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Chapter 1

Introduction

Most physical problems are not exactly solvable. Therefore a wide variety of approximative
methods has been developed throughout the history of physics. One of them is perturbation
theory. This technique has proven to be extremely useful under innumerable circumstances.
Usually, however, the weak-coupling series which are obtained through perturbation theory
are not convergent.

The ground state energy of the anharmonic oscillator is the simplest example where this
phenomenon can be studied. Recursion relations a la Bender and Wu [1] yield perturbation
series for the eigenvalues (energy) and eigenfunctions (wave functions) of the Schrodinger
equation up to arbitrarily high orders. The Bender-Wu recursion relation yields a power
series for the anharmonic part of the wave function both in the coupling strength ¢ and in
the coordinate x. The power series in x can be cut off naturally by comparing the recursive
results with results obtained from generating Feynman diagrams. If now the value of the
coupling strength ¢ that determines the influence of the anharmonicity is much smaller than
one, the series in g converges initially. To higher orders, however, the series diverges. If the
coupling strength becomes too large, the series always diverges and no physical results can
be obtained at all. This thesis deals with both problems: Obtaining high-order perturbation
series and then making them converge for all values of the coupling strength.

In Part I we introduce a new recursive technique that extends the Bender-Wu recursion to
solutions of the time-dependent Schrodinger equation. This new, more comprehensive re-
cursion relation enables us to obtain high-order perturbative results for the imaginary-time
evolution amplitude of the anharmonic oscillator by solving a set of both differential and
algebraic equations. This is in contrast to the Bender-Wu recursion which is a purely algeb-
raic formalism.

We treat our simple model system — the anharmonic oscillator — quantum statistically by
performing a Wick rotation. In the beginning of Chapter 2, both the real- and the imaginary-
time evolution amplitude and their respective properties are reviewed. The subsequent sec-
tions deal with the physical quantities that can be derived from the imaginary-time evolution
amplitude, namely the partition function, the density matrix, the ground state wave func-
tion, and the correlation functions. At the end of Chapter 2 we take a look at the limits as
the temperature goes to zero and to infinity, respectively.

In Chapter 3 we derive the combined differential and algebraic recursion relation for calculat-
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ing the imaginary-time evolution amplitude. To that end we compare two different ansatzes
from which the second proves to be the better one. It obeys a symmetry which eventually
enables us to change many of the differential equations into purely algebraic ones. Thus our
recursion relation assumes a Bender-Wu [1] like shape. We also cut off the power series in
the coordinates by comparison to diagrammatic considerations.

In Part IT of this thesis variational perturbation theory [2] is applied to the perturbative
results gained throughout the first part. This theory is a systematic extension of a simple
variational approach, first developed by Feynman and Kleinert in the path integral form-
alism. Feynman introduced the path integral formalism as a quantization regulation, that
represents the operator properties of quantum physics by fluctuations of the dynamical vari-
ables [3, 4]. By extending analytically real time to imaginary time, also quantum statistical
quantities can be obtained by summing over quantum mechanical and thermal fluctuations
with the help of path integrals [4, 5]. In order to evaluate the path integral for the free
energy approximatively, Feynman and Kleinert developed a variational method in 1986 [6].
It replaces the relevant system by the exactly solvable harmonic oscillator whose frequency
becomes a variational parameter which has to be optimized. Starting with Ref. [7], this
method has been systematically enhanced by Kleinert to higher orders [2, 8]. Tt is now
known as variational perturbation theory and yields results for all temperatures and all
coupling strengths. It has already been applied to a broad variety of physical problems
like, for instance, to effective classical partition functions and potentials [6, 7, 9, 10], to the
Coulomb problem with and without homogeneous magnetic field [11, 12, 13, 14]', semiclas-
sical simulations of molecular dynamics [15, 17], the anharmonic oscillator [18, 19, 20, 21],
Sine-Gordon chains [22], Markov processes [23, 24, 25|, Bender-Wu singularities [26], the an-
harmonic oscillator with an 2¥-potential [27], as well as to tunneling phenomena [28, 29, 30],
to the double-well potential [31], to particle distributions [11, 32, 33, 34], to fluctuating field
systems [35], and the fluctuation pressure of membranes [36, 37], to ¢*-theory [8, 38, 39] and
last but not least to the ground state wave function [40, 41]. Only very recently variational
perturbation theory was applied to quantum dissipative systems [42]. For instance Cuccoli et
al. applied variational perturbation theory to the density matrix [43] of the Caldeira-Leggett
model [44, 45, 46, 47], using techniques developed by Giachetti and Tognetti [22].

In Chapters 4 and 5 the free energy and the ground state wave function of the anharmonic
oscillator are discussed and each of them undergoes variational perturbation theory. Using
the high-order results for the imaginary-time evolution amplitude from Chapter 3 we study
the convergence behaviour of variational perturbation theory up to fifth order for the free
energy and up to seventh order for the ground state wave function. As variational perturb-
ation theory especially allows for strong coupling, we concentrate on coupling strengths ¢
equal to or greater than one. The results for the free energy are subject to a numerical
cross check and — where appropriate — to classical considerations, whereas our results for
the ground state wave function are checked against both numerical calculations and against
the well-known asymptotic behaviour [41]. Moreover we study the patterns occurring in the
optimization process [2, 48] for the free energy which already have proven to be very regular
in the case of the ground state energy [2].

!The singularity is ironed out by the thermal fluctuations. This process condensed in the smearing
formula [6, 12]. Similar potentials have been treated reverting on wave packages [15, 16].



In Chapter 6 we take a look at a problem from outside quantum statistics, namely the prop-
erties of boundary-layers. They can be calculated on a lattice in the limit as the lattice
spacing goes to zero. Understanding this limit would enable us to switch from difference
equations and numerics to differential equations and symbolic evaluations and vice versa.
Here we compare variational perturbation theory with Padé methods. It turns out that
they both produce good approximative results, but they do not converge. However, both
resummations reveal special properties which have not been observed before. We also study
the large-order behaviour of two boundary-layer problems in order to better understand the
strong-coupling limit.

Chapter 7 finally sketches advantages and disadvantages of our combined differential and al-
gebraic recursion relation and discusses the convergence of variational perturbation theory.
It also provides an outlook on very promising future applications of both recursion relations
and variational perturbation theory.






