb; xa; �) = 1 for g = 0 we then need (0)0j0(�) = 1.The supersript n in equation (3.58) still denotes the perturbative order, whereas 2k ountsthe (even) powers of the various produts xiaxjb and l an be identi�ed with the index m in(3.34). Due to the time reversal behaviour (2.33), the oeÆients (n)2kjl(�) show a symmetry,namely:(n)2kjl(�)sinhl !� = (n)2kj2k�l(�)sinh2k�l !� : (3.59)Inserting the new ansatz (3.58) into the Shr�odinger equation (3.30) we obtain:1Xn=0 2nXk=0 2kXl=0 "�!l oth!�(n)2kjl(�) + �(n)2kjl(�)�� # gn x2k�la xlbsinhl !� (3.60)� �h2M 1Xn=0 2nXk=0 2kXl=2 l(l � 1)gn (n)2kjl(�)sinhl !� x2k�la xl�2b + ! oth!� 1Xn=0 2nXk=0 2kXl=1 lgn (n)2kjl(�)sinhl !� x2k�la xlb� !sinh!� 1Xn=0 2nXk=0 2kXl=1 lgn (n)2kjl(�)sinhl !� x2k�l+1a xl�1b + 1�h 1Xn=0 2nXk=0 2kXl=0 gn+1 (n)2kjl(�)sinhl !� x2k�la xl+4b = 0 :Note that the two terms ontaining oth!� anel due to our hoie of the (n)2kjl(�). Arrangingthe indies in suh a way that eah term is proportional to x2k�la xlb we get for the di�erentpowers of g and for n > 0:2nXk=0 2kXl=0 x2k�la xlbsinhl !� �(n)2kjl(�)�� � �h2M 2n�1Xk=�1 2k�2Xl=�2(l + 2)(l + 1)(n)2k+2jl+2(�)sinhl+2 !� x2k�la xlb�! 2nXk=0 2k�1Xl=�1(l + 1) (n)2kjl+1(�)sinhl+2 !� x2k�la xlb + 1�h 2nXk=2 2k+4Xl=4 (n�1)2k�4jl�4(�)sinhl�4 !� x2k�la xlb = 0 : (3.61)Thus the sums over k and over l ollapse and we determine the master equation for ouroeÆients (n)2kjl(�):�(n)2kjl(�)�� = (l + 2)(l + 1) �h2M (n)2k+2jl+2(�)sinh2 !� + (l + 1)!(n)2kjl+1(�)sinh2 !�� 1�h(n�1)2k�4jl�4(�) sinh4 !� ; (3.62)



34 Imaginary-Time Evolution Amplitudewhih is solved by(n)2kjl(�) = (l + 2)(l + 1) �h2M Z d� (n)2k+2jl+2(�)sinh2 !� + (l + 1)! Z d� (n)2kjl+1(�)sinh2 !�� 1�h Z d�(n�1)2k�4jl�4(�) sinh4 !� + d(n)2kjl : (3.63)Here the d(n)2kjl denote the integration onstants whih are �xed by applying the initial ondi-tionlim�!0 ����� (n)2kjl(�)sinhl !� ����� <1 : (3.64)However the above master equation (3.63) is not valid for all k and l. Therefore we nowintrodue a set of empirial rules telling us whih of the oeÆients (n)2kjl(�) have to bedropped one we write down (3.63) for any order n:(i) Drop all terms ontaining a (n)2kjl(�) where 2k > 4n.(ii) Drop all terms ontaining a (n)2kjl(�) with l > 2k.(iii) Neglet all terms ontaining a (n)2kjl(�) with any negative indies k and l.To onvine the reader that equation (3.63) together with this proedure leads to the orretresults we now reobtain our �rst-order results from Setion 3.6. To that end we set n = 1,suh that k runs from 0 to 2 and l from 0 to 4. Fixing k = 2 and ounting down from l = 4to l = 0 we get(1)4j4(�) = �1�h Z d�(0)0j0(�) sinh4 !� + d(1)4j4 ; (3.65)(1)4j3(�) = 4! Z d� (1)4j4(�)sinh2 !� + d(1)4j3 ; (3.66)(1)4j2(�) = 3! Z d� (1)4j3(�)sinh2 !� + d(1)4j2 ; (3.67)(1)4j1(�) = 2! Z d� (1)4j2(�)sinh2 !� + d(1)4j1 ; (3.68)(1)4j0(�) = ! Z d� (1)4j1(�)sinh2 !� + d(1)4j0 : (3.69)



3.8 Exploiting the Symmetries | First-Order Results 35Correspondingly, for k = 1 we obtain(1)2j2(�) = 6�hM Z d� (1)4j4(�)sinh2 !� + d(1)2j2 ; (3.70)(1)2j1(�) = 3�hM Z d� (1)4j3(�)sinh2 !� + 2! Z d� (1)2j2(�)sinh2(�) + d(1)2j1 ; (3.71)(1)2j0(�) = �hM Z d� (1)4j2(�)sinh2 !� + ! Z d� (1)2j1(�)sinh2(�) + d(1)2j0 : (3.72)Finally for k = 0 we get the equation(1)0j0(�) = �hM Z d� (1)2j2(�)sinh2 !� + d(1)0j0 : (3.73)Performing the integrations in equations (3.65){(3.73) and taking into aount the initialondition (3.64), we get exatly the same result as in Setion 3.6. The path of reursionwhih follows from this proedure is shown in Figure 3.1.3.8 Exploiting the Symmetries | First-Order ResultsAs seen above we already have to solve nine ordinary di�erential equations for the �rst-orderimaginary-time evolution amplitude. For any order n the number p of integrals to solve isp = 2n+1Xj=1 (2j � 1) = 4n2 + 4n + 1 : (3.74)Exploiting the symmetry (3.59) we an ut down that number onsiderably. At �rst sight itis redued top = 2n+1Xj=1 j = 2n2 + 3n+ 1 ; (3.75)so there are only six integrals left for the �rst order. But we an go even further. Employingthese symmetries we an eventually hange almost all reursive di�erential equations intopurely algebrai ones leaving only (2n+1) integrations. So for the �rst order we are left withthree integrations only, namely with equations (3.65), (3.70), and (3.73). These oeÆients(1)4j4(�), (1)2j2(�), and (1)0j0(�) are integrated reursively. The other oeÆients an then beobtained algebraially: One we have (1)4j4(�) we also know (1)4j0(�) beause of the symmetry(3.59). Comparing equation (3.62) for k = 2; l = 4 and k = 2; l = 0 we then obtainan algebrai equation for (1)4j1(�). The knowledge of (1)4j1(�) gives us (1)4j3(�) beause of the
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Figure 3.1: This diagram depits the path of reursion for n = 1. We startin the top right hand side orner, whih is to be identi�ed with the oeÆient(1)4j4 and follow the arrows until reahing the bottom left hand side orner (1)0j0.
symmetry (3.59) and by omparing (3.62) this time for k = 2; l = 3 on the one hand andk = 2; l = 1 on the other hand we are left with an algebrai equation for (1)4j2(�). Thus weget all the oeÆients for k = 2 only by solving one di�erential equation, namely the onefor (1)4j4(�). For k = 1 the proedure is similar, k = 0 only generates one oeÆient anyway,namely (1)0j0(�), whih still has to be solved by evaluating one integral. The new path ofreursion is shown in Figure 3.2.So �nally three out of the nine �rst-order oeÆients are obtained by integration, three moreare lear for symmetry reasons and three ome from an algebrai reursion.
3.9 Preparing the Algebrai Reursion RelationWe now generalize the algebrai part of our reursion. Consider again the symmetry property(3.59). Di�erentiation on both sides yields�(n)2kjl(�)�� = 1sinh2k�2l !� �(n)2kj2k�l(�)�� � 2(k � l)! osh!� (n)2kj2k�l(�)sinh2k�2l+1 !� : (3.76)



3.9 Preparing the Algebrai Reursion Relation 37

0

0 1 2 3 4 l

2k

4

2

Figure 3.2: This diagram shows whih of the �rst-order oeÆients (1)2kjl(�)have to be integrated (bold) and whih ones an be obtained by employingsymmetry and algebrai reursions (light).Now we substitute for the two partial derivatives aording to equation (3.62) whih yields(l + 2)(l + 1) �h2M (n)2k+2jl+2(�)sinh2 !� + (l + 1)!(n)2kjl+1(�)sinh2 !� � 1�h(n�1)2k�4jl�4(�) sinh4 !�= 1sinh2k�2l !� "(2k � l + 2)(2k � l + 1) �h2M (n)2k+2j2k�l+2(�)sinh2 !� + (2k � l + 1)!(n)2kj2k�l+1(�)sinh2 !��1�h(n�1)2k�4j2k�l�4(�) sinh4 !��� 2(k � l)! osh!� (n)2kj2k�l(�)sinh2k�2l+1 !� : (3.77)Solving for the (l + 1)-st oeÆient and shifting the index l down by one we obtain(n)2kjl(�) = �(l + 1)�h2M! (n)2k+2jl+1(�) + (n�1)2k�4jl�5(�)�h!l sinh6 !�+ (2k � l + 3)(2k � l + 2)�h2M!l (n)2k+2j2k�l+3(�)sinh2k�2l+2 !� + 2k � l + 2l (n)2kj2k�l+2(�)sinh2k�2l+2 !�� 1�h!l (n�1)2k�4j2k�l�3(�)sinh2k�2l�4 !� � (2k � 2l + 2) osh!�l (n)2kj2k�l+1(�)sinh2k�2l+1 !� ; (3.78)



38 Imaginary-Time Evolution Amplitudewhih is the algebrai reursion relation for any non-diagonal oeÆient (n)2kjl(�) with 0 < l � k.1The diagonal oeÆients (n)2kj2k(�) still have to be integrated.3.10 Combined Di�erential and Algebrai ReursionWe now ombine the di�erential reursion with the algebrai one. As only the diagonaloeÆients have to be evaluated by integrating the di�erential reursive equation, we aneven further simplify our master equation (3.63). We only need it for the diagonal oeÆients,for whih l + 1 = 2k + 1 is always greater than 2k. And aording to our index rule (ii),oeÆients of the shape (n)2kj2k+1 have to be negleted. We get(n)2kj2k(�) = (2k + 2)(2k + 1) �h2M Z d� (n)2k+2j2k+2(�)sinh2 !�� 1�h Z d�(n�1)2k�4j2k�4(�) sinh4 !� + d(n)2kj2k : (3.79)Index rules (i) and (iii) still have to be applied, k runs from 0 to 2n.Let us quikly summarize the ombined di�erential and algebrai reursion relation on-sidering the �rst order as an example. Figure 3.2 shows all �rst-order oeÆients for theimaginary time evolution amplitude. Eah oeÆient is represented by a little irle. Nowthe oeÆients on the diagonal line 2k = l have to be obtained by referring to equation(3.79) together with rules (i) and (iii). These two rules tell us whih of the oeÆients eitherfrom the the same order n or from the previous order n� 1 have to be integrated and whihones an be put to zero.One we have the diagonal oeÆients (n)2kj2k(�) we an alulate the o�-diagonal ones withl � k with the help of equation (3.78). The oeÆients with k < l < 2k are then lear forsymmetry reasons.3.11 A Maple ProgrammeWe now introdue a Maple programme2 whih analytially solves equation (3.79) for theinitial ondition (3.64), obeying the index rules from Setion 3.7 and employing the symmetry(3.59). Thus we minimize the operating expense and obtain most of the oeÆients by purealgebrai transformations, namelypalg = 2n+1Xj=1 (2j � 1)� (2n+ 1) = 4n2 + 2n : (3.80)1The oeÆients with k < l < 2k are then lear for symmetry reasons.2We used Maple V R5  and also release R7.



3.11 A Maple Programme 39The number of oeÆients whih still has to be integrated ispdi� = 2n+ 1 ; (3.81)where of ourse palg + pdi� = p is the total number of oeÆients given by (3.74).We �rst approah the diagonal oeÆients, i.e. the ones whih have to be integrated iter-atively. The main problem here is the representation of the results, the integration itself iseasy, as well as �xing the integration onstants.The algebraially obtained oeÆients then have to be seamlessly embedded into this pro-gramme as the algebrai reursion also refers to the values of some of the diagonal oeÆients.Again the representation of the results is subtle.The expansion oeÆients up to seventh order an be found at [51℄. As we aimed at themost general reursion relation for the anharmoni osillator, a reursion relation for itsimaginary-time evolution amplitude, the expressions in [51℄ beame very large. For furtherappliations as e.g. for the evaluation of the free energy, some standard Maple ommandslike the \series"-ommand sometimes failed. Therefore we had to write our own versions ofthis ommand, relying only on the most basi Maple sripts.