Part 1

Perturbation Theory —
Recursion Relations






Chapter 2

Quantum Statistics

In this chapter we review the definitions of some quantum statistical quantities based on
the time evolution amplitude in quantum mechanics and in quantum statistics. From the
imaginary-time evolution amplitude we derive the partition function and the free energy as
global quantities of a system. Thereafter we examine local quantities such as the density
matrix and correlation functions which can also be derived from the imaginary-time evolution
amplitude. We finally go back to quantum mechanics by taking the low-temperature limit
from which we obtain the ground state wave function and energy. We shall also study the
high-temperature limit in which we obtain the classical statistical properties of the system.

2.1 Real-Time Evolution Amplitude

In the Schrédinger picture, the time evolution of a state vector |¥(¢,)) at a time ¢, is given
by the equation

[W(ty)) = e =MD 2,)) (2.1)
The operator
Uty ty) = e~ ite—ta) /M (2.2)

is called the time evolution operator. Here H= I:I(i,ﬁ) is a Hermitean Hamilton operator
which depends on the canonical variables, position and momentum of the system. We assume
that there is no explicit time-dependence. The operator U (¢, t,) is unitary by construction,
SO

U™ (ty, o) = Ut(ty, to) (2.3)

holds for all times t,, t,. Also, it fulfills the group multiplication law

+oo

Oty t.) = / dt, U (1, 1)U (s 1) (2.4)

o0
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The time evolution operator obeys the equation of motion

d - T o~
—Ul(ty, ta) = ——HU (ty, t, 2.
dth( by ) B U( b ) ( 5)

with the initial condition

A~

U(ta,ta) = 1. (2.6)

We now introduce another quantity derived from the time evolution operator, namely the
real-time evolution amplitude. It is defined by

(26 ty|Ta ta) = (26]U (ty, ta)|Ta) » (2.7)

where the bra (| and the ket |x,) denote the eigenstates of the position operator & to the
eigenvalue x, obeying the eigenvalue equation

z|z) = x|z). (2.8)
The eigenvectors are orthonormal
(z2") = 0(x — '), (2.9)

and complete

/_ " dnley ] = 1. (2.10)

o0

The operator U(tb, t,) obeys the unitarity property (2.3), such that the matrix elements have
the property

(@ U (th, ta)|wa) = (wdl
= (24
T4

=

U (ty, ta) | 70)"

U™ (thy ta)|20)"

U(ta,tb)|:cb>*. (211)
For the amplitude (2.7) this implies

(l‘b tb|l‘a ta) = (LL‘a ta|l‘b tb)* . (212)
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2.2 Spectral Representation

Like any function of an operator, the time evolution amplitude has a spectral representation
which turns out to be helpful for a lot of calculations at a later stage of this work. By
multiplying equation (2.5) with a bra (z3| from the left and with a ket |x,) from the right
we obtain the Schrodinger equation

0 R
iha(% t|x, 0) = H (x4, pp) (23 t|7,0), (2.13)
where
0
= —th—. 2.14
Py = —i e (2.14)

The initial condition is
(25 0|2, 0) = 0(zp — 4) (2.15)

which comes from equation (2.6) together with (2.9). Suppose now that we have found a
complete and orthonormal set of eigenfunctions of the stationary Schrodinger equation

A

H 2y, o) Yn(20) = EpVn (1) . (2.16)

The completeness relation in this case reads

Z U ()W (x4) = 0(xp — x4) (2.17)
and the orthonormality property is

+00
/ d:rb\I!;’;(:rb)\Ifn/ (SUb) = 5nn’ . (218)

o0

Because of completeness, we can expand the time evolution amplitude (z; |z, 0) in terms of
the eigenfunctions W, (x;):

(xp t|z,0) ch () (2.19)

Inserting this ansatz into the Schrédinger equation (2.13), and using (2.16), we obtain

ih Z Cn(t)an(xb) = Z Encn(t)an(xb) . (2'20)
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Multiplying (2.20) by ¥ (z3) and integrating over x; yields

thcn / dz, U ( ZEcn /_ oodx,,w;,(xb)q;n(x,,), (2.21)

which — employing the orthormality property (2.18) — transforms to
ihén(t) = Enca(t) . (2.22)
The solution to this differential equation simply is

cn(t) = cn(0)e #Ent, (2.23)

Inserting (2.23) into the expansion (2.19), the real-time evolution amplitude becomes

(xpt]|z, 0) ch e~ R Pnty n(Tp) . (2.24)

The constants ¢, (0) are now fixed by applying the initial condition (2.15):

(2, 0]z, 0) ch n(zp) = 0(xp — x,) . (2.25)

Multiplication by W, (x;) and integration over z; leads to
Cn(0) =07, () - (2.26)
So all in all we get for the real-time evolution amplitude

(wpt|7 0) = Y W (2a)e 7P, (1), (2.27)

which is its spectral representation.
Generally, every function of an operator F/(O) can be spectrally expanded as

Zf YU, (2.28)

where the )\, are eigenvalues of the operator 0.
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2.3 Imaginary-Time Evolution Amplitude

In order to make the transition from quantum mechanics to quantum statistics', we perform
a so-called Wick rotation of the time:

Eos—ir. (2.29)

Thus the real-time evolution amplitude (x, ty|x, t,) turns into the imaginary-time evolution
amplitude (xj 7|, 7,). The imaginary-time evolution amplitude can also be expanded as

(2 7o) 0 7a) = (2|0 (4, 7a) a) (2.30)
where U(7,,7,) is the imaginary-time evolution operator
Ulry,7,) = e~ (m=ma)A/h (2.31)

In contrast to the real-time evolution operator U (tp, tq), its imaginary counterpart U (Tb, Ta)
is not unitary, but Hermitean:

A

UM (1, 7a) = U(m, 7). (2.32)

That is why we get a slightly different time reversal behaviour for the imaginary-time evol-
ution amplitude compared to the real one in (2.12). Defining § = 1/kgT, we get

(xb hﬁ|xa 0) =

zq W3z 0)", (2.33)

while it is known that the imaginary-time evolution amplitude is real for one-dimensional
problems.

The imaginary-time evolution amplitude has a spectral representation which can easily be
obtained from the spectral representation of the real-time evolution amplitude (2.27). We
just have to replace real time by imaginary time according to the Wick rotation (2.29) in
the spectral representation (2.27), yielding

(2 BBz 0) = > Wi (z)e Pl (m) (2.34)

'We are considering equilibrium systems only.
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2.4 Partition Function and Free Energy

Having defined the imaginary-time evolution amplitude, we now want to study one of the
global quantities which can be derived from it, namely the partition function. The partition
function Z is defined as the trace of the imaginary-time evolution amplitude,

+00

ZE/ da(z h3| 0) . (2.35)

o0

The partition function is a useful quantity, as it defines the free energy via its logarithm

1
F= ~3 log Z . (2.36)

The derivatives of the free energy F' lead to all the important thermo dynamical quantities,
like e. g. pressure, entropy, or heat capacity.