Part IIVariational Perturbation Theory |Appliations





Chapter 4Variational Perturbation Theory forthe Free EnergyIn this hapter we obtain perturbative results for the partition funtion by integrating thediagonal elements of our perturbative expression for the imaginary-time evolution amplitudefrom the previous hapter. From the partition funtion we then ompute the free energyperturbatively. Then we apply variational perturbation theory to this quantity up to the�fth order whih is three orders more than what has been ahieved in previous work [18℄.By doing so we study in detail the onvergene behaviour of the variational resummation.4.1 Partition Funtion and Free Energy RevisitedAs disussed in Chapter 2 the partition funtion an be obtained from the imaginary-timeevolution amplitude as follows:Z = Z +1�1 dx(x �h�jx 0) : (4.1)So we just have to substitute x � xa = xb into the perturbation expansion for (xb �h�jxa 0)as obtained with the help of a omputer algebra program, introdued in Chapter 3. Thenwe integrate over x. As the free energy readsF = � 1� logZ ; (4.2)we then have to expand the logarithm in order to obtain a perturbation expansion for thefree energy F . The Taylor series for the logarithm islog(1 + x) = x� 12x2 + 13x3 � 14x4 � ::: : (4.3)



44 Variational Perturbation Theory for the Free EnergyFor the �rst order we insert (3.24) together with (3.8) into (4.1) and evaluate the integral.By taking the logarithm we get with (4.2) and with (4.3) for the free energy to �rst orderF (1)(�) = 1� log 2 sinh �h�!2 + 3g�h24M2!2 oth2 �h�!2 : (4.4)For the seond order we follow the same proedure, taking into aount the higher-orderresults from [51℄ for the oeÆients (n)2kjl(�) and plugging them into the ansatz (3.58). WeobtainF (2)(�) = 1� log 2 sinh �h�!2 + 3g�h24M2!2 oth2 �h�!2� g2�h364M4!5 54�h�! + 36�h�! osh �h�! + 60 sinh �h�! + 21 sinh 2�h�!sinh4 �h�!2 : (4.5)The higher orders are omitted for the sake of keeping the type fae lear.4.2 A Diagrammatial ChekIt is possible to hek the perturbative results for the partition funtion and the free energyfor all temperatures. Namely, we an expand Z in terms of harmoni expetations in asimilar way as for the imaginary-time evolution amplitude in (3.3). To that end we need thegenerating funtionalZ[j(�)℄ = Z +1�1 dx(x �h�jx 0)![j℄ (4.6)whih we get from (3.7)-(3.10). It is of the formZ[j(�)℄ = Z[0℄ exp � 12�h2 Z �h�0 d�1 Z �h�0 d�2G(p)(�1; �2)j(�1)j(�2)� ; (4.7)where the harmoni partition funtion readsZ[0℄ = 12 sinh �h�!2 (4.8)andG(p)(�1; �2) = �h2M! osh ��h�!2 � j�1 � �2j!�sinh �h�!2 (4.9)denotes the periodi Green's funtion of the harmoni osillator. The di�erent properties ofthe periodi Green's funtion (4.9) and the Dirihlet-Green's funtion (3.10) are disussed



4.2 A Diagrammatial Chek 45in detail in Ref. [49℄. We now obtain the partition funtion Z of the anharmoni osillatorfrom the generating funtional Z[j(�)℄ by di�erentiating with respet to the urrent j(�)while setting j(�) = 0 afterwards:Z = exp(�1�h Z �h�0 d� g � �hÆÆj(�)�4)Z[j(�)℄�����j=0 : (4.10)Thus we getZ = Z[0℄�1� 3g�h Z �h�0 d�1G(p)2(�1; �1) (4.11)+ g22�h2 Z �h�0 d�1 Z �h�0 d�2 h9G(p)2(�1; �1)G(p)2(�2; �2)+ 72G(p)(�1; �1)G(p)2(�1; �2)G(p)(�2; �2) + 24G(p)4(�1; �2)i+ :::o :In terms of Feynman diagrams this readsZ = Z[0℄ �1 + 3g�h + g22�h2 �9+ 72 + 24 �+ :::�= exp �12 + 3�h + g22�h2 �72 + 24 � + :::� ; (4.12)where we have introdued the symbol12 � logZ[0℄ : (4.13)One we rewrite the partition funtion Z in the form of the umulant expansion as on theright hand side of equation (4.12), the disonneted Feynman diagrams disappear [2℄. Nowwe an easily take the logarithm. Following (4.2) we obtain for the free energyF = � 1� �12 + 3g�h + g22�h2 �72 + 24 � + :::� : (4.14)The above Feynman diagrams are of ourse onstruted with the help of the same rules asfor the imaginary-time evolution amplitude (3.16), (3.17), and (3.18), but instead of theDirihlet's Green's funtion (3.10) we have to use the periodi Green's funtion (4.9). Wenow want to evaluate the four diagrams in (4.14) so that we get a seond-order expressionfor the free energy for �nite temperatures. Aording to (4.8) and (4.13) we get for thezeroth-order ontribution12 = log" 12 sinh �h�!2 # ; (4.15)



46 Variational Perturbation Theory for the Free Energywhereas the �rst-order diagram beomes= Z �h�0 d�G(p)2(�; �) = �h3�4M2!2 oth2 �h�!2 : (4.16)The integration in (4.16) is trivial, beause G(p)(�; �) does not depend on � any more a-ording to (4.9). For the seond order the integrations beome more sophistiated:= Z �h�0 d�1 Z �h�0 d�2G(p)(�1; �1)G(p)2(�1; �2)G(p)(�2; �2)= �h5� oth2 �h�!232M4!5 sinh2 �h�!2 (�h�! + sinh �h�!) : (4.17)The other ontribution to the seond order yields= Z �h�0 d�1 Z �h�0 d�2G(p)4(�1; �2)= �h5�256M4!5 sinh4 �h�!2 (sinh 2�h�! + 8 sinh �h�! + 6�h�!) : (4.18)So all in all we get for the free energy (4.14) up to seond order in the oupling onstant gthe result (4.5). It shows the orret low temperature behaviourlim�!1F (2)(�) = �h!2 + 3g�h24M2!2 � 21g2�h38M4!5 ; (4.19)whih an be found for instane in [2℄.4.3 Variational Perturbation TheoryVariational perturbation theory1 is a method that enables us to resum divergent perturbationseries in suh a way that they onverge even in the ase that the perturbation ouplesin�nitely strong. To this end we add and subtrat a trial harmoni osillator with trialfrequeny 
 to our anharmoni osillator (3.2):V (x) = M2 
2x2 + gM2 !2 � 
2g x2 + gx4 : (4.20)Now we treat the seond term as if it was of the order of the oupling onstant g. The resultis obtained most simply by substituting for the frequeny ! in the original anharmoniosillator potential (3.2) aording to Kleinert's square-root trik [2℄! ! 
p1 + gr ; (4.21)1In Setion 4.6 the reader an �nd the most general desription of the substitutions oming along withvariational perturbation theory that eventually lead to the strong-oupling results.



4.3 Variational Perturbation Theory 47wherer � !2 � 
2g
2 : (4.22)These substitutions are not the most general ones. The square root is just a speial ase forthe anharmoni osillator. We will disuss its origin at the end of this hapter in Setion4.6.We now apply the trik (4.21) to our �rst-order series representation for the free energy F(4.4). Substituting for the frequeny ! aording to (4.21), expanding for �xed r up to the�rst order in g and resubstituting for r aording to (4.22) we getF (1)(�;
) = � 1� log 12 sinh �h�
2 + 3g�h24M2
2 oth2 �h�
2 + �h
4 �!2
2 � 1� oth �h�
2 : (4.23)So the free energy (4.23) now depends on the trial frequeny 
 whih is of no physialrelevane. In order to get rid of it, we have to minimize its e�et by employing the prinipleof least sensitivity [48℄. This priniple suggests to searh for loal extrema of F (�;
) withrespet to 
:2�F (1)(�;
)�
 = 0 : (4.24)For the �rst order F (1)(�;
) it turns out that there are several extrema for eah �. As weseek a urve 
(1)(�) that is as smooth as possible the hoie is easy | we take the lowestbranh for the others are not bounded (see Figure 4.1). Moreover the other branhes leadto diverging results.To seond order, we proeed in a similar way and we �nd that there are no extrema at all forF (2)(�;
). In aordane with the priniple of least sensitivity we look for inetion pointsinstead, i.e. we look for solutions to the equation�2F (2)(�;
)�
2 = 0 : (4.25)In general we try to solve the equation�nF (N)(�;
)�
n = 0 (4.26)for the smallest possible n. Plugging 
(N)(�) into F (N)(�;
), we �nally get bak a resummedexpression for the physial quantity F (�). The results for the �rst three orders are givenin Figure 4.2. In order to hek our results we have to ompare them to the numeriallyevaluated free energy F (N)num(�) whih is disussed in the upoming setion.2Atually P. M. Stevenson restrited this priniple to minima of the variational parameter. H. Kleinertsuggested to minimize its inuene by taking into aount extrema, inetion points, and higher derivatives.
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βFigure 4.1: Branh of the variational parameter 
(1)(�) whih we hose. Theoupling strength is g = 1. Other branhes not shown in this �gure lead tohighly diverging results. Throughout this hapter all results are presented innatural units �h =M = kB � 1 and, additionally, we have set ! � 1.4.4 Cheking Our ResultsThe spetral representation of the partition funtion readsZ = 1Xn=0 e��En ; (4.27)where the En are the energy eigenvalues. Let us de�ne the numerial approximantsZ(N)num = NXn=0 e��En (4.28)andF (N)num = � 1� logZ(N) ; (4.29)respetively. One possibility to obtain numerial results for the eigenvalues En is providedfor by the so alled \shooting method". We integrate the Shr�odinger equation numeriallyfor the potential (3.2) and for a partiular value of the oupling strength g. If the energyE whih we plug into the program does not oinide with one of the energy eigenvalues En,the solution to the Shr�odinger equation explodes already for relatively small values of theoordinate x. If the energy eigenvalue is lose to the exat answer, we have j	(x)j <1 also
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Figure 4.2: Free energy of the anharmoni osillator up to third order forintermediate oupling g = 1. The blak line represents the exat result F (9)num(�),obtained by approximating the partition funtion (4.28) with the help of the�rst ten energy eigenvalues. The other lines are variational perturbative results:The blue line shows the �rst order, the red line shows the seond order, and thenavy blue line represents the third order. Note that the seond and third orderare hardly distinguishable from the exat results. Higher orders for speialvalues of the inverse temperature � an be found in Figure 4.5.n En n En0 0.8037701932 5 14.2030644941 2.7378891484 6 17.6339341162 5.1792814619 7 21.2362685983 7.9423804544 8 24.9947050124 10.963538555 9 28.896941521Table 4.1: The �rst ten energy eigenvalues En of the anharmoni osillator forintermediate oupling g = 1. They were obtained by numerially integratingthe Shr�odinger equation with the initial ondition that 	(0) = 1, 	0(0) = 0,and j	(x)j <1 for large x.for larger values of x. This method yields the unnormalized eigenfuntions (the wave fun-tions whih still have to be normalized) and the energy eigenvalues to very high auray.Renormalization is neessary, for the omputer algebra program3 needs an initial value 	(0)whih we set to one. Plugging the �rst ten numeri energy eigenvalues into equation (4.28)and evaluating (4.29) up to N = 9, we obtain a funtion F (N)num(�). So let us �rst hek howfast the numerially obtained free energy F (N)num(�) from (4.29) onverges. To that end we setg = 1 and we plot F (N)num(�) for N from 0 to 9 in Figure 4.3 on the interval [0; 2℄. As one3This time we used Mathematia 3.1 .
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βFigure 4.3: Convergene of the spetral representation of the partition fun-tion (4.27). This �gure shows the approximants of the free energy F (N)num(�)from (4.29) for the �rst ten orders. One an see that the low temperaturebehaviour is orret even for the roughest approximant F (0)num(�) (blue line).All the urves onverge to the ground state energy E0. For high temperaturesmore and more energy eigenvalues have to be taken into aount to get realistiresults. Alternatively one an ompare the results with the lassial expressions(4.31) (see also Figure 4.4). The olour ode is: N = 1: blue, N = 2: gray,N = 3: violet, N = 4: navy, N = 5: olive, N = 6: whine, N = 7: light blue,N = 8: orange, N = 9: blak.an see F (N)num(�) onverges rapidly. For low temperatures T , orresponding to high values of�, even the roughest approximant F (0)num(�) reprodues the orret urve. This should notsurprise us as we know that lim�!1 F (0)(�) = E0. It turns out that the �rst ten energyeigenvalues En are suÆient. So we an probe our perturbative results by omparison toF (9)num(�).For high temperatures we have another ross hek for our results. High temperatures or-respond to lassial statistial distributions suh that we an evaluate the partition funtion(2.66) aording toZl = Z +1�1 dx�th exp [��V (x)℄ ; (4.30)with the potential (3.2) and �th =q2��h2=MkBT . This integral an be solved aording to[52℄:Zl = 12�thsM!22g exp��M2!432g �K1=4��M2!432g � ; (4.31)
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βFigure 4.4: Third-order variational perturbative results for the free energy,F (3)(�) (red line). The blue line represents the numerial free energy F (9)num(�),whereas the blak line shows the lassial free energy. For small values of theinverse temperature � the lassial alulations oinide with the other results.Lower temperatures, orresponding to higher values of �, reveal di�erenesbetween the lassial approah (4.31) and quantum statistis.where K1=4(z) is a modi�ed Bessel funtion. The lassial partition funtion (4.31) anbe evaluated for high temperatures whih orresponds to small values of �. Consequently,when we test our variational perturbative results, we ompare values � < 1=4 to the lassialpartition funtion (4.31), whereas we onsider the numerial free energy F (9)num(�) for highervalues of the inverse temperature �.In natural units �h = M = ! = kB = 1 a value of � = 1=4 orresponds to a temperature ofT = 4. In these units the temperature sales like T = 3:16� 105K.4.5 Higher-Order Variational Perturbation TheoryWe now evaluate the onvergene behaviour for the variational perturbative results for thefree energy F (N)(�) up to the �fth order. However, in order to redue the omputationaloperating expense we restrit ourselves to ertain values of the inverse temperature �. Resultsare shown in Figure 4.5. For odd variational perturbation orders we optimized the freeenergy aording to (4.24), i.e. we determined 
 by setting the �rst derivative of F (N)(�)with respet to 
 (4.24) to zero. For even orders we had to go for inetion points, instead.So we had to solve equation (4.25). This pattern is repeated in the onvergene behaviourof the free energy. Odd and even orders osillate about an exponential best �t urve. Thus,for eah value of the inverse temperature �, we get an interval of onvergene whih wehek against the numerial results F (9)num(�) and against the lassial result (4.31) if the
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NFigure 4.5: The free energy of the anharmoni osillator for intermediateoupling g = 1 for � = 0:1, � = 1, and for � = 2 up to �fth variationalperturbative order. The values onverge exponentially towards the numerialvalues F (9)num(�). In the ase of high temperatures (� = 0:1) the solid line rep-resents the lassial results (4.31) as a ross hek, as the funtion F (9)num(�)beomes rather inaurate for suh high temperatures.
temperature is high enough. For � = 0:1, � = 1, and � = 2 the exat results always turnout to lie within the interval of onvergene, as shown in Figure 4.5. Clearly the variationalperturbative results onverge exponentially. For � = 0:1 the interval is [�13:49;�13:46℄whih ontains the exat lassial value Fl(0:1) = �13:511 if we onsider the threefoldstandard deviation. For � = 1:0 we obtain the interval [0:6572; 0:6585℄ whih inludes thenumerial result F (9)num(1:0) = 0:6571. And �nally for very low temperatures � = 2:0 theinterval reads [0:7928; 0:7935℄ ontaining F (9)num(2:0) = 0:79335.
4.6 On the Square-Root TrikAs mentioned at the beginning of this hapter, the square root (4.21) substituted into thefree energy is only a speial ase for the anharmoni osillator potential. Here we quikly gothrough the general ase [2, 8℄. Consider the trunated weak-oupling series of some quantityf as a funtion of some oupling onstant g

fN(g) = NXn=0 fngn : (4.32)



4.6 On the Square-Root Trik 53Let us now rewrite this weak-oupling expansion by introduing an auxiliary saling para-meter � [8, 38℄fN(g) = �p NXn=0 fn � g�q�n ; (4.33)whih we later set to one. The generalized square root trik now reads�!pK2 + �2 �K2 = Kp1 + gr ; (4.34)where K is a \dummy" saling parameter generalizing the trial frequeny 
 andr = 1g � �2K2 � 1� : (4.35)Substituting (4.34) into the trunated weak-oupling series (4.33) we obtainfN(g;K) = NXn=0 fnKp�nq(1 + gr)(p�nq)=2gn : (4.36)The fator (1+gr)� (with � � (p�nq)=2) an be expanded by means of generalized binomialsaording to(1 + gr)� = N�nXk=0 ��k�(gr)kgn= N�nXk=0 ��k�� 1K2 � 1�k gn ; (4.37)where we have used (4.35) and �nally have set � � 1. The binomial is de�ned as��k� � �(� + 1)�(k + 1)�(� + k + 1) : (4.38)So we read o� that the funtion fN(g;K) an now be written asfN(g;K) = NXn=0 "N�nXk=0 �12(p� jq)k �� 1K2 � 1�kKp�nq# fngn : (4.39)To �rst order this expression redues tof1(g;K) = �1� p2� f0Kp + p2f0Kp�2 + f1gKp�q : (4.40)



54 Variational Perturbation Theory for the Free EnergyApplying the priniple of least sensitivity [48℄ leaves us with�f1(g;K)�K � p�1� p2� f0 + p(p� 2)2 f0K�2 + (p� q)f1gK�q � 0 : (4.41)Making the strong-oupling ansatzK(1)(g) = g1=q �k0 + k1g�2=q + :::� ; (4.42)we obtain the following equation from (4.41):p�1� p2� f0 + p(p� 2)2 f0(k(1)0 g1=q)�2 + (p� q)f1g(g1=qk(1)0 )�q = 0 : (4.43)The seond term is a subleading ontribution in the limit as the oupling g goes to in�nitywhih we an neglet. Solving for k(1)0 we getk(1)0 = �2f1f0 p� qp(p� 2)�1=q : (4.44)Assuming that the ansatz (4.42) for the variational parameter K(g) also holds for higherorders we obtain from the funtion fN(g;K) in (4.39)fN(g) = g pq �b(N)0 (k(N)0 ) + b(N)1 (k(N)0 )� g�q�� 2q + :::� ; (4.45)where the leading strong-oupling oeÆient b(N)0 (k(N)0 ) is given byb(N)0 (k(N)0 ) = NXn=0 N�nXk=0 �12(p� iq)k �(�1)kfn(k(N)0 )p�nq : (4.46)The inner sum an be further simpli�ed aording to [52℄, yieldingmXk=0(�1)k�nk� = (�1)m�n� 1m � : (4.47)Thus the strong-oupling oeÆient (4.46) redues tob(N)0 (k(N)0 ) = NXn=0(�1)N�n�12(p� nq)� 1N � n �fn(k(N)0 )p�nq : (4.48)So looking at equation (4.45) we see that the fration p=q tells us the leading power behaviourin g and 2=q indiates the approah to saling.



4.7 Saling Behaviour 554.7 Saling BehaviourFor the ground state energy of the anharmoni osillator we an derive the values of p and qfrom the saling behaviour of its ground state wave funtion. Consider the time-independentreal Shr�odinger equation for the ground state wave funtion of the anharmoni osillator(3.2):�� �h22M �2�x2 + M2 !2x2 + gx4�	0(x) = E	0(x) : (4.49)We now resale the oordinate x aording tox = �x0 ; (4.50)suh that the new derivative reads��x = 1� ��x0 : (4.51)The ground state wave funtion transforms like	00(x0) = 	0(�x0) : (4.52)Thus the transformed time-independent Shr�odinger equation reads� �h22M �2�x02 + M2 !2�4x02 + g�6x04�	00(x0) = �2E0	00(x0) : (4.53)We now impose that the fator in front of the anharmoniity x04 is equal to one, so we obtainfor �� = g�1=6 : (4.54)Consequently �2 is proportional to g�1=3. In order to get the units right, we now needE(0)0 (g) = g1=3�0 : (4.55)The supersript indiates that equation (4.55) only is a zeroth-order approximation. Takinginto aount higher order orretions we get for the ground state energyE0(g) = g1=3 ��0 + g�2=3�1 + g�4=3�2 + :::� : (4.56)Corresponding onsiderations for the wave funtion yield the expansion	00(x0) = �0(x0) + g�2=3�1(x0) + ::: ; (4.57)



56 Variational Perturbation Theory for the Free Energysuh that the leading power behaviour of the ground state energy is p=q = 1=3 and theapproah to saling is 2=q = 2=3 whih lies well in the range12 < 2q < 1 ; (4.58)for whih the onvergene proof in Ref. [8℄ holds. So all in all for the anharmoni osillatorwe havep = 1 ; q = 3 : (4.59)The di�erential equation for the zeroth-order expansion oeÆient of the ground state wavefuntion (4.57) reads� �h22M�000(x0) + x04�000(x0) = �0�0(x0) : (4.60)The derivation of the numbers p and q was originally invented for the ground state energy[2, 27℄. In this hapter we studied the free energy. As the low-temperature limit of the freeenergy is just the ground state energy, we an assume that the numbers p and q an beextended to our �nite temperature alulation.



Chapter 5Variational Perturbation Theory forGround State Wave FuntionIn this hapter we improve the �rst-order variational alulations for the ground state wavefuntion arried out by T. Hatsuda, T. Tanaka, and T. Kunihiro [41℄ and our seond-orderresults [40℄. First we use our perturbative results for the imaginary-time evolution amplitudeto drive the perturbation expression for the ground state wave funtion up to seventh order,so that we reobtain results from the original Bender-Wu reursion [1℄. Then we applyvariational perturbation theory up to this order and we study the asymptoti behaviour ofthe ground state wave funtion in order to investigate the onvergene of our variationalresults.5.1 Perturbative ResultsAs disussed before in Setion 2.5 the density matrix is de�ned as�(xb; xa) � (xb �h�jxa 0)Z (5.1)and the ground state wave funtion follows from the low temperature limit of its diagonalelements:	0(x) =q lim�!1�(x; x) : (5.2)Evaluating the ansatz (3.29) for the �rst-order result (3.24) together with the harmoniimaginary-time evolution amplitude (3.8), we get the diagonal elements of the imaginary-time evolution amplitude (3.29) in the low temperature limitlim�!1(x �h�jx 0)(1) = lim�!1rM!��h exp��M!�h x2 + �h�!2 ��1� g�h � 9�h28M2!3� 3�h3�4M2!2 � 3�h2M!2x2 � 12!x4�� : (5.3)



58 Variational Perturbation Theory for Ground State Wave FuntionThe trae of this �rst-order expression yields the partition funtion in the low temperaturelimit [40℄lim�!1Z(1) = Z +1�1 dx lim�!1(x �h�j0 x)(1) = lim�!1 exp���h�!2 � 3g�h2�4M2!2� : (5.4)So the diagonal elements of the density matrix (5.1) up to �rst order readlim�!1 �(1)(x; x) =rM!��h exp��M!�h x2��1� g�h � 9�h28M2!3 � 3�h2M!2x2 � 12!x4�� : (5.5)Now the ground state wave funtion an easily be omputed aording to (5.2). We obtain	(1)0 (x) = �M!�h� �1=4 exp��M!2�h x2�� �1� g�h �� 9�h216M2!3 + 3�h4M!2x2 + 14!x4�� : (5.6)To �rst order this leads to the umulant expansion	(1)0 (x) = �M!�h� �1=4 exp ��M!2�h x2 + g�h � 9�h216M2!3 � 3�h4M!2x2 � 14!x4�� : (5.7)The higher orders an be obtained in the same way: From the seventh-order imaginary-timeevolution amplitude [51℄ we get the partition funtion up to seventh order following de�nition(2.35). Then we ompute the density matrix aording to (5.1), take the low-temperaturelimit and the square-root, yielding a perturbation expression for the seventh-order groundstate wave funtion whih is then transformed into the umulant expansion:	(7)0 (x) = �M!�h� �1=4 exp "� M!2�h x2 + g�h � 9�h216M2!3 � 3�h4M!2x2 � 14!x4�+g2�h2 �� 205�h464M4!6 + 21�h38M3!5x2 + 11�h216M2!4x4 + �h12M!3x6�+g3�h3 � 8049�h6256M6!9 � 333�h516M5!8x2 � 45�h48M4!7x4 � 7�h38M3!6x6 � �h216M2!5x8�+g4�h4�� 849887�h82048M8!12 + 30885�h7128M7!11x2 + 8669�h6128M6!10x4



5.2 Cheking Our Results | Bender-Wu Reursion 59+ 1159�h596M5!9x6 + 163�h4128M4!8x8 + �h316M3!7x10�+g5�h5 � 68941527�h1010240M10!15 � 916731�h9256M9!14x2 � 33171�h832M8!13x4� 6453�h732M7!12x6 � 823�h632M6!11x8 � 319�h5160M5!10x10 � 7�h496M4!9x12�+g6�h6 ��3156181949�h1224576M12!18 + 65518401�h111024M11!17 x2 + 19425763�h101024M10!16 x4 + 752825�h9192M9!15x6+ 143783�h8256M8!14x8 + 3481�h764M7!13x10 + 1255�h6384M6!12x12 + 3�h532M5!11x14�+g7�h7 �1287421536711�h14458752M14!21 � 2723294673�h132048M13!20 x2 � 411277893�h121024M12!19 x4�44413183�h11512M11!18 x6 � 3440609�h10256M10!17 x8 � 190735�h9128M9!16x10� 7317�h864M8!15x12 � 2477�h7448M7!14x14 � 33�h6256M6!13x16�# : (5.8)We now hek our results against the well known Bender-Wu results [1℄.5.2 Cheking Our Results | Bender-Wu ReursionIn 1969, C. Bender and T. Wu developed an algebrai reursion formula for energy eigen-funtions and energy eigenvalues of the anharmoni osillator [1℄. In this setion we want tosketh their method for the ground state wave funtion.Consider the stationary Shr�odinger equation for the ground state wave funtion of theanharmoni osillator:�� �h22M �2�x2 + M2 !2x2 + gx4�	0(x) = E0	0(x) : (5.9)The unnormalized solution to the harmoni problem g = 0 reads	0(x) = e�M!2�h x2H0(x) ; (5.10)where H0 is the zeroth Hermite polynomialH0(x) = 1 : (5.11)For the solution to the anharmoni problem (5.9) we hoose the ansatz [2℄	0(x) = e�M!2�h x2 1Xk=0(�g)k�(0)k (x) (5.12)



60 Variational Perturbation Theory for Ground State Wave FuntionandE0 = 1Xk=0 gkE(0)k : (5.13)In order to larify the type fae we now drop the supersripts. Plugging our ansatz (5.12)and (5.13) into the Shr�odinger equation (5.9) we obtain��h!2 + gx4� 1Xk=0(�g)k�k(x) + �h!x 1Xk=0 �0k(x)� �h22M 1Xk=0(�g)k�00k(x)� 1Xk0=0 1Xk=0 gk0(�g)kEk0�k(x) = 0 : (5.14)For the di�erent powers of g we get�h!2 �k(x)� x4�k�1(x) + �h!x�0k(x)� �h22M�00k(x) = kXk0=0(�1)k0Ek0�k�k0(x) : (5.15)We know that the (k0 = 0)-term on the right hand side is E0 = �h!=2, so we an absorb the�rst term on the left hand side into the summation, thereby obtaining�h!x�0k(x) = x4�k�1(x) + �h22M�00k(x) + kXk0=1(�1)k0Ek0�k�k0(x) ; (5.16)where �k(x) = 0 for k < 0. For the kth-order ontribution to the ground state wave funtion(5.12) we an assume the shape of a power series with ontributions from even powers only,for the potential (3.2) is even. Moreover the power series breaks o� at 4k. A similar breako� has already been disussed in Setion 3.5 for the imaginary-time evolution amplitude.Thus our ansatz for �k(x) reads�k(x) = 2kXp=0 A(2p)k x2p ; (5.17)where �k(0) = A(0)k is subjet to the normalizationZ +1�1 dxj	0(x)j2 � 1 : (5.18)Performing the Gaussian integration to zeroth order we an �x A(0)0 toA(0)0 = �M!��h �1=4 : (5.19)