From the spectral representation of the imaginary-time evolution amplitude (2.34) we see
that the partition function Z also has a simple spectral representation, namely

Z = Z / dxy U}, (my)e W, () =) e PP (2.37)

n

which follows from the normalization integrals in equation (2.18).

2.5 Density Matrix

Let us now discuss an important local quantity which can be obtained from the imaginary-
time evolution amplitude. The density matrix allows us to treat pure and mixed quantum
mechanical states simultaneously. Often we have to deal with a statistical mixture of pure
quantum states. For instance, the density matrix would be the appropriate formalism to deal
with a continuous (not fully) polarized proton beam with proton spins pointing in various
directions. The ensemble of the protons in the beam should be treated in a conventional
statistical way, while a single proton obeys quantum mechanics.

Consider a time-independent base |U,,) that is complete (2.17) and orthonormal (2.18). Then
any state vector can be expanded in this base according to

[U(B) =) enlt)Wn), (2.38)

n

where normalization of |U(¢)) implies that

D len)?=1. (2.39)
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The coefficients ¢, (t) are given by the scalar products
cn(t) = (U, T (1)) . (2.40)

The time evolution is governed by the Schrodinger equation
H|U(t)) = m—|\1:( ). (2.41)
Expanding the |U(#)) according to (2.38) and multiplying from the left by (¥,,| we get

> (U HIW, et th\IJ (W, Ve (t) = ihém(t), (2.42)

n

because the |, ) are orthonormal (2.18). Introducing the matrix elements of the Hamiltonian
with respect to the base vectors Hy,, = (V,,,|H|¥,) we can rewrite equation (2.42) as

ZHmncn = ihén,(t) . (2.43)

Since H is a Hermitean operator, the matrix elements H,,, form a Hermitean matrix:
Hyy = <\Ijm|H|\Ijn> = <\Ijn|HT|\Dm>* = <\I]n|H|\Ijm>* =H,, . (2-44)
We now introduce the density matrix for pure states by its matrix elements

Pran (1) = em(t)c (T) . (2.45)
This quantity has the following properties:
(i) It has unit trace: trp(t) =Y, pan(t) =, lea(®)F =1
(i) Tt is Hermitean: pf = p.

(iii) The expectation value in the state |¥(¢)) reads

(W(t)[AT(2) Z Amnn(t) = " () A = tr[p(t) A] (2.46)

(iv) According to (2.43), it obeys an equation of motion:

ihpmn(t) = ihém(t)c, (t )+iﬁ0m( )én(t)

= Z Hpnpey (1) Z Hppen(t

_ Z(Hmpppn(t) - Hpnpmp(t))

p

= [H,p(t)]mn - (2.47)

This equation is known as the von Neumann equation.



20 Quantum Statistics

(v) We have p* = p for pure states.

With respect to the fourth property one should remark that p(t) and H,,, are defined in the
Schrodinger picture. One should not be deceived by the striking similarity to the Heisenberg
equation ihF = [F, fI] for aﬁ/at — 0, where F', H are operators in the Heisenberg picture.
This is the reason why the density matrix p(t) changes with the opposite sign with respect
to the operator F.

Once we know the initial value p(0) = po, the von Neumann equation (2.47) enables us to
calculate p(t) for all times. For the time-independent Hamiltonian under consideration H
the time evolution of the density matrix simply is

p(t) = e’%pge% . (2.48)

We now want to extend the definition of the density matrix to statistical mixtures of pure
states. Therefore we define

Pran = Zpacﬁ)cgf‘)* , (2.49)

with the real probabilities p, obeying

> pa=1, (2.50)

and p, > 0.

The above properties of the density matrix for pure states remain the same except for its
square: p?> # p. This provides us with a convenient way to distinguish pure states from
mixed quantum states.

In quantum statistics we only consider time-independent density matrices p(t) = p. This
matrix is diagonal in the energy eigenstates |¥,). The canonical density matrix can be
represented as

Z U (1,)e PP, ()
- Z e—BFn ’

n

p(zp, Ta) = (2.51)

which is the imaginary-time evolution amplitude (2.34), normalized by the partition function
(2.37):

play,ag) = LA (2.52)



2.6 Correlation Function 21

2.6 Correlation Function

Correlation functions of the path z(7) carry important information of quantum statistical
systems. They are defined as expectations of products of path positions at different times.
For instance the two-point correlation function reads

e = [ [T an [ wnensmmn@nin nnE ko). 259

Correlation functions are observable in scattering experiments. All n-point correlation func-
tions can be expanded according to Wick’s rule. A generalization of that formalism can be
found in Section 3.2.

2.7 Quantum Mechanical Limit § — oo

Quantum mechanical quantities can be reobtained from quantum statistics by letting the
temperature go to zero or # — oo. In this limit the imaginary-time evolution amplitude
becomes

(20 hB|Tq 0) ~ Wh(z4)e PPoWg(zy) (B — 00), (2.54)

because the term with the lowest energy in the summation in the spectral representation
(2.34) — the ground state energy Ej — is the one which decays slowest.
The low-temperature limit of the partition function (2.37) is of course

7 ~e PP (B 00), (2.55)
such that the low temperature limit of the free energy (2.36) becomes

lim F = E. (2.56)

B—00

The ground state wave function Wy(z) can be obtained from the diagonal elements of the
density matrix p(z,z) in a straight-forward way. According to (2.54) and (2.55) the low
temperature limit of the diagonal elements of the density matrix (2.52) can be written as

. i B0 ()
R P 0) = i T

= [Wy(z)]?. (2.57)

So the ground state wave function simply is the square-root of the low-temperature limit of
the diagonal elements of the density matrix

Wo(z) = ‘/Bh—{go p(z, ), (2.58)

for the one-dimensional wave function is real.
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2.8 Classical Limit 7 — 0

The classical limit is reached as the inverse temperature 3 goes to zero. In this limit, the
non-diagonal elements of the density matrix p(zy, 2,) vanish

lim p(l‘b,l'a) = 07 T 7é Tq (259)
£—0

and the diagonal elements approach the classical configuration space distribution pg(x):

p(a,x) ~ pa(z) (6—0). (2.60)

The latter is related to the classical phase space distribution

pa(z,p) = Zil exp [—(H (x,p)] , (2.61)

where H(z,p) is the Hamilton function
P
H = — . 2.62

The normalization of the phase space distribution (2.61) is ensured by the classical partition
function Z. which fixes the integral over positions and momenta to be one. So the particle
must be somewhere in phase space:

dxdp
S a(m,p) = 1. 2.63
/ 57 Pl p) (2.63)

Integrating over the momenta, we get the classical configuration space distribution

—+00 dp
pa(r) = / D (). (2.64)

Inserting in the phase space distribution (2.61) with the Hamiltonian (2.62), we obtain

)= (2.65)
e\ L) = ) :
Pcl 7

where the classical partition function reads

+00 d
Zy = / PO (2.66)
—00 )\th

with the thermal wavelength Ay, = \/27h? /MkgT.