5.2 Cheking Our Results | Bender-Wu Reursion 61Inserting the power series ansatz (5.17) into equation (5.16) we get for the di�erent evenpowers of x to �rst order:�h2MA(2)1 = E1A(0)0 ;2�h!A(2)1 = 6�h2M A(4)1 ;4�h!A(4)1 = A(0)0 : (5.20)This set of reursive algebrai equations an easily be solved:A(2)1 = 14�h!A(0)0 ;A(4)1 = 34M!2A(0)0 ;E1 = 3�h24M2!2 ; (5.21)where A(0)0 is given by (5.19). Again the oeÆient A(0)1 has to be �xed by �rst-order nor-malization of the wave funtion aording to (5.18) and leads toA(1)0 = � 9�h216M2!3A(0)0 : (5.22)Inserting all the oeÆients A(2p)1 , p = 0; 1; 2, from (5.21) and (5.22) into equation (5.17) andthen plugging �k(x) into the ground state wave funtion (5.12), we �nally reobtain (5.6) bypulling out the overall fator A(0)0 .More generally, for any order k, plugging the ansatz (5.17) into the di�erential equation(5.16) leads to2�h! 2kXp=1 pA(2p)k x2p = 2k�2Xp=0 A(2p)k�1x2p+4 + �h2M 2kXp=1 p(2p� 1)A(2p)k x2p�2+ kXk0=1(�1)k0Ek0 2(k�k0)Xp=0 A(2p)k�k0x2p : (5.23)Shifting the summation indies in suh a way that all terms are proportional to x2p, we anwrite down the equations for eah (even) power x2p:2�h!pA(2p)k = A(2p�4)k�1 + �h22M (2p+ 2)(2p+ 1)A(2p+2)k + kXk0=1(�1)k0A(2p)k�k0 ; (5.24)where A(2p)k � 0 for p < 0 and for p > 2k. This is the Bender-Wu reursion. With the helpof a Maple programme we ompared the results for the ground state wave funtion of ourombined di�erential and algebrai reursion relation in (5.8) to the Bender-Wu results. Upto seventh order no deviations ould be found.



62 Variational Perturbation Theory for Ground State Wave Funtion5.3 First-Order Variational ResultsIn this setion we apply variational perturbation theory to the ground state wave funtion.To that end, as seen in the previous hapter on the free energy, we exeute Kleinert's squareroot trik (4.21) together with (4.22) in the umulant expansion of the ground state wavefuntion (5.7). Then we expand the result in powers of g for �xed r up to the �rst orderand �nally we resubstitute for r aording to (4.22). Thus we obtain an expression for theground state wave funtion whih now additionally depends on the trial frequeny 
. In the�rst order we get	(1)0 (x;
) = exp[W (1)0 (x;
)℄ ; (5.25)where the umulant isW (1)0 (x;
) = 14 log�M
�h� �� 18 + !28
2 � M
4�h �1 + !2
2� x2+g�h � 9�h216M2
3 � 3�h4M
2x2 � 14
x4� : (5.26)Analogously to the proedure in Chapter 4 we now eliminate the 
-dependene by applyingthe priniple of least sensitivity [48℄. To that end we look for extrema of the umulantW (1)0 (x;
) with respet to 
. To �rst order we �nd that the equation�W (1)0 (x;
)�
 = 0 (5.27)has two branhes of solutions, separated by a gap in the domain of 
(x) [40, 41℄. As suggestedby H. Kleinert, in aordane with the priniple of least sensitivity [48℄, in the gap we searhfor inetion points instead [40℄:�2W (1)0 (x;
)�
2 = 0 : (5.28)Figure 5.1 shows the di�erent branhes and our �nal hoie for the variational parameter
(x) on the various intervals. Plugging 
(x) into (5.26), we gain an expression for the groundstate wave funtion whih is at �rst not normalized. This normalization an be reassuredaording to	(1)0 (x) = 	(1)0 (x;
(x))Z +1�1 dx0 ���	(1)0 (x0;
(x0))���2 : (5.29)The results for three di�erent oupling strengths g an be found in Figure 5.2. A omparisonof these variational results to numerial alulations obtained with the \shooting method"from Setion 4.4 shows no visible deviations. Indeed, the standard deviation for intermediateoupling g = 1=2 is 1:1� 10�5, whih is already very small.
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Figure 5.1: The variational parameter 
(x) to �rst order for intermediateoupling g = 1=2. The branhes for x < 0:684 and x > 0:780 (solid line anddashed line) are solutions to the equation �	(1)0 (x;
)=�
 = 0. For 0:684 <x < 0:780 there are no real positive solutions to that equation. That is why welook for inetion points on that interval instead, i.e. we look for real positivesolutions to the equation �2	(1)0 (x;
)=�
2 = 0. The urve for the inetionpoints lies between the two other branhes and it neatly �lls the gap. So wehoose those branhes 
(1)(x) whih provide us with the smoothest urve onthe entire interval, whih is the solid line.
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Figure 5.2: The normalized �rst-order results for the ground state wave fun-tion 	0(x) of the anharmoni osillator for weak oupling (dashed line, g = 0:1),for intermediate oupling (solid line, g = 1=2), and for strong oupling (dottedline, g = 50).
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xFigure 5.3: The �rst seven orders of the unnormalized ground state wave fun-tion 	(N)(x) for strong oupling g = 50. N=1: blak, N=2: red, N=3: blue,N=4: navy, N=5: purple, N=6: olive, N=7: violet. The urves are hardly dis-tinguishable. For simpliity the ground state wave funtion is now normalizedaording to 	(N)0 (0) = 1.5.4 Higher-Order Variational ResultsOrder by order we now apply variational perturbation theory to the umulant expansion (5.8)of the wave funtion. As variational perturbation theory espeially allows for strong oupling,we onentrate on the example g = 50 in this setion. The �rst-order ground state wavefuntion for that oupling strength has already been shown in Figure 5.2. All seventh-orderresults are depited in Figure 5.3. The urves are hardly distinguishable. More interestingis the olletion of the physial branhes of the variational parameter 
(N)(x) for N fromone to seven (see Figure 5.4). In Table 5.1 pointwise onvergene of the wave funtion isdisussed for x = 0:5 and x = 1:0. The orders exponentially onverge to the orret limitingvalues. However, odd and even order an best be �tted separately (see Figure 5.5). Itturns out that the equation�W (N)(x)�
 = 0 (5.30)has real positive solutions for odd N only. For even values of N we have to go for inetionpoints:�2W (N)(x)�
2 = 0 ; (5.31)
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xFigure 5.4: The physial branhes of the variational parameter 
(N)(x) forthe �rst seven orders for the ground state wave funtion of the anharmoniosillator for strong oupling g = 50. N=1: blak/squares, N=2: red/dots,N=3: blue/triangles, N=4: navy/triangles upside down, N=5: purple/hashes,N=6: olive/triangles left, N=7: violet/triangles right. For N = 1; 3; 5; 7 theparameter 
(N)(x) an be obtained from the �rst derivative (5.30). For evenN = 2; 4; 6 we have to searh for inetion points (5.31) instead.x = 0:5 x = 1:0	(1)0 (x) 0.474293 0.016468	(2)0 (x) 0.477367 0.017073	(3)0 (x) 0.477825 0.017050	(4)0 (x) 0.477384 0.017013	(5)0 (x) 0.477923 0.017038	(6)0 (x) 0.477385 0.017002	(7)0 (x) 0.477928 0.017029	(num)0 (x) 0.478128 0.016997Table 5.1: Pointwise onvergene of the unnormalized ground state wave fun-tion at x = 0:5 and at x = 1:0 for g = 50. Clearly, the onvergene of oddand even orders of variational perturbation theory are varying (see Figure 5.5).Fitting odd and even orders separately yields intervals of onvergene for therespetive value of x. The best �ts are exponentials. Exat results for theground state wave funtion, 	(num)0 (x), obtained numerially with the shootingmethod (ompare Setion 4.4), lie within these intervals (see Figure 5.5). Thenormalization is done aording to 	(N)0 (0) = 1 in this example.
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NFigure 5.5: Odd and even orders of variational perturbation theory separatelyonverge to the limiting value. The �gures show the best �t urves for all orders.Fitting separately, however, yields the following intervals of onvergene. Forx = 0:5 we get: 	(1)0 (0:5) 2 [0:47793; 0:492℄. The upper boundary annot bedetermined more aurately, for we an only onsider three points. For x = 1:0we get: 	(1)0 (1:0) 2 [0:1698; 0:1702℄. Again the statistial errors prevent usfrom a more aurate evaluation of the intervals. However, for both ases theexat numerial results 	(num)0 (x) lie within the respetive intervals.as in the ase of the free energy in Chapter 4. This phenomenon has been observed before[2℄, namely for the ground state energy. It is already reeted in the onvergene behaviourof the ground state wave funtion. As shown in Figure 5.5, odd and even orders an bestbe �tted separately. Extrapolation to in�nity for both odd and even orders thus yields aninterval of onvergene instead of just one limiting value with a purely statistial deviation.Comparing to numerial results obtained using the \shooting method" (ompare Setion4.4), we �nd that the exat results lie within that interval for all orders.In the upoming setion we analyze the asymptoti ground state wave funtion, i.e. theground state wave funtion in the limit as x goes to in�nity.5.5 Asymptoti LimitWe now hek whether variational perturbation theory preserves the asymptoti behaviour ofthe ground state wave funtion. The asymptoti behaviour is of speial interest as variationalperturbation theory is most likely to onverge rather slowly at jxj ! 1. In order to �ndthe asymptoti behaviour of the ground state wave funtion we have to onsider the time-independent Shr�odinger equation (4.49) in the limit jxj ! 1. In this limit the harmoni



5.5 Asymptoti Limit 67term, proportional to x2, and the energy eigenvalue are negligible, so we obtain� �h22M	000(x) + gx4	0(x) = 0 : (5.32)In the limit jxj ! 1 the wave funtion behaves like	0(x) � exp (�Cjxj�) (jxj ! 1) ; (5.33)where C is some onstant depending on the oupling strength g. The absolute value ofthe oordinate x reets the symmetry of the anharmoni osillator potential (3.2). As thepotential is symmetri, the wave funtion an either be symmetri or antisymmetri. As weonly onsider the ground state wave funtion, we have to hoose the one with the lowestenergy whih is the symmetri one. Di�erentiating the asymptoti wave funtion (5.33) twiewith respet to the oordinate x and plugging it into the asymptoti Shr�odinger equation(5.32) yields� �h22M ��C�(�� 1)x��2 + C2�2x2��2�	0(x) + gx4	0(x) = 0 : (5.34)In the limit jxj ! 1 only the seond term in the square brakets survives, so we an negletthe �rst one. Comparing the powers of x we see that there is a onstraint on the value of �2�� 2 = 4 ; (5.35)whih �xes the power � to be � = 3. With this value for � the time-independent asymptotiShr�odinger equation (5.32) beomes�� 9�h22MC2 + g�	0(x) = 0 ; (5.36)so we get for the onstant C in equation (5.33)C =r2Mg9�h2 : (5.37)Thus the strong-oupling asymptoti wave funtion looks like	0(x) � exp �r2Mg9�h2 jxj3! (jxj ! 1) ; (5.38)whih is the same as in Ref. [41℄.1 Now we hek whih asymptoti behaviour is generatedby variational perturbation theory. Aording to the priniple of least sensitivity [48℄ we1Please note that Tanaka et al. use a di�erent de�nition for the oupling onstant, suh that the numbersin the square root look a bit di�erent.



68 Variational Perturbation Theory for Ground State Wave Funtiondi�erentiate W (1)0 (x;
) from (5.26) with respet to 
 and look for zeros:�W (1)0 (x;
)�
 = 14
 � 14
3 � M4�hx2 + g�� 27�h16M2
4 + 32M
3x2 + 14�h
2x4� = 0 : (5.39)As the harmoni ground state wave funtion	0(x) = exp��M
2�h x2� (5.40)has to turn into (5.38) in the limit jxj ! 1, we assume for 

(x) = ~Cg1=2jxj (5.41)as an ansatz. Taking into aount this ansatz in (5.39), we an drop a lot of terms, as jxjgoes to in�nity. We obtainM4�hx2 � g4�h
2x4 � M4�hx2 � 14�h ~C2x2 = 0 : (5.42)All other terms do not ontribute, for they vanish in the limit jxj ! 1. Solving equation(5.42) for ~C we get~C =M�1=2 : (5.43)In order to obtain the asymptoti ground state wave funtion we plug ~C bak into theansatz (5.41). Then we evaluate the umulant (5.26) for that funtion for 
(1)(x) in thelimit jxj ! 1, whih yieldsW (1)0 (x) = �M4�hM�1=2g1=2jxj3 � g4�hM1=2g�1=2jxj3 = �C(1)jxj3 ; (5.44)where of ourse the onstant C(1) isC(1) = 12rMg�h2 : (5.45)This is a very good �rst-order approximation for the exat value (5.37), whih isC = 0:471404520:::�rMg�h2 : (5.46)The higher orders an be found in Table 5.2. The numbers are onverging to the orretlimiting value (5.46). However they do not onverge algebraially, for Rihardson extrapola-tions [53℄ osillate wildly around the orret value. The onvergene is exponentially as an



5.5 Asymptoti Limit 69N C(N)1 0.52 0.48713928983 0.47916666674 0.47768220785 0.47526041676 0.47490494957 0.4737955740C 0.471404520Table 5.2: The oeÆients C(N) whih determine the asymptoti behaviourof the ground state wave funtion for strong oupling. The numbers onvergeto the orret limiting value C =p2=9.
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NFigure 5.6: Asymptoti ground state wave funtion showing exponential on-vergene. The orret limiting value is in good aordane with the exponential�tted to the seven numbers from Table 5.2. Fitting odd and even orders sep-arately we get an interval of onvergene: C(1)=C = [1:00496; 1:00505℄. Thisdoes not exlude the orret limiting value, for the statistial errors assoiatedwith these extrapolations are still very large.
be seen in Figure 5.6. As in the ase of the ground state wave funtion for g = 50 disussedin the previous setion, odd and even orders satter a bit around the best �t urve whih isan exponential. Taking into aount all the seven orders we get for the ratio of extrapolated



70 Variational Perturbation Theory for Ground State Wave Funtiononstant C(1) to the exat value C =p2=9 from (5.37)C(1)p2=9 = 1:005� 0:002 ; (5.47)where the deviation is purely statistial. Extrapolating odd and even orders separately weget the intervalC(1)p2=9 2 [1:00496; 1:00505℄ : (5.48)This seems to exlude the orret limiting value (5.37). However, the statistial errorsassoiated with the upper and lower boundary of this interval are very large. Going tohigher orders will ertainly orret for that, and inlude the orret result (5.37)



Chapter 6Boundary-Layer Theory,Strong-Coupling Series, andLarge-Order BehaviourIn this hapter we report some progress in understanding (albeit not a omplete solution to)a general lass of problems in mathematial physis. We onsider here the onversion of aontinuum problem into a disrete problem by the insertion of a lattie spaing parametera, the perturbative solution of the ontinuum problem on the lattie, and the subsequentextremely subtle ontinuum limit a! 0.Almost every ontinuum physis problem is singular as a funtion of the parameters in theproblem. As a result, only rarely does the perturbation series take the form of a Taylor serieshaving a nonzero radius of onvergene. As an elementary example, onsider the algebraipolynomial equation�x3 + x� 1 = 0: (6.1)This problem is singular in the limit � ! 0. In this limit, the degree of the polynomialhanges from three to one and thus two of the roots abruptly disappear. As a onsequene,a perturbative solution to this problem (expressing the roots x(�) as series in powers of �)yields expressions that are more ompliated than Taylor series:x(�) = ��1=2x�1 + x0 + �1=2x2 + �x3 + �3=2x4 + ::: (6.2)would be the real root to the problem (6.1) expressed as a series in �.A more elaborate example of a singular problem is the time-independent Shr�odinger equa-tion� �h22Mr2	(x) + [V (x)� E℄	(x) = 0: (6.3)In the lassial limit �h! 0 this di�erential equation abruptly beomes an algebrai equation,and thus the general solution no longer ontains any arbitrary onstants or funtions and, as



72 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behavioura result, it an no longer satisfy the initial onditions. We know that for small �h the solutionis not Taylor-like but rather is a singular exponential in WKB form:	(x) � eiS(x)=�h (�h! 0): (6.4)In the study of quantum �eld theory, it is well known that in�nities appear in the perturb-ative expansion in powers of the oupling onstant. There are two kinds of in�nities. The�rst kind, whih is due to the point-like nature of the interation, requires the use of renor-malization. The seond kind, whih is due to singularities in the omplex-oupling-onstantplane, fores the perturbation series to have a zero radius of onvergene.A quantum �eld theory an be regulated by introduing a lattie spaing. The resultingdisrete theory is ompletely �nite and an be studied numerially by using various kindsof numerial methods suh as Monte Carlo integration. However, the underlying singularnature of the ontinuum quantum �eld theory resurfaes in the ontinuum limit a ! 0.The introdution of a lattie spaing and the singular nature of the ontinuum limit wasinvestigated in a series of papers by Bender et al. [54, 55, 56, 57, 58, 59, 60, 61, 62℄.A quantum �eld theory is just one instane in whih disretization regulates and eliminatesthe singular nature of the problem. Another example is provided by a boundary-layer prob-lem, whih is a singular perturbation problem, as introduing a lattie spaing onverts itinto a regular perturbation problem [63, 64, 65℄. A boundary-layer problem is a di�erential-equation-boundary-value problem in whih the highest derivative of the di�erential equationis multiplied by a small parameter �. Consider as an example�y00(x) + a(x)y0(x) + b(x)y(x) = (x) ; (6.5)where the boundary onditions on the funtion y(x) typially have a form suh asy(0) = A; y(1) = B: (6.6)This boundary-value problem is singular beause in the limit �! 0 one of the solutions ab-ruptly disappears and the limiting solution is not able to satisfy the two boundary onditionsin (6.6). The usual way to solve the boundary-value problem (6.5) { (6.6) is to deomposethe interval 0 � x � 1 into two regions, an outer region, in whih the solution varies slowlyas a funtion of x, and an inner region or boundary-layer region, in whih the solution variesrapidly as a funtion of x. The boundary-layer region is a narrow region whose thikness istypially of order � or some power of � [53℄.An important example of a boundary-layer problem is the instanton equation�2f 00(x) + f(x)� f 3(x) = 0 ; (6.7)with the assoiated boundary onditionsf(0) = 0; f(1) = 1 : (6.8)



73The exat solution to this instanton problem isf(x) = tanh x�p2 : (6.9)Note that the solution f(x) varies rapidly at the origin x = 0 over a region of thikness �;this is the boundary-layer region. The solution varies slowly (it is approximately 1) outsideof this region. The outer region onsists of those x not near the origin.A novel way to solve the instanton problem is to disretize it by introduing a lattie. Onthe lattie, the di�erential equation beomes a di�erene equation that an easily be solvedperturbatively. In the ontinuum limit, as the lattie spaing vanishes, we then obtaina strong-oupling expansion that must be evaluated by means of a Pad�e or a variationalperturbation theory method. To illustrate the approah our objetive will be to alulatethe slope of the instanton at x = 0, whih from (6.9) has the valuef 0(0) = 1�p2 : (6.10)We introdue a lattie with lattie spaing a so that the real axis is disretized in steps ofwidth a. The spatial oordinate reads xn = na, where the funtion f(x) assumes the valuefn = f(xn). On the lattie the seond spatial derivative in (6.7) beomesf 00(x) ! fn+1 � 2fn + fn�1a2 : (6.11)Thus, from the instanton equation (6.7) we obtain the di�erene equation�2a2 (fn+1 � 2fn + fn�1) + fn � f 3n = 0 ; (6.12)where the boundary values follow from (6.8):f0 = 0 ; f1 = 1 : (6.13)The natural expansion parameter in (6.12) is �2=a2, to whih we assign the name Æ:Æ � �2a2 : (6.14)The singular perturbation problem in the ontinuum (whose solution f(x) in (6.9) does notpossess a Taylor expansion in powers of �), has beome a regular perturbation problem. Thatis, we an now expand the solution fn to the di�erene equation (6.12) as a Taylor series inpowers of Æ:fn = an;0 + an;1Æ + an;2Æ2 + : : : : (6.15)



74 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourWe impose the boundary values (6.13) by requiring thata0;0 � 0 and an;0 � 1 (n � 1): (6.16)Inserting the ansatz (6.15) into the di�erene equation (6.12), we get the reursion relation[63℄an;j = 12an+1;j�1 + an;j�1 + 12an�1;j�1 � j�1Xk=1 an;kan;j�k � 12 j�1Xk=1 j�kXl=1 an;kan;lan;j�k�l: (6.17)For the �rst derivative at the origin x = 0 this leads to the seriesf 0(0) = lima!0 f1 � f0a = lima!0 f1a = lima!0 1a 1Xj=0 a1;jÆj= lima!0 1a �1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.18)We have alulated the oeÆients an;j with the help of Maple V R7 up to order j = 200. Aomplete list of these oeÆients an be found on the webpage of the author FW [66℄. The�rst 20 numbers are given in Table 6.1. Note that the expansion parameter Æ in (6.18) isnot small but rather tends to in�nity in the limit as the lattie spaing a approahes zero.Using the parameter Æ de�ned in (6.14) we rewrite the series (6.18) asf 0(0) = 1� limÆ!1pÆ�1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.19)Taking into aount the exat result (6.10), we obtain the identity1p2 = limÆ!1pÆ�1� Æ2 + Æ28 + 11Æ4128 + :::� : (6.20)The purpose of this hapter is to examine equations like (6.20). This equation shows thatthe singular nature of the instanton problem has resurfaed in the ontinuum limit Æ !1of the lattie expansion. The expression on the right side of (6.20) should have the value1=p2 = 0:7071067812 : : :, but it is not at all obvious why this is so, and the objetive of thishapter is to analyze this diÆult and subtle limit.This hapter is organized as follows. In Setion 6.1 we use Pad�e tehniques [63℄ to performthe limit in (6.20). We will see that while the results are not bad (the auray is about1%), better methods are needed. We perform the Pad�e analysis to muh higher order thanhas ever been done before and we disover a new qualitative behaviour that has not yet beenobserved. In Setion 6.2 we use of the variational perturbation theory tehniques introduedby H. Kleinert to perform the sum in (6.20). These tehniques inrease the auray by afator of about 10, but they still do not give the exat result. While variational perturbation



6.1 Pad�e Resummation for the Instanton Equation 75j a1;j j a1;j1 �18 11 �28877472621442 18 12 9939247141943043 0 13 �21579829541943044 11128 14 3781670831335544325 � 23128 15 �8349041385335544326 2951024 16 118812928579521474836487 � 5891024 17 �265910413229121474836488 3920332768 18 47890245452569171798691849 �8072332786 19 �1083837531791671717986918410 1354949262144 20 39433620359113981274877906944Table 6.1: The �rst 20 weak-oupling oeÆients a1;j for the instanton prob-lem (6.16) and (6.17).theory works very well in summing the strong-oupling series for the ground state energy ofthe anharmoni osillator [2℄, and for ritial exponents of seond-order phase transitions [8℄,we show that the series in (6.20) is at the very edge of validity for Kleinert's methods. Wethen examine the large-order behaviour of the terms of the sum in (6.20) in Setion 6.3. Weshow de�nitively that the Taylor expansion has a nonzero radius of onvergene and thus,on the lattie, the instanton problem is a regular perturbation problem.In Setion 6.4 we turn to a more diÆult singular perturbation problem; namely, the Blasiusequation of uid dynamis. We use the same approah as for the instanton equation. InSetions 6.5, 6.6, and 6.7 we study the summation of the lattie perturbation expansionusing Pad�e and variational methods and we examine the large-order behaviour of the lattieperturbation series. We �nd that Pad�e methods give good but not exellent results andthat variational perturbation theory is better than Pad�e. Again, the series that we needto evaluate in the ontinuum limit lies at the very edge of validity for Kleinert's methods.We also �nd that, unlike the lattie perturbation expansion oeÆients for the instantonproblem, the sign pattern of the Blasius weak-oupling series does not alternate. Rather, itis governed by a osine funtion with a frequeny di�erent from �.6.1 Pad�e Resummation for the Instanton EquationIn this setion we examine what happens if we attempt to evaluate the right side of (6.20)by using Pad�e tehniques. Pad�e resummation has already been applied to the instantonproblem up to 50th order [63℄. However, we have been able to perform the proedures to



76 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourN SN N SN1 1 11 0.7099984112 0.840896415 12 0.7082354223 0.781934407 13 0.7067899354 0.757237797 14 0.7056595055 0.740759114 15 0.7047346056 0.731210449 16 0.7040069457 0.723927185 17 0.7034198628 0.719045188 18 0.7029647179 0.715146335 19 0.70261022010 0.712308458 20 0.702349024Table 6.2: The �rst 20 Pad�e approximants for the solution to the instantonproblem (6.20).muh higher order. We have disovered that remarkable and unsuspeted new phenomenaour just a few orders beyond what has been omputed previously.The proedure is as follows. Consider the formal Frobenius seriesS(Æ) = ÆM 1Xn=0 anÆn; (6.21)where M is a non-negative number. Raising this series to the power 1=M , inverting the righthand side and re-expanding, we obtainS1=M (Æ) = Æ1Xn=0 bnÆn ; (6.22)with new expansion oeÆients bn. Assuming we know the �rst N + 1 terms of the originalpower series in (6.21), we raise equation (6.22) to the power N . We then trunate thesummation at n = N , �nally gettingSN=M (Æ) = ÆNNXn=0 (N)n Æn ; (6.23)
where we have re-expanded and obtained new expansion oeÆients (N)n . In the limit Æ !1,only the Nth term in the denominator survives and we obtain the approximant(SN)N=M � limÆ!1SN=M (Æ) = limÆ!1 ÆNNXn=0 (N)n Æn = 1(N)N : (6.24)
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78 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourCompared with the numerial solution 1=p2 � 0:7171067812:::, this strong-oupling expan-sion seems to onverge quite well. However, when we go to higher orders, we �nd that thenumbers drop below the exat solution and assume a minimum at N = 24, where the approx-imant has the value S24 � 0:70198319. The approximants then rise again, ross the exatsolution at N = 41 and beome omplex at N = 52. The appearane of omplex numbers isa onsequene of taking the Nth root in equation (6.24) when the oeÆients (N)N beomenegative. This phenomenon has not been observed before in the ourse of using this Pad�eproedure. The imaginary part then beomes smaller and smaller as N rises. Abruptly, atN = 68, the approximants beome real again. As one an see from the spikes in Figure 6.1this pattern is repeated for higher N . Note that the �gure only shows the real part of thePad�e approximant SN .Apparently, the sequene of approximants SN does not onverge. The singular nature of theinstanton equation has the e�et of making the Pad�e approximants behave like the partialsums of a divergent (asymptoti) series; at �rst the partial sums appear to onverge to alimit, and then they veer o�. In the ase of the Pad�e's shown in Figure 6.1 the approximantsapproah to within 1% of the orret limit before veering o�. It appears that another morepowerful resummation tehnique is needed to treat the expression in (6.20). In the nextsetion we apply a tehnique due to Kleinert.6.2 Variational Perturbation Theory for the InstantonEquationAs seen in Chapter 4 where we disussed the free energy of the anharmoni osillator wenow have to derive the numbers p and q again in order to �x the leading power behaviourp=q and the approah to saling 2=q aording to [2℄:1Xj=0 ajÆj � Æp=q �b0 + b1Æ�2=q + :::� (Æ !1): (6.27)For the instanton equation we do this by re-obtaining the di�erential equation (6.7) fromthe di�erene equation (6.12). The positive real axis is disretized in steps of width a, sothat we let xn � na. The power series expansion for the disrete funtion fn = f(xn) hasthe formfn�1 = f(xn)� f 0(xn)a+ 12f 00(xn)a2 � 16f 000(xn)a3 + 124f 0000(xn)a4 � ::: : (6.28)Thus, the numerator of the seond derivative (6.11) beomesfn+1 � 2fn + fn�1 = f 00na2 + 112f 0000n a4 + ::: ; (6.29)