Chapter 3

Imaginary-Time Evolution Amplitude

Feynman diagrams enable us to compute physical quantities of interacting theories in the
form of perturbation series. In the beginning of this chapter we use this diagrammatic
approach to calculate the imaginary-time evolution amplitude of the anharmonic oscillator
to first perturbative order. For higher orders this approach becomes quite cumbersome.
Therefore we develop a more efficient technique. We calculate the imaginary-time evolution
amplitude recursively by choosing an ansatz which solves its Schrédinger equation. Thus we
derive a set of recursive differential equations similar to the algebraic Bender-Wu recursion
for quantum mechanical eigenfunctions and eigenvalues [1]. We then streamline the ansatz as
well as the equations by proposing a strategy to exploit the symmetry (2.33) of the imaginary-
time evolution amplitude. This way we reduce the number of recursive differential equations
and transform most of them into algebraic ones. Finally we evaluate the equations up to
seventh order with the help of a Maple programme.

3.1 Path Integral Representation

The path integral representation for the imaginary-time evolution amplitude of a particle of
mass M moving in a one dimensional potential V' (z) reads [2]

(2 hB]4 0) = /j(hm:xb Dar exp {—% /Ow dr {% 2(r) + V(x(T))H | (3.1)

(0)=za
For the anharmonic oscillator potential

M
V(z) = Ew%? + gz* (3.2)
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the imaginary-time evolution amplitude (3.1) can be expanded in powers of the coupling
constant g. Thus we obtain the perturbation series

(zp P B2, 0) = (J?hb hB|240)u X i
X {1— %/0 BdTl(x4(T1)>w+29—7;/0 ﬂdﬁ/o ﬂdTQ (z*(1) 2*(12))0 + ] , (3.3)

where we have introduced the harmonic imaginary-time evolution amplitude

=(RB)=as L™ M M
(xp B2, 0), = / Dx exp {——/ dr {—:'02(7') + —w2:1:2(7')] } , (3.4)
z(0)=zq h 0 2 2

and the harmonic expectation value for an arbitrary functional F[z] of the path x(7):

1 z(hB)=mp
(Fle = o | L DeFl
Xexp{—% /0 " i {%ﬁ(r)—i—%uﬂﬁ(r)]} | (3.5)

The latter is evaluated with the help of the generating functional for the harmonic oscillator,
whose path integral representation reads

z(hB)=xp 1 8
(2o hB|7a 0)u[j] = / D:L‘exp{—ﬁ/ dr
z 0

(0)=zq
X {%1‘2(7‘) + %MQLL‘Q(T) — j(T)x(T)] } , (3.6)
leading to [2]
LB
(l‘b hﬁ|xa O)w[]] = (1‘1) hﬁ|xa O)UJ €xp |:% /0 dm xcl(Tl)j(Tl)
"B e
+ e i dﬁ/0 ATy G(D)(Tbﬁ)j(ﬁ)j(ﬁ)] (3.7)

with the harmonic imaginary-time evolution amplitude

Mw Mw
h aV)w = e 2 hh — 2x, . .
(w1574 0) \/ 27 sinh hgw P { 2 sinh o o T ) cosh i = 2o xb]} (3:8)

In equation (3.7) we have introduced the classical path

zosinh(Af — T)w + zp sinh wr
sinh /i Bw ’

xcl(T) =
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and the Dirichlet Green’s function

h 1 . .
G (1, 75) Mo s e [0(1) — 73) sinh(Af — 1 )wsinh wry
+0(19 — 11) sinh(hf — m)wsinh wrny| | (3.10)

whose properties are discussed in detail in Ref. [49].

3.2 Wick’s Theorem

We follow Ref. [40, 50] and evaluate harmonic expectation values of polynomials in x arising
from the generating functional (3.7) according to Wick’s theorem. Let us illustrate the
procedure to reduce the power of polynomials by the example of the harmonic expectation
value (™ (71) 2™(72))w:

(i) Contracting x(m) with 2"~ '(r;) and 2™(7) leads to Green’s functions G (7, 7)

and G(D)(Tl, 75) with multiplicity n — 1 and m, respectively. The rest of the polyno-
mial remains within the harmonic expectation value, leading to (z"72(7) 2™ (7)), and

(@ () 2™ (72) o

(ii) If n > 1, extract one x(71) from the expectation value giving xq(7) multiplied by
(@ ()™ (72) -

(iii) Add the terms from (i) and (ii).

(iv) Repeat the previous steps until only products of expectation values (z(71)), = a(71)
remain.

With the help of this procedure, the first-order harmonic expectation value (z*(7)), is
reduced to

(2 (1)) = za (1) (£*(11))w + 3GP) (1, 1) (2%(11))o - (3.11)
Furthermore, we find

(23(11)) = za(m){(22(1))0 + 2G(D)(7'1, 1) xa(T) , (3.12)
and

(@ (1)) = za(11) + G (1, 7). (3.13)
Combining equations (3.11)—(3.13) we obtain in first order

(1)) = zh(m) +624(1) G (i, 1) + 3G (11, 71). (3.14)
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The second order harmonic expectation value requires considerably more effort and finally
leads to

(' (1) 2 (1)) = wg (1) 25 (12) + 16 23 (7 )G(D)(Tlaﬁ) 2% (72)
+ 1224 (1) GO (ry, 1) 2 (72)+72a: (1) GO (11, 1) 2% (1)
+3622%(n) G D(ﬁ,ﬁ) (7-2,7-2) ( )+96x( )G(D)(ﬁ,Tg)G(D)(TQ,TQ)xd(TQ)
PY(