6.2 Variational Perturbation Theory for the Instanton Equation 79N b(N)0 N b(N)0180 0.707530492 190 0.707471024181 0.707524250 191 0.707465419182 0.707518076 192 0.707459872183 0.707511970 193 0.707454384184 0.707505930 194 0.707448952185 0.707499955 195 0.707443575186 0.707494044 196 0.707438253187 0.707488197 197 0.707432986188 0.707482412 198 0.707427771189 0.707476687 199 0.707422609Table 6.3: The last 20 variational strong-oupling oeÆients b(N)0 from equa-tion (6.40). order value for b(N)0 onvergene1 0.70640049 dereasing2 0.70639983200 inreasing3 0.706399832082 inreasing4 0.7063998320858658 inreasing5 0.706399832085884411 inreasing6 0.70639983208588446498 inreasingTable 6.4: Six orders of Rihardson extrapolations for the strong-ouplingoeÆient b(N)0 (k0) up to N = 200 for the instanton problem. The last value isonly 0:099% away from the orret limiting value 1=p2 = 0:7071067812::: :so the zeroth-, �rst-, and third-order ontributions anel. Translating the lattie result forfn bak to the ontinuous funtion f(xn) = fn, the di�erene equation (6.12) reads�2 �f 00(x) + 112f 0000(x)a2 + :::�+ f(x)� f 3(x) = 0 : (6.30)Writing out the power seriesf(x) = f0(x) + a2f1(x) + a4f2(x) + ::: ; (6.31)and omparing even powers of a, we get from equation (6.30) for a0�2f 000 (x) + f0(x)� f 30 (x) = 0 ; (6.32)whih is just the original instanton equation (6.7), whereas for a2 we have�2f 001 (x) + f1(x) �1� 3f 20 (x)� = � 112�2f 00000 (x) : (6.33)
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0Figure 6.2: The funtion b(N)0 (k(N)0 ) from (6.40) for N = 200 (solid line) andits seond derivative with respet to k(N)0 (dotted line). The upper horizontalline equals 1=p2, the orret limiting value of the instanton problem. All ex-trema of b(N)0 (k(N)0 ) are far from this value. Only the inetion point on theright-hand side omes lose. The value for k(N)0 , for whih the seond derivat-ive vanishes, is k(N)0 = 18:42510. Substituting that number into the funtionb(N)0 (k(N)0 ), we obtain b(200)0 = 0:707417. The orresponding Rihardson extra-polations an be found in Table 6.4.The boundary values readf0(0) = 0 ; f0(1) = 1 ; (6.34)andf1(0) = f1(1) = 0 ; (6.35)respetively. The solution to equation (6.32) with the boundary values (6.34) is of oursef0(x) = tanh x�p2 : (6.36)So, �nally from (6.31) we get for the derivative at the origin x = 0:f 0(0) = f 00(0) + �2Æ f 01(0) + ::: = 1�p2 + �2Æ f 01(0) + ::: : (6.37)



6.2 Variational Perturbation Theory for the Instanton Equation 81Comparing equation (6.37) with (6.19), we resum the weak-oupling series in (6.19) as1� Æ2 + Æ28 + ::: = Æ�1=2 � 1p2 + �3f 01(0)Æ�1 + :::� : (6.38)Also, omparing with (6.27), we onlude that the leading power and the approah to salingare given bypq = �12 ; 2q = 1 ; (6.39)respetively. So we read o� p = �1 and q = 2.We now evaluate the leading strong-oupling oeÆient b0 from (6.27) aording to (4.48),b(N)0 (k(N)0 ) = NXn=0(�1)N�m�12(p� nq)� 1N � n �fn(k(N)0 )p�iq; (6.40)with p = �1 and q = 2. To that end we substitute our 200 weak-oupling oeÆients intothe formula using a omputer algebra program. Now we are onfronted with the followingproblem: The priniple of least sensitivity annot be unambiguously applied. Optimizingwith respet to extrema, inetion points, or higher derivatives does yield onverging resultsfor the strong-oupling limit. However, all these strong-oupling series onverge to the wrongvalues.There is one very unpleasant ase: The seond derivative with respet to k(N)0 for the largestk(N)0 where this derivative exists (see Figure 6.2) gives a onvergent strong-oupling series.The numbers ome extremely lose to 1=p2 as one an see from the 20 numbers in Table 6.3.The 200th leading strong-oupling oeÆient is b(200)0 = 0:707417:::. However, a Rihardsonextrapolation [53℄ based on the �rst 200 orders then unfortunately shows that variationalperturbation theory produes a value slightly smaller than 1=p2. The �rst six orders ofRihardson extrapolations are presented in Table 6.4. Hene, the strong-oupling series b(N)0does onverge, but it onverges to the wrong number, only one part per 1000 away from thetrue value:f (VPT)1 � limÆ!1 200Xn=0 a1;nÆn = b(1)0 = 0:7063998320858845� 0:0000000000000001 (6.41)ompared with f 0(0) = 1=p2 = 0:7071067812::: . The deviation is just 0:099%, but 1=p2an unfortunately be ruled out.Given p = �1 and q = 2, the failure of variational perturbation theory is not surprising.Aording to Ref. [8℄ the fration 2=q must lie within the open interval (1=2; 1). Otherwise,one annot prove that variational perturbation theory onverges. Thus, this problem liesexatly on the boundary of the region in whih the summation method is known to work.We an understand the upper edge of the range of the parameter 2=q that desribes theapproah to saling 2=q by looking at the standard deviation from the atual limiting value.



82 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourorder value for A onvergene1 -1.4998 inreasing2 -1.500017 dereasing3 -1.5000011 dereasing4 -1.49999874 inreasing5 -1.5000004 dereasing6 -1.499999893 inreasingTable 6.5: Six orders of Rihardson extrapolations for the exponent A of thelarge-order instanton weak-oupling oeÆients, based on the �rst 200 weak-oupling oeÆients. The value A = �3=2 is quite plausible.It turns out [8℄ that the deviation in the limit as the perturbative order N goes to in�nityassumes the shape�����b(N)0 � b0b0 ����� � exp ��CN1�2=q� (N !1) ; (6.42)where C is a onstant. So, to obtain exponential onvergene for the sequene formed bythe b(N)0 , we need 1� 2=q > 0. In other words, the approah to saling 2=q is bounded andit must be smaller than one. The lower edge is more subtle and is disussed in Ref. [8℄.In onlusion, we have applied variational perturbation theory to a ase that lies at the veryedge of its appliability. We see that variational perturbation theory gives better results byabout a fator of 10 than the Pad�e approximations examined in Setion 6.1. However, wehave not yet found a systemati method for resumming (6.20) that enables us to performthe ontinuum limit of the disrete lattie theory up to an arbitrary auray. Therefore, wenow lay the foundation for further investigations by analyzing the large-order behaviour ofthe instanton series.6.3 Large-Order Behaviour for the Instanton EquationIt an be seen from the numerial results in [66℄ that the instanton weak-oupling series isof Borel type. That is, it exhibits an alternating sign pattern. From the ratio test we ansee that the oeÆients an;j do not grow fatorially fast. The large-order behaviour of an;jhas the general forman;j � (�1)n+j+1KjnjAnBn (j !1): (6.43)The onstant An an be obtained by evaluating the limitAn = limj!1 log an;j+2 an;j(an;j+1)2log j(j + 2)(j + 1)2 ; (6.44)



6.3 Large-Order Behaviour for the Instanton Equation 83order value for K onvergene1 2.46692 dereasing2 2.4668283 inreasing3 2.46682911 dereasing4 2.466829065 dereasing5 2.4668290597 inreasing6 2.4668290635 dereasingTable 6.6: Six orders of Rihardson extrapolations for the inverse radius ofonvergeneK of the large-order instanton weak-oupling oeÆients, based onthe �rst 200 weak-oupling oeÆients under the assumption that A = �3=2.order value for B1 onvergene1 0.0170837 inreasing2 0.0170864 inreasing3 0.017087 inreasing4 0.0170893 inreasing5 0.0170908 inreasing6 0.0170922 inreasingTable 6.7: Six orders of Rihardson extrapolations for the overall fator B1of the large-order instanton weak-oupling oeÆients, based on the �rst 200weak-oupling oeÆients and under the assumption that K = 2:4482906 andA = �3=2. The value of B1 strongly depends on the numerial values for Aand K. Changing K in the sixth deimal plae inuenes the third signi�ant�gure of B1. Also, all the Rihardson extrapolations are inreasing so, stritlyspeaking, we only have a lower boundary for B1. Thus, the auray of B1may not be very good.and the reiproal of the radius of onvergene isKn = � limj!1 an;j+1an;j � jj + 1�An : (6.45)Also, the overall fator Bn is determined fromBn = limj!1 jan;jjKjnjAn : (6.46)Using the 200 weak-oupling oeÆients, we �nd that the exponent An and the reiproalradius of onvergene Kn are independent of n. The value of K2 = 2:46682906 oinideswith K1 = 2:46682906 for all signi�ant digits. The same is true for A1 = �1:500000and A2 = �1:500000. Thus, it appears that we may omit the subsripts n for Kn andAn. In ontrast, the data suggests that Bn strongly depends on n. Bn is the numerialvalue assoiated with the largest unertainty. In fat, equation (6.46) suggests that small



84 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourorder value for B2 onvergene1 0.119069 inreasing2 0.119083 inreasing3 0.119093 inreasing4 0.119054095 inreasing5 0.119054125 inreasing6 0.119054146 inreasingTable 6.8: Six orders of Rihardson extrapolations for the overall fator B2of the large-order instanton weak-oupling oeÆients based on the �rst 200weak-oupling oeÆients under the same assumptions as in the ase of B1 (seeTable 6.7). The value of B2 depends strongly on A and K.deviations in K and A lead to dramati hanges in the value of Bn. Therefore Bn = Bannot be ruled out ompletely. We alulated A, K, B1, and B2 up to 200th order withthe help of Maple V R7. We then extrapolated these 200 orders to in�nity using Rihardsonextrapolation [53℄. We obtainedA = �1:500000� 0:000001 ;K = 2:46682906� 0:0000001 ;B1 = 0:0171� 0:0001 ;B2 = 0:1190� 0:0001 : (6.47)Detailed numerial results for the �rst three Rihardson extrapolations for the exponent A,the inverse radius of onvergene K, and the overall fators B1, B2 an be found in Tables6.5, 6.6, 6.7, and 6.8. The alulation of B1 and B2 is extremely deliate; hanging theinverse radius of onvergene in the sixth deimal plae inuenes the third signi�ant �gureof B1.Unfortunately, there is no way to derive these values by applying an asymptoti analysis tothe reursion relation (6.17). The problem is that the double summation in this equationinludes small j, so we annot let j go to in�nity and use the large-order behaviour (6.43).Substituting the ansatz (6.43) into equation (6.17) and taking the limit leads to ontraditoryresults. For n = 1 we getKjAB1 = 12(j � 1)AB2 + (j � 1)AB1 � 32B21K j�1Xk=1 kA(j � k)A�12B31K j�1Xk=1 j�kXl=1 kAlA(j � k � l)A : (6.48)Pulling out some fators and letting x � k=j, we obtain for the �rst summationlimj!1 jXk=1 �kj�A�1� kj�A = Z 10 dx [x(1� x)℄A = �2(A+ 1)�(2A+ 2) ; (6.49)
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86 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourwhih would imply that, given B1 = 0:0171 and B2 = 0:1190, the value of K would beK = 3:940 : (6.54)This result an be ruled out beause of the numerial result (6.47). Also, (6.53) does notontain the exponent A beause all the fators jA in (6.48) anel. So A annot be determinedanalytially using this asymptoti analysis.The inverse radius of onvergene K an also be obtained in a di�erent manner from thatusually employed for ritial phenomena. Aording to Ref. [8℄, the ratio Rj � aj+1=ajapproahes the inverse radius of onvergene asRj = �K �1 + 1j�� ; (6.55)where � is some exponent. So, if we plot Rn versus 1=n, then the slope of the linear regressionis � and the o�set is K, as one an see in Figure 6.3. We getK = 2:46656� 0:00001 and � = 3:6598� 0:0007 : (6.56)This value for K di�ers from the number in (6.47) in the �fth digit. The di�erene is dueto not taking into aount the fator jA as in (6.43) and (6.45).6.4 Boundary-Layers on the Lattie | Blasius Equa-tionThe Blasius equation [67℄ arises in the study of uid dynamis. It is a speial limiting aseof the Navier-Stokes equation and determines the ow of an inompressible uid aross asemi-in�nite at plate. The Blasius equation reads2�y000(x) + y(x)y00(x) = 0 : (6.57)Assuming that the tangential veloity y0(x) at the outer limit of the boundary layer isonstant, the boundary onditions read [68℄y(0) = y0(0) = 0 ; y0(1) = 1 : (6.58)Our objetive here is to alulate the seond derivative y00(0), whih represents the stress onthe plate. We disretize the Blasius equation (6.57) by introduing a lattie spaing a:2Æ(fn+1 � 3fn + 3fn�1 � fn�2) + fn(fn+1 � 2fn + fn�1) = 0 ; (6.59)where we de�ne fn � y(na)=a and Æ � �=a2. The boundary onditions (6.58) now readf0 = f�1 = 0 ; fn � n (n!1) : (6.60)