+6G™ (1, 71) 2 () +96xd(7'1) 71, 72) ol (72)
)G

+ 144 24 (1) (D)(Tl, T (7'1, ) G(D) (12, 72) xa(72) + 9 G(D)2(Tl, 1) G(D)2(7'2, )
+36 GO (11, 11) 22(12) G (12, ) + 144 22 (11) G (71, 75) G (73, 7)
+72G (Tl,Tl) G(D)Q(Tl,Tg) G(D)(TQ,TQ)+24G(D)4(7'1,T2). (315)

3.3 Feynman Diagrams

These contractions can be illustrated by Feynman diagrams with the following rules: A
vertex represents the integration over 7

= /Ohﬂ dr, (3.16)

a line denotes the Dirichlet Green’s function

2 = GP(rm,m), (3.17)
and a cross or a “current” pictures a classical path
1 = zq(m). (3.18)

Inserting the harmonic expectation values (3.14) and (3.15) into the perturbation expansion
(3.3) leads in first order to the diagrams

/hﬂdm x—I»x +6 HON +3 (X)), (3.19)
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whereas the second-order terms are

hpg hps
/ dTl/ dTQ 7'1 ’7'2 %% + 16 %

+12 XQXX—I—X + 72 >®<—|—36 &)@

+96X—I—©—x+6 QQX—?XMG%

IETTR O RGN (XD L0 >QQ
+72 (X X)) +24 +9 (X)) (X)) (3.20)

We now want to evaluate the first-order Feynman diagrams in (3.19) for finite temperatures
and arbitrary x,,x,. Thus we will get a first-order result for the imaginary-time evolution
amplitude in (3.3):

X-I—x = /Ohﬂdmﬁl(r)

1 ns
= S e /0 dr [z, sinh(ff — 7)w + x, sinh /i fw]*
1 : :
= 320 emh Ao [(z} + x3) (sinh 4hfw — 8 sinh 2hfw + 12h6w)
+ (232 + 142} (4sinh 388w + 36 sinh ifw — 487 3w cosh hfw)

+ z2x; (—36sinh 27 fw + 48%iBw + 247 fw cosh 27 4w)] . (3.21)

The second diagram reduces to

XQX = /Ohﬂdrﬁl(r)G(D)(T,T)

h hB
= S Mwsinh® e / d7 [z, sinh(hB — T)w + xp sinh m’]2
wsin w /o
[cosh hw — cosh(hf — 27)w]
h
= SioTsmiT Ay (% +ab) (sinh 8w + 9sinh i — 125w cosh i)
w? sin w

+ x4y (—12sinh 278w + 166w + 8hBw cosh 2hfw)] , (3.22)
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whereas the last diagram turns out to be

% ,
OO = [ a6
0

K2 hp ,
- 4 M?2? sinh? hfBw /0 dr [cosh hfw — cosh(Rf — 27)w]

K2 ‘
— 6000 sl h e (—3sinh 2w + 4hfw + 21w cosh 2h[w) . (3.23)

So all in all we get for the imaginary-time evolution amplitude

(xp B2, 0) = (2 3|2, 0),

B | M2w3 sinh? hfw 16 4 ]
h 2 w3 . 27 . 9
+ Mw? sinh® hBw [(xa + z}) (1_6 sinh 3hfw + 6 sinh Afw — Zhﬂw cosh hﬂw>

+ T,Tp <_§ sinh 2h 0w + 3hfw + ghﬁw cosh 2hﬂw>]

1
+ - ===
w sinh* ifw

1
+ (233 + 207}) <§ sinh 3hfw + 2 sinh hfw — ghﬁw cosh hﬁw)

1 1
l(xi + x4) (ﬁ sinh 47w — 1 sinh 276w + Zhﬁw>

+ 227} <—§ sinh 2h 0w + ghﬁw + %hﬁw cosh 2hﬁw>] } + > ) (3.24)

As expected the imaginary-time evolution amplitude (3.24) has the time reversal behaviour
(2.33) discussed in Section 2.3.

3.4 Partial Differential Equation

Consider the Schrédinger equation (2.13) for the real-time evolution amplitude

L 0 h* 0
Zh&(l’b t|l‘a 0) = —ma—xz(

xpt|xe 0) + V(wp) (23 t]240) . (3.25)
In order to get a corresponding quantum statistical Schrodinger equation we now have to
change from real time to imaginary time, i.e. we have to perform the Wick rotation ¢ — —ir,
as discussed earlier. Thus the Schrodinger equation (3.25) becomes

K2 02

0
—hE(IL’bTLI‘a 0) = _Wa—xz(

xp 7|2 0) + V(2p) (2 7|24 0) . (3.26)
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To solve that equation we need an initial condition. For both the real and the imaginary-time
evolution amplitude this condition reads

(25 0|2, 0) = 0(xp — ) - (3.27)

Plugging the anharmonic oscillator potential (3.2) into the Schrédinger equation (3.26) we
finally get

o h* 0 M
{15k + g3~ et = ont} o) =0, 5:25)

3.5 General Ansatz

Making the ansatz
($b7|l'a 0) = (l‘bT|fL’a O)w F(l‘baxaaT) ) (329)

where (x, 7|2,0), is the harmonic imaginary-time evolution amplitude (3.8), we conclude
from (3.28) a partial differential equation for F'(xy, x4, T):

{ 0 L 0? xpcoshwr —x, O

g
— - F o, T)=0. 3.30
or  2M Ox} T b er oy * xb} (1, 2o, 7) (3:30)

In order to solve equation (3.30) we expand at first F(xy, 24, 7) in powers of the coupling
strength g¢:

F(zy,20,7) =14 > g" " (24,70, 7) . (3.31)

From our previous perturbative results we know that the nth order £ (xp, 4, T) can at
most contain the powers 4n of x, and x;, respectively, for the corresponding diagram with
the most currents consists of n cross diagrams:

b

So when expanding f™ (z;,2,,7) in powers of z;, the sum has to break off at m = 4n:

4in
F™ (xy, 24, 7) = Z CW (zq, 7). (3.33)
m=0

F(xy, 14, T) —1+ZZQ C™ (24,7 (3.34)
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The initial condition (3.27) implies that the expansion coefficients cim (x4, 7) must not di-
verge in the limit 7 — O:

i (n)
ll_l’)I(l] |CO (4, 7)| < 00. (3.35)

3.6 First-Order Results

To first order in g the above ansatz (3.34) implies that F'(xy, x4, T) reads

F(l)(xb, o, 7) = l44g {C’él)(:ra, T) + Cfl)(.fra, T)xp + C’él)(.fra, T) xz

+ O (aa, ) 3} + O w0y 7)1} (3.36)

Inserting this into the partial differential equation (3.30) we get five recursive ordinary dif-
ferential equations for the first-order coefficients C)) (4, 7) (m = 0, ..., 4):

760&1;(;6“ ) + 4w cothwr O3 (z,,7) = —% : (3.37)
% + 3w coth wr C’:,El) (T4, 7) = Siu;lx;T C’il) (T4, T), (3.38)
78051;(;6“’ ™) + 2w coth wTC’ (xa, T) = 6n C’ ( ,T) + % ngl)(%, T), (3.39)
780%1)6(;6“’ 7) + wcoth wTC’ (xa, T) = 3h C’ ( ,T) + si2r:1xujT Cél)(%, T), (3.40)

% _ ﬂ ) (20, 7) + Si:}TZT CD(za,r).  (3.41)

These equations are easy to solve by finding solutions to both the homogeneous set of equa-
tions and the inhomogeneous ones. We can give these equations an easier shape by making
the following transformation:

(1)
cm’ (Tq, T)
C(l)(xa’T) = Sinh™wr

, (3.42)



3.6 First-Order Results 31

where m runs from 0 to 4. Thus the five equations (3.37)—(3.41) become

780‘(11)8(?’7) = —%sinh4w7', (3.43)
80&1)&5?’7) B siﬁf‘ZT e (24, 7), (3.44)
O o) Bt iy O 0, ) (3.45)
00 o) 2ot i I, ), (3.46)
D () _ S iy (g, ) (3.47)

These new equations can easily be solved by direct integration. First we get from (3.43)

1
A (20, 7) = - /dT sinh* wr + d{" | (3.48)

where dfll) denotes the integration constant as the integral chooses any stem function. Eval-

uating the integral and dividing by sinh! w7 according to equation (3.42) we find

1

otV o, T) = ————F—
i ) hw sinh® wr

1
{ —— sinh® wr cosh wr
3 . 3 (1)
+§ sinh w7 cosh wr — 3T + hwdy’ ¢ . (3.49)

Investigating the behaviour of this coefficient for 7 — 0 we see that the constraint (3.35)
fixes the integration constant dil) to zero, so we obtain

1

hw sinh® wr

1 1 3
Cil)(xa, 7) {—3—2 sinh 4wt + 1 sinh 2wT — ng} . (3.50)

Integrating the second differential equation (3.44) we get

)
(20, 7) = 4wxa/d7764, (1;’7-) +dY

sinh” wr
A, L. 3 3
= ; /dT{—ZsmthcosthnLgcotth—gﬁ} —i—dél)
Tq 1. 3 1
= = {—5 sinh? wr + QwT COtth} + dg ). (3.51)

Dividing by sinh® w7 we derive from (3.42):

Lq

O (4, 7)

1 3 hwd "
{—5 sinh2w7'+§wrcothw7'+ s } : (3.52)

hw sinh® wr Zq
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Taking the limit 7 — 0 we see that the constraint (3.35) leads to

3x
d(l) — _va .
0= (3.53)

otherwise C{" (x,,7) would diverge for 7 — 0. Thus from (3.52) and from (3.53) we obtain:

) P 9 . 3
M (20, 7) v {_§ sinh 3wT — 3 sinh wr + 29T cosh wT} : (3.54)

fiw sinh® wr

The same procedure is now applied to determine cgl)(xa, 7) and C’él)(xa, 7), respectively. Tt

is a straightforward calculation which yields

1 3 27 9
C’él) (xg,7) = Vo en® or {—1—6 sinh 3wt — 16 sinh wr + ikl cosh wT}
x? 9 . 3 3
+ PR {§ sinh 2wt — QUT = T cosh 2w7’} : (3.55)

Correspondingly, the coefficient Cfl)(xa, 7) reads

a 9 . 3
Cfl)(xa, T) = m {Z sinh 2w7T — 3wT — 5&)7’ cosh ZwT}
; 1 9 3
'1’7(14 {—— sinh 3w — = sinh wT + —w7 cosh LUT} ) (3.56)
hw sinh™ wr 8 8 2

Finally we determine the last coefficient Cél)(:ca, T) to be

h 9 3 3
C[gl)(fa, T) = V2o s or {1_6 sinh 2wt — 9T ng cosh 2wr}

Mw?sinh® wr 16 16

: L i dwr + © sinh 27 — o (3.57)
— ¢ { ——sinh4wr 4+ —sinh 2wr — —wT ;. )
Fiwsinh? wr 32 4 8

2 2
a {—3 sinh 3wt — Ll sinh wt + %wr cosh wT}

X

After having evaluated the integrals, we insert them into (3.36) and obtain a first-order
perturbation expansion for the imaginary-time evolution amplitude (3.29). The result is seen
to fully coincide with the earlier result (3.24) obtained from evaluating Feynman diagrams
in the case that 7 = hf.

3.7 Higher Orders

We now change our ansatz (3.34) for F(xy,x,,7) slightly by introducing a third expansion
in powers of x,. Thus the expressions for the coefficients become smaller. Also we take out



3.7 Higher Orders 33

the factor sinh~' w7 right from the beginning such that the ordinary differential equations
for the expansion coefficients are simplified:

oo 2n
S (1)
n 2kll 2k 1.1
F(zp, o, T 5 5 g T xy, . (3.58)
n=0 k=0 =0 Sin WT

In order to obtain the unperturbed result F(x;, z,,7) = 1 for ¢ = 0 we then need CSB(T) = 1.
The superscript n in equation (3.58) still denotes the perturbative order, whereas 2k counts
the (even) powers of the various products z’x] and [ can be identified with the index m in
(3.34). Due to the time reversal behaviour (2.33), the coefficients Cg]z)”(T) show a symmetry,
namely:

(n) (n)

CQZU(T) _ 02712|2k—l(7—) (3.59)
sinh' wr  sinh®* ' wr '

Inserting the new ansatz (3.58) into the Schrodinger equation (3.30) we obtain:

oo 2n 2k ac(") T 2%—1 1
Z Z —wl coth chgi)‘l(T) + 217) i lxb (3.60)
S or sinh” wr