6.5 Pad�e Resummation for the Blasius Equation 87Expanding fn as a series in powers of Æ as in equation (6.15), we obtain the reursion relation[63℄an+1;j � 2an;j + an�1;j = � 2n (an+1;j�1 � 3an;j�1 + 3an�1;j�1 � an�2;j�1)� 1n j�1Xk=1 an;k (an+1;j�k � 2an;j�k + an�1;j�k) : (6.61)The boundary values arean;0 = n (n � 0) ;a�1;0 = 0 ;a�n�1;j = an;j (n � 0) : (6.62)Equations (6.61) and (6.62) an be solved order by order by using a omputer algebraprogram. Table 6.9 shows the �rst 20 weak-oupling oeÆients a1;j. All oeÆients up tothe 300th order an be found at [69℄.6.5 Pad�e Resummation for the Blasius EquationWe now resum the weak-oupling oeÆients using the Pad�e method (6.24) withM = �1=2.This value of M will be derived in Setion 6.6 in equation (6.69). The exat solution [63℄to the Blasius equation (6.57), obtained numerially up to �ve digits, is y00(0) = 0:33206.Unfortunately, the sequene formed by the approximants SN appears to onverge, but notto the orret value. Aording to Table 6.10 the sequene beomes very at and Rihardsonextrapolation [53℄ shows that the SN approah the wrong limiting value (see Table 6.11). Athird-order Rihardson gives S1 = 0:3430, based on the �rst 70 weak-oupling oeÆients.This value is signi�antly higher than the orret value y00(0) = 0:33206.The failure of the Pad�e resummation is not surprising beause the Pad�e method assumes theapproah to saling Æ�1 aording to (6.25). However, in the ase of the Blasius equationthe approah to saling is Æ�1=2, as we will see in equation (6.69) in the next setion.6.6 Variational Perturbation Theory for the BlasiusEquationVariational perturbation theory for the Blasius equation fails to onverge to the orretanswer in the same way as for the instanton problem. We determined the leading strong-oupling term (6.40) up to 300th order and again it was impossible to �nd extrema, inetionpoints, or higher derivatives that yield the orret result. By determining the values of pand q we show why variational perturbation is likely to fail for this problem.



88 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviourj a1;j j a1;j1 �2 11 3086863238354573752 2 12 63250296226378753 83 13 �487693745019181134087703754 �6 14 �4774319527974167378196087505 �18415 15 43032125108874573422124471118756 1369 16 7962353445488767905176039980615418757 11062105 17 �224998805450676417458404967768582504998375008 �8162225 18 �178060537619150189817796142370971649156259 �1055741614175 19 �13224896152219729667498038639130190976834602433750010 �5762862299225 20 1217569931540675344517331208370291153217968487557347375000Table 6.9: The �rst 20 weak-oupling oeÆients for the Blasius reursionrelation (6.61) and (6.62). Observe that the oeÆients a1;j are not of Boreltype (they do not alternate in sign). A osine funtion with a frequeny di�erentfrom � governs the sign pattern (see Setion 6.7).Consider again the Taylor expansions for fn�1 in (6.28) together with the Taylor series forfn�2 = f(xn � 2a), namelyfn�2 = f(xn)� 2f 0(xn)a+ 2f 00(xn)a2 � 43f 000(xn)a3 + 23f 0000(xn)a4 � ::: : (6.63)Inserting these expressions into the di�erene equation for the Blasius problem (6.59) andtranslating bak to the ontinuous funtion f(xn) = fn, we get2��f 000(x)a� 12f 0000(x)a2 + :::� + f(x)�f 00(x)a2 + 12f 0000(x)a4 + :::� = 0 : (6.64)Next we transform bak to the funtion y(x) = af(x) and assume the Taylor seriesy(x) = y0(x) + ay1(x) + a2y2(x) + ::: : (6.65)To zeroth order in a we obtain2�y0000 (x) + y0(x)y000(x) = 0 ; (6.66)whih is just the Blasius equation (6.57). The small parameter a, whih is the lattie spaing,relates � and Æ by a = p�=Æ. Thus, if we evaluate the Taylor series (6.65) for the seond



6.6 Variational Perturbation Theory for the Blasius Equation 89N SN N SN1 0.5 11 0.35746321212 0.4204482076 12 0.35633266513 0.3948201830 13 0.35538480484 0.3819443732 14 0.35457959445 0.3742062309 15 0.35388828426 0.3690504811 16 0.35328915097 0.3653779673 17 0.35276558138 0.3626359060 18 0.35230465889 0.3605155915 19 0.351896192910 0.3588309707 20 0.3515320399Table 6.10: The �rst 20 Pad�e approximants for the solution to the Blasiusequation (6.61). The sequene formed by the SN onverges extremely slowly.order value of y00(0) onvergene1 0.3445 dereasing2 0.3436 dereasing3 0.3430 osillatingTable 6.11: Three orders of Rihardson extrapolations for the Blasius equation(6.57), based on the �rst 70 Pad�e approximants SN .derivative at the origin, we see thaty00(0) = y000(0) + ay001(0) + ::: = 0:33206p� +r �Æ y001(0) + ::: : (6.67)Comparing this series to the original weak-oupling seriesy00(0) =rÆ� �1� 2Æ + 2Æ2 + :::� ; (6.68)we an now determine the leading power p=q and the approah to saling 2=q:1� 2Æ + 2Æ2 + ::: = Æ�1=2 �0:33206 + Æ�1=2�y001(0) + :::� ; (6.69)so we obtain p = �2 and q = 4.Again we �nd that the approah to saling 2=q = 1=2 lies just on the boundary of the openinterval (1=2; 1), for whih the proof of onvergene [8℄ holds. This situation here is theopposite of the instanton ase in that it sits at the lower boundary of the open interval inwhih variational perturbation theory works. Table 6.12 shows some variational results for(6.27) in the Blasius ase. The numbers were obtained by searhing for extrema. Unfortu-nately they do not aim at the orret limiting value, as one an see from the Rihardson



90 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order BehaviourN b(N)0 N b(N)0180 0.33696017793094 190 0.33695971119646181 0.33696012777085 191 0.33695966849139182 0.33696007843082 192 0.33695962644843183 0.33696002989308 193 0.33695958505396184 0.33695998214034 194 0.33695954429471185 0.33695993515575 195 0.33695950415774186 0.33695988892292 196 0.33695946463046187 0.33695984342591 197 0.33695942570058188 0.33695979864918 198 0.33695938735612189 0.33695975457760 199 0.33695934958540Table 6.12: The last 20 variational strong-oupling oeÆients b(N)0 for theBlasius equation. The very last oeÆient is b(200)0 = 0:33695931237713, asopposed to the orret value y00(0) = 0:33206.order value for b(N)0 onvergene1 0.3369518 inreasing2 0.336955563 inreasing3 0.336955600539 inreasing4 0.3369556008803 inreasing5 0.336955600883462 inreasing6 0.33695560088349232 inreasingTable 6.13: Six orders of Rihardson extrapolations for the strong-ouplingoeÆient b(N)0 (k0) up to N = 200 for the Blasius equation. The last value is1:5% away from the orret limiting value y00(0) = 33206.extrapolations in Table 6.13.Still the auray of the variational perturbative alulations is onsiderably higher than theone of the Pad�e resummation. The latter one is 5:9% away from the orret result whereasvariational perturbation theory only deviates by 1:5%.6.7 Large-Order Behaviour for the Blasius EquationThe Blasius equation exhibits a large-order behaviour whih is a more subtle than for theinstanton problem (6.43). As one an see from Table 6.9, the Blasius weak-oupling oef-�ients are not of Borel type; that is, the sign pattern is not alternating. Rather, the signstruture is governed by a osine funtion with a frequeny that is signi�antly di�erent from�. Remarkably, it turns out that a pure osine os(an) annot reprodue all signs orretly.Up to 300th order the sign struture given by os(an) is broken twie: The signs at n = 62and at n = 212 are not orret. So we must onsider an additional phase shift os(an + b).



6.7 Large-Order Behaviour for the Blasius Equation 91a b1.3941 3.091.3939 3.117.67830 3.0317.67686 3.130Table 6.14: Examples of the parameters a and b that give the �rst 300 signs ofthe Blasius weak-oupling oeÆients orretly, assuming that the sign stru-ture of the underlying large-order behaviour is of the form os(an + b). Thelast two values for a an be obtained approximately by summing 2� to the �rsttwo values.The parameter b turns out to be slightly smaller than �, but it reprodues all 300 signsorretly.In order to determine the numerial values of a and b we de�nef(a; b) � NXn=1 os(an+ b)j os(an + b)j a1;nja1;nj : (6.70)The sum ends at N = 300 beause this is as high as we an alulate using Maple; we knowthe �rst 300 weak-oupling oeÆients a1;j [69℄. For the orret values of a and b the funtionf(a; b) must be equal to 300. We then plot the funtion f(a; b) over the a{b plane and searhfor peaks. A areful study of the peaks yields values for a and b whih allow the funtionf(a; b) to assume its maximum at 300. These numbers are given in Table 6.14.The large-order behaviour of the Blasius weak-oupling oeÆients (unlike the large-orderbehaviour of the instanton oeÆients) has an additional overall fator os(an + b), andwe an now see that the remaining struture di�ers from the struture of the instantonweak-oupling oeÆients. Dividing by the osine, we observe that the oeÆientsa0j � a1;jos(aj + b) (6.71)grow fatorially fast. Thus, we also divide by j!:bj � a1;jos(aj + b)j! : (6.72)The oeÆients bj are unstable under a ratio test. That is, the ratio bj+1=bj dereases andthen begins to osillate. This reets the inauray that results from the deliate signpattern of the �rst 300 oeÆients a1;j.





Chapter 7DisussionHaving gone through the reursive alulation of the imaginary-time evolution amplitudeand through several appliations of variational perturbation theory we now want to disussa few properties of both of them.First of all we ritially rate our reursion relation from Chapter 3 in Setion 7.1, omparingit to other methods like for instane evaluating Feynman diagrams. In Setion 7.2 we willdisuss its limitations. Then we review the onvergene behaviour of variational perturba-tion theory in Setion 7.3. In Setion 7.4 we will overview possible further appliations ofthe reursion relation and of variational perturbation theory suh as Bose-Einstein ondens-ates, Type-II super ondutors, Markov proesses, and stohasti resonane. Thereafter wequikly look at the results obtained for the two boundary-layer problems in Setion 7.5.7.1 Bearing of the Combined Di�erential and Algeb-rai ReursionThe reursive tehnique that has been developed throughout Chapter 3 of this thesis de�n-itely out lasses all diagrammatial perturbative alulations. Using the onventional evalu-ation of Feynman diagrams, the partition funtion and the free energy have been evaluatedup to third order [18℄. Diagrammatial results for the density matrix ame as far as up toseond order [33℄. In ontrast to that we ould drive our reursive alulations up to seventhorder for the free energy and for the ground state wave funtion. Variationally we ame ushigh as the �fth order in the ase of the free energy and up to seventh order for the wavefuntion. The free energy requires more omputational resoures due to the subtle expan-sion of the logarithm (4.3). State of the art omputer algebra programmes suh as Maplean evaluate the imaginary-time evolution amplitude up to the seventh order perturbativelywithin a ouple of hours, whereas the integrals represented by eight loop Feynman diagramsare not solvable with suh programmes, nor by hand. Variational perturbation theory ostseven more time and �ve variational orders for the free energy is at the edge of what an bedone at the moment.Possible future appliations of the ombined di�erential and algebrai reursion are disussed



94 Disussionin Setion 7.4.7.2 LimitationsThe ombined di�erential and algebrai reursion de�nitely is a hallenge for every omputeralgebra program. Going up order by order and thus making use of the ahe memory ofour PCs it still took Maple 15 hours to alulate the seventh order of the imaginary-timeevolution amplitude.1 Comparing the omputation times for eah order roughly yields anexponential growth. Also the further simpli�ation proedures and espeially the \series"-ommand (Maple) required a lot of omputation time again. This was the prie we hadto pay for the idea, to get one universal reursion relation for all the quantum statistialanharmoni osillator quantities at the same time.Still it is easy to overome diagrammatial alulations and further streamlining of the Maplesript should probably push the limits further.7.3 Exponential Convergene of Variational Perturba-tion TheoryFor the free energy as well as for the ground state wave funtion the onvergene of vari-ational perturbation theory was found to be exponential. The fat that the priniple of leastsensitivity [48℄ as interpreted by Kleinert produes extrema for the odd variational ordersand inetion points for even orders, both in the ase of the free energy and in the ase of theground state wave funtion, is reeted in the respetive onvergene behaviours: Odd andeven orders an best be �tted separately by exponentials. Thus we obtained intervals of on-vergene for ertain values of the free energy or the ground state wave funtion whih alwaysturned out to ontain the exat numerial result when taking into aount the statistial er-rors assoiated with the boundaries of the intervals. For the free energy the numerial resultswere obtained using its spetral representation reverting on the �rst ten energy eigenvaluesobtained with the \shooting method", skethed in Setion 4.4. And for high temperaturesthe lassial free energy was available for omparison. For the ground state wave funtionnumerial results ould be obtained diretly from the \shooting method".7.4 Next StepsThere are quite a few interesting problems whih ould now be takled with either reursivetehniques or with variational perturbation theory or both:1We used a Pentium III, 450MHz and later an AMD with 1.5GHz whih was muh quiker. But at thatstage this thesis was almost �nished.