B (Tii)\z( ) & e k\l 7)
I(1 g" “ 2251217 + weothwr lg"— w2kl
AEER 0o B o S D B
She g" CQkIl 7) a2kl = St gt CQk)\l( ) 2kl 4
s1nth;§;l s1nhlw7' T 2%; sinh wr o m =0,

Note that the two terms containing coth w7 cancel due to our choice of the cgk“( ). Arranging

the indices in such a way that each term is proportional to x2*~'a! we get for the different

powers of g and for n > 0:

omn ac k” 2n—1 2k—2 k) 521407 (7)
2 Cok+2)i+2 2kl
(1+2)(1+1) e
kz Z smhl wr O  2M k;1 1_2—2 sinh o g b
on 2k—1 ( )‘ ( ) 2n 2k+4 . ‘ )
C2ki+1 phlgl 4 2k 41 AT ok 2!
—w (1 +1) Tq L 3.61
%l_z—l smhl” h kZQ lz4 sinh—*wr ( )

Thus the sums over k£ and over [ collapse and we determine the master equation for our
coefficients cg,i)‘l(T):

Dely)(7) B () Sl (7)
3‘7' = (+2)0+1) 2M sinlr|12 wT + (I D sin‘h2 wT
- lc(n_l) () sinh® wr, (3.62)

7, 2k—a]i-4
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which is solved by

(n) (n)
(n) h Copsali2(T) / Copji (T)
c = ([+2)(l+1 /d +(+V)w [ dr———
Qk”(T) ( ) ) 2M ! sinh? wr ( ) ! sinh® wr
1 n— . n
—% / dTCék_i)‘l_4(T) sinh® wr + dgk)” : (3.63)
Here the dg/i)\z denote the integration constants which are fixed by applying the initial condi-
tion
(n)
Cop (T
lim ‘2’”1( ) <00, (3.64)
™0 |sinh" wr

However the above master equation (3.63) is not valid for all £ and . Therefore we now
introduce a set of empirical rules telling us which of the coefficients C;?H(T) have to be
dropped once we write down (3.63) for any order n:

(i) Drop all terms containing a cé’,z)‘l(T) where 2k > 4n.

(ii) Drop all terms containing a Cgi)‘l(T) with [ > 2k.

(n)

or(7) with any negative indices k and I.

(iii) Neglect all terms containing a ¢

To convince the reader that equation (3.63) together with this procedure leads to the correct
results we now reobtain our first-order results from Section 3.6. To that end we set n = 1,
such that k£ runs from 0 to 2 and [ from 0 to 4. Fixing £ = 2 and counting down from [ = 4
to [ =0 we get

cﬁi(T) = —% / dTC(()T[)](T) sinh? wr + dfla , (3.65)
CEJ;(T) = 4w/d7§ﬂ%% + df&;, (3.66)
CEJ;(T) = 3w/d7'sicfi%% + dﬁ;, (3.67)
CS% (1) = 2w / dTﬁ% + dfﬁ : (3.68)

)
Cyi (T)
) = w / dr——— +dif). (3.69)

sinh” wr
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Correspondingly, for £ = 1 we obtain

p(r) = % dTSiE% dyy (3.70)

ch(T) = % deiCrEi%% +2w/dTSiCI%E£7(—7)_) +dgH, (3.71)

c%(r) = %/drﬁ% +w/deiCIélll;1§7(—7)-) +d%. (3.72)
Finally for £ = 0 we get the equation

A = 17 [ d Sj‘;;; . (3.73)

Performing the integrations in equations (3.65)—(3.73) and taking into account the initial
condition (3.64), we get exactly the same result as in Section 3.6. The path of recursion
which follows from this procedure is shown in Figure 3.1.

3.8 Exploiting the Symmetries — First-Order Results

As seen above we already have to solve nine ordinary differential equations for the first-order
imaginary-time evolution amplitude. For any order n the number p of integrals to solve is

2n+1
p=)Y (2j—1)=4n*+4n+1. (3.74)

j=1

Exploiting the symmetry (3.59) we can cut down that number considerably. At first sight it
is reduced to

2n+1
p=)Y_j=2n"+3n+1, (3.75)

j=1

so there are only six integrals left for the first order. But we can go even further. Employing
these symmetries we can eventually change almost all recursive differential equations into
purely algebraic ones leaving only (2n+ 1) integrations. So for the first order we are left with

three integrations only, namely with equations (3.65), (3.70), and (3.73). These coefficients

CSZ(T), C;B(T), and CEJB(T) are integrated recursively. The other coefficients can then be

obtained algebraically: Once we have CSZ(T) we also know CS())(T) because of the symmetry

(3.59). Comparing equation (3.62) for k¥ = 2,1 = 4 and &k = 2,1l = 0 we then obtain

an algebraic equation for CELH (7). The knowledge of cfﬁ (1) gives us CEJ;(T) because of the
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2k
4 o o O @
2 o O
0

0 1 2 3 4 I

Figure 3.1: This diagram depicts the path of recursion for n = 1. We start
in the top right hand side corner, which is to be identified with the coefficient

cfll‘i and follow the arrows until reaching the bottom left hand side corner c(()l‘[)).

symmetry (3.59) and by comparing (3.62) this time for £ = 2,1 = 3 on the one hand and

k = 2,1 =1 on the other hand we are left with an algebraic equation for CS;(T). Thus we

get all the coefficients for £k = 2 only by solving one differential equation, namely the one

for cia(r). For k = 1 the procedure is similar, k¥ = 0 only generates one coefficient anyway,

namely c(%(r), which still has to be solved by evaluating one integral. The new path of

recursion is shown in Figure 3.2.
So finally three out of the nine first-order coefficients are obtained by integration, three more
are clear for symmetry reasons and three come from an algebraic recursion.

3.9 Preparing the Algebraic Recursion Relation

We now generalize the algebraic part of our recursion. Consider again the symmetry property
(3.59). Differentiation on both sides yields

acg,i)”(T) _ 1 80&2)\21@—1(7) — 9k — I)wcosh wr Cgli)pk—l(T)
or sinh?~2 ur or sinhZ* =2+t

(3.76)
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2k

0 o
0 1 2 3 4 |

Figure 3.2: This diagram shows which of the first-order coefficients cgi)‘ (1)
have to be integrated (bold) and which ones can be obtained by employing

symmetry and algebraic recursions (light).

Now we substitute for the two partial derivatives according to equation (3.62) which yields

(n) (n)
h Copyoi42(7) Copua(T) 1 (n—1) -
(I+2)(1+1) M sol® o +(+1) Zor ﬁc%_4|l_4(7') sinh” wr
1 h C2k+2|2kfl+2(7-) 02k|2k71+1(7)
- @k —i+2)@k—i+1 b (2 — 1 M2
sinh® 2 o7 [( A ) 2M  sinh®wr ( Jo sinh? wr

I o) - ok 1 . cé’,ﬁ%_l(r) -
_ﬁc2k74|2k—l—4(7—) sinh® wr | — 2(k — l)w cos Uﬂ'm . (3.77)

Solving for the (I + 1)-st coefficient and shifting the index [ down by one we obtain

(n—1)
(n) _ I+ 1) CQk—4u_5(7) .16
(2 — 1+ 3)(2k — 1+ 2)h Cophapn103(T) 2k — 142 Coplog_14o(7)
2Mwl sinh*~2+2 - [ sinh2—2+2 -
n—1 n

1 Cgk—4)|2k—l—3(7—) _ (2k =20 +2) coshwr cék}%_m(r) (3.78)

- . _o]_ . — )
hiwl sinh? =24 1 [ sinh? =241 7
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which is the algebraic recursion relation for any non-diagonal coefficient cé’,z)‘l(T) with0 <1 < k.!

(n)

2,C‘%(T) still have to be integrated.

The diagonal coefficients ¢

3.10 Combined Differential and Algebraic Recursion

We now combine the differential recursion with the algebraic one. As only the diagonal
coefficients have to be evaluated by integrating the differential recursive equation, we can
even further simplify our master equation (3.63). We only need it for the diagonal coefficients,

for which [ + 1 = 2k + 1 is always greater than 2k. And according to our index rule (ii),

(n)

coefficients of the shape Cok|2k+1

have to be neglected. We get

(n)
C T
(1) = (2k+2)(2k+1) 2?4 / dr 2erzk+2(7)

2|2k sinh? wr
1 n—1 . n
~% / ch;k%)‘%%(T) sinh* wr + dgk)|2k . (3.79)

Index rules (i) and (iii) still have to be applied, k runs from 0 to 2n.

Let us quickly summarize the combined differential and algebraic recursion relation con-
sidering the first order as an example. Figure 3.2 shows all first-order coefficients for the
imaginary time evolution amplitude. Each coefficient is represented by a little circle. Now
the coefficients on the diagonal line 2k = [ have to be obtained by referring to equation
(3.79) together with rules (i) and (iii). These two rules tell us which of the coefficients either
from the the same order n or from the previous order n — 1 have to be integrated and which
ones can be put to zero.

Once we have the diagonal coefficients Cg]z)pk(T) we can calculate the off-diagonal ones with
[ < k with the help of equation (3.78). The coefficients with &k < [ < 2k are then clear for
symmetry reasons.

3.11 A Maple Programme

We now introduce a Maple programme? which analytically solves equation (3.79) for the
initial condition (3.64), obeying the index rules from Section 3.7 and employing the symmetry
(3.59). Thus we minimize the operating expense and obtain most of the coefficients by pure
algebraic transformations, namely

2n+1
Pag = Y _(2j —1) = (2n+1) = 4n” + 2n. (3.80)

Jj=1

'The coefficients with k < | < 2k are then clear for symmetry reasons.
2We used Maple V R5 (© and also release R7.
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The number of coefficients which still has to be integrated is
pair = 2n + 1, (3.81)

where of course p,; + pair = p is the total number of coefficients given by (3.74).

We first approach the diagonal coefficients, i.e. the ones which have to be integrated iter-
atively. The main problem here is the representation of the results, the integration itself is
easy, as well as fixing the integration constants.

The algebraically obtained coefficients then have to be seamlessly embedded into this pro-
gramme as the algebraic recursion also refers to the values of some of the diagonal coefficients.
Again the representation of the results is subtle.

The expansion coefficients up to seventh order can be found at [51]. As we aimed at the
most general recursion relation for the anharmonic oscillator, a recursion relation for its
imaginary-time evolution amplitude, the expressions in [51] became very large. For further
applications as e.g. for the evaluation of the free energy, some standard Maple commands
like the “series”-command sometimes failed. Therefore we had to write our own versions of
this command, relying only on the most basic Maple scripts.
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Chapter 4

Variational Perturbation Theory for
the Free Energy

In this chapter we obtain perturbative results for the partition function by integrating the
diagonal elements of our perturbative expression for the imaginary-time evolution amplitude
from the previous chapter. From the partition function we then compute the free energy
perturbatively. Then we apply variational perturbation theory to this quantity up to the
fifth order which is three orders more than what has been achieved in previous work [18].
By doing so we study in detail the convergence behaviour of the variational resummation.

4.1 Partition Function and Free Energy Revisited

As discussed in Chapter 2 the partition function can be obtained from the imaginary-time
evolution amplitude as follows:

7 = /_+00 dx(z hf|x0). (4.1)

o0

So we just have to substitute x = x, = z} into the perturbation expansion for (z; 73|z, 0)
as obtained with the help of a computer algebra program, introduced in Chapter 3. Then
we integrate over x. As the free energy reads

1

F = 3 log Z | (4.2)

we then have to expand the logarithm in order to obtain a perturbation expansion for the
free energy F'. The Taylor series for the logarithm is

1 1 1
log(l14+2) =2 — §x2 + gx?’ - Z:LA + ... (4.3)
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For the first order we insert (3.24) together with (3.8) into (4.1) and evaluate the integral.
By taking the logarithm we get with (4.2) and with (4.3) for the free energy to first order

1 h 3gh* h
FO(3) = Blonginh g“’ +7 ;\jz > coth? % (4.4)
w

For the second order we follow the same procedure, taking into account the higher-order
results from [51] for the coefficients Cg;)“(T) and plugging them into the ansatz (3.58). We
obtain
hpw 3gh? hpw
2 * 4AM?w? 2
g*h*  54hPBw + 36k Lw cosh fiBw + 60 sinh Afw + 21 sinh 2h6w
~64M 1w sinh’ 12 '

1
FP(p) = 3 log 2 sinh

(4.5)

The higher orders are omitted for the sake of keeping the type face clear.

4.2 A Diagrammatical Check

It is possible to check the perturbative results for the partition function and the free energy
for all temperatures. Namely, we can expand Z in terms of harmonic expectations in a
similar way as for the imaginary-time evolution amplitude in (3.3). To that end we need the
generating functional

2] = [ dswhple0)i (4.6)

oo

which we get from (3.7)-(3.10). It is of the form

1B 3
20 = Z0lexs