7.4 Next Steps 95Quantum statistisReently a lot of researh has been done on the stohasti and dynami properties of uxlines in high-T super ondutors with arbitrary pinning entres [70, 71℄. Of all the possiblepinning mehanisms, one seems to be most promising, namely the interation of the uxlines with olumnar defets [72, 73℄. From a theoretial point of view, this mehanismhas been examined by Nelson and Vinokur [74℄ on the foundation of the Bose analogy[75, 76℄. Only reently Ettouhami sueeded in desribing the physis of a single ux linewithout using olumnar defets and their pinning e�et [77℄, but instead he employed theFeynman-Kleinert variational perturbation theory [6℄, to generate the partition funtion andthe e�etive pinning energy. It turned out that the mean square deviation of the ux linesfrom the pinning entre diverges for a ertain ritial temperature. This was taken as a hintfor a loalization-non loalization phase transition. The �nal experimental and theoretialevidene of suh a phase transition is still missing though [77℄.Therefore it would be very interesting to investigate the question whether other pinningpotentials than the Gaussian potential hosen by Ettouhami ould reate a phase transition.Also the ompeting inuenes of di�erent pinning entres on the loalization properties of theux line an be studied. Finally one ould hek, whether the results of the Feynman-Kleinertvariational perturbation theory is altered for higher orders. Espeially for a Gaussian pinningpotential orretions from higher variational perturbative orders ould be evaluated by meansof the smearing formula [12℄.Bose-Einstein ondensates, Type-II super ondutorsAfter the pioneering work, that has been done to realize Bose-Einstein ondensates of atomigases in magneti traps [78, 79, 80℄, these ondensates are now routinely produed in labsaround the world.2 Therefore sienti� interest has shifted from prodution and strutureof these ondensates to a deep understanding of their dynamis [83℄. Espeially for theinterpretation of experimental data it is indispensable to examine the dynamis of ollapsingand exploding Bose-Einstein ondensates and the inuene of interation between the matterin the ondensate and the radiation. For low temperatures the mean-�eld theory has provedto be suessful. It assumes that all atoms are in the same one-partile state [84℄. TheBose-Einstein ondensate is then desribed by a marosopi wave funtion 	(r; t) whihis the order parameter. Its modulus squared is interpreted as the residene probability ofthe atoms in the ondensate. The unitary time evolution of the marosopi wave funtion	(r; t) obeys the Gross-Pitaevskii equation [85℄, whih readsi�h ��t	(r; t) = ���h2�2M + Vext(r) + g j	(r; t)j2�	(r; t) : (7.1)2In Deember 2001, for the seond time in ten years, the Nobel Prize was awarded to three physiistswho worked on Bose-Einstein ondensates [81, 82℄.



96 DisussionWe have to solve equation (7.1) with the wave funtion 	(r; t) being normalized for all times:Z d3xj	(r; t)j2 = 1 : (7.2)Contrarily in experiments atoms an be sattered out of the trap inelastially. We anaount for that loss by adding imaginary loss terms to the Gross-Pitaevskii equation (7.1)whih then destroy the normalization of 	(r; t) [85℄.Up to now the Gross-Pitaevskii equation has been solved either numerially [84℄ or in theThomas-Fermi approximation [86, 87℄. In the latter ase one assumes that the evaluationof the wave funtion of the ondensate an be simpli�ed by negleting the term for thekineti energy in the limiting ase of many atoms. It turns out that the Thomas-Fermiapproximation is quite rough [86℄ and, moreover, it depends on the properties of the trap[87℄. It is therefore neessary to improve the Thomas-Fermi approximation with the help ofvariational tehniques [87℄. It would be worth a try to solve the Gross-Pitaevskii equationby means of a Bender-Wu like double expansion ansatz. Afterwards one ould resum theperturbative result with the help of variational perturbation theory. We expet that thisproedure would improve the auray of the results for the Bose-Einstein ondensate as wellas in other appliations of the Thomas-Fermi approximation like for instane the physis ofatoms and moleules [2℄.As the Gross-Pitaevskii equation is also used to desribe super uid Helium and superondutivity in the mean-�eld approah [88℄, a reursive ansatz would be very promising inthese �elds, too.Dissipative quantum mehanisThe reursive methods whih have been developed in hapter 3 of this thesis an also beextended to dissipative quantum systems. Suh a system onsists of a few marosopi de-grees of freedom whih are oupled to a large number of mirosopi degrees of freedom andis usually desribed by the path integral quantization [2, 42℄. As the mirosopi strutureof the reservoir is of no importane, one usually integrates over these degrees of freedom.For simpliity the reservoir is modeled by independent osillators. What is left over is theredued density matrix whih now depends on the oordinates of the marosopi degrees offreedom only. The essential kernel of the path integral is the so alled inuene funtionalthat e�etively ontains the omplete inuene of the reservoir [89℄. Both the Caldeira-Leggett model [43, 44, 42, 90℄ and the model of optial and aousti polarons [5, 42, 91℄ areof this general form. The atual evaluation of the redued density matrix in the frameworkof these models unfortunately is very diÆult, beause the underlying ation is biloal.One ould try to �nd more eÆient methods for this omputation. A double expansionansatz for the imaginary-time evolution amplitude would solve the Shr�odinger equation.Again one would obtain a set of reursive ordinary di�erential equations. Taking the traeover the reservoir oordinates in the imaginary-time evolution would yield a perturbativeresult for the redued density matrix, whih ould then undergo variational perturbationtheory. The reursive tehnique would allow for higher orders, suh that the �rst-order res-ults [43℄ based on the variational methods by Giahetti and Tognetti [22℄ ould be exeeded.



7.4 Next Steps 97Espeially a study of the g-dependene of the density of states of the damped harmoniosillator [92℄ would be interesting.Markov proesses, Brownian motionBender-Wu like reursive solutions may also be useful for Markov proesses [93, 94, 95, 96, 24℄.Following Ref. [23℄ for a nonlinear drift oeÆient [97℄K(x) = ��x� gx3 ; (7.3)the probability density will fatorize aording toP (xb tbjxa ta) = P�(xb tbjxa ta)F (xb tbjxa ta) ; (7.4)where P�(xb tbjxa ta) denotes the probability density of a Brownian partile. The resultingFokker-Plank equation for the orretion F (xb tbjxa ta) then reads��tbF (xb tbjxa ta) = �D �2�x2b + ��xb + gx3b � 2�xb � xae��(tb�ta)1� e�2�(tb�ta) � ��xb+ �3gx2b � �Dgx3b xb � xae��(tb�ta)1� e�2�(tb�ta) ��F (xb tbjxa ta) : (7.5)Diagrammatial onsiderations suggest to solve this partial di�erential equation with theansatzF (xb tbjxa ta) = 1 + 1Xn=1 4nXm=0 gn(n)m (xa; tb; ta)xmb : (7.6)Similar to the reursion whih was developed in hapter 3 of this thesis, the expansionoeÆients (n)m (xa; tb; ta) should obey an ordinary partial di�erential equation. With the helpof a omputer algebra program it should be possible to drive this perturbative alulationto very high orders as seen in the ase of the quantum statistial imaginary-time evolutionamplitude. Initial results leading in this diretion have now been shown in Ref. [24℄.Stohasti resonaneNormally an inrease of the noise bakground leads to a higher signal-to-noise ratio. Some20 years ago it was disovered that under ertain irumstanes also the opposite ounterin-tuitive e�et an happen. This phenomenon is know as stohasti resonane [98℄. Stohastiresonane is believed to explain many physial problems, as well as it has appliations inhemistry and biology. Even the periodiity of the ie ages an be modeled by means ofstohasti resonane.



98 DisussionConsider a partile in the double well potential together with a periodi external weak fore.This weak fore an indue periodi movements of the partile. This stohasti synhroniz-ation ours when the mean time between two noise indued transitions is of the order ofhalf the period of the external fore. This model of stohasti resonane has been studiedin the adiabati limit, in the fully non-adiabati regime and by means of linear-responseapproximation (ompare the bibliography in [98℄).So similarly to the above desribed approah to Markov proesses one ould in this asesolve the Fokker-Plank equation for the expliitly time-dependent drift oeÆientK(x; t) = ��x� gx3 + F (t) (7.7)for arbitrary fores F (t) and espeially for periodi fores F (t) = A os(!t + �). But alsoother time dependenies as, for instane, the ompetition between two Fourier modes ouldbe interesting.Theory of reation ratesOne of the most important appliations of Markov theory is the desription of thermallyativated transitions between meta stable states. This proess is espeially signi�ant forthe theory of reation rates in hemistry and biology whih was founded by Kramers [98℄. Atypial model is the over damped Brownian motion of a partile in a double well potentialwhere the position of the partile is identi�ed with the reation rate oordinate. By solvingthe underlying Fokker-Plank equation, the mean transition rate between the two minimaan be alulated. Using several di�erent approximations one an show that the mean trans-ition rate grows with a dereasing damping whereas the rate drops again for strong damping[99℄. Variational perturbation theory would enable us to investigate this interesting trans-ition further on the sa�olding of the results obtained for Markov theory mentioned earlier.For low temperatures also quantum mehanial tunneling beomes more important om-pared to thermally ativated transitions. The ompeting inuene of these two phenomena isdesribed by the Caldeira-Leggett model. It predits a ritial temperature: Above this tem-perature thermally ativated transitions are dominant, below this temperature only quantummehanial tunneling proesses are relevant. A variational perturbative study of these phe-nomena ould refer to previous work [2, 28, 29, 30, 100℄ where purely quantum mehanialtunneling has been desribed. For instane one ould ompute the splitting in the doublewell potential by resumming the weak oupling perturbation series into a strong ouplingseries with the help of variational perturbation theory whih then is analytially ontinuedto negative oupling onstants. The results are pratial for low barriers and high tunnelingrates. Combining variational perturbation theory with the semilassial approximation, oneould extend their pratiability to high barriers and low tunneling rates.Brownian motorsIs it possible to transform the arbitrary mirosopi utuations of Brownian motion intomehanial work? This basi question an be studied by means of the stohasti rathet



7.5 Boundary-Layer Theory, Strong-Coupling Series, Large-Order Studies 99model [99℄ whih is based on a gedanken experiment by Smoluhowski [101℄ and Feynman[102℄. Consider the over damped Brownian motion of a partile in a spatially periodipotential V (x) = V (x + L) with spatially broken symmetry. This ould be realized forinstane by superimposing two Fourier modesV (x) = A sin 2�xL +B sin 4�xL : (7.8)Then one solves the underlying Fokker-Plank equation with the drift oeÆientK(x) = �V 0(x) : (7.9)The rathet e�et ours when appropriately hosen system parameters do not let the partileurrent vanishh _x(t)i = � Z +1�1 dx ��V 0(x) +D ��x�P (x tjx0 t0) : (7.10)Investigating suh stohastial systems with rathet e�ets, whih are also referred to asBrownian motors, has beome very important espeially for the biology of ells. Reentlyit was disovered that the rathet e�et is responsible for the intra ellular transport ofso-alled moleular motors, whih migrate along polymer �laments (ompare the extensivebibliography in [99℄).This rathet e�et an be studied with the help of variational perturbation theory. To thisend one of the few exatly solvable ases of the stohasti rathet model [99℄ an be hosenas the referene system, around whih one an then expand perturbatively. Its parametersbeome the variational parameters. The results ould be ompared with approximativeresults [99℄ for the partile urrent (7.10). Moreover it would be interesting to �nd outwhih system parameters an hange the urrent (7.10) most eÆiently.Also one ould extend the studies on quantum rathets. Their mirosopi utuations areboth of thermal and quantum mehanial origin. Important experimental realizations areJosephson juntions and SQUIDS [103℄. Quantum rathets are desribed in the frameworkof the Caldeira-Leggett model of dissipative quantum mehanis, whih has already beenmentioned in onnetion with quantum dissipation.7.5 Boundary-Layer Theory, Strong-Coupling Series,Large-Order StudiesUnfortunately we did not sueed in �nding a systemati resummation algorithm for theinstanton problem and for the Blasius equation, solved on the lattie in the limit as the lattiespaing goes to zero. This would have enabled us to quikly swith from di�erene equationsto di�erential equations and vie versa. Also our analyti understanding of �eld theorieswould have bene�ted. However, we ould study the respetive large-order behaviours. Maybe these onsiderations will enable us, to at least push the onvergene radii further out. Or



100 Disussionthey might tell us whih set of base funtions an be used to re-expand the two weak-ouplingseries in suh a way that they onverge even for in�nite oupling. What de�nitely an besaid at this stage is, that the numeris have been pushed to the limits. Our Maple programsbloked various omputer lusters on both sides of the Atlanti3 for periods of time as longas two weeks.7.6 Conluding ThoughtsWe have seen that reursive tehniques in quantum statistis together with powerful om-puter algebra systems enhane our possibilities to obtain high-order perturbative results forall the relevant quantities. Furthermore we ould use these results to study variational per-turbation theory for the anharmoni osillator systematially. It is now about time to applythe two formalisms | the reursion tehniques and variational perturbation theory | tothe very interesting problems that have been mentioned in Setion 7.4.The boundary-layer problems from Chapter 6, solved on the lattie in the limit as the lattiespaing goes to zero, still wait for a suitable systemati resummation algorithm.

3At the Freie Universit�at in Berlin and at the Washington University in St. Louis, Missouri.
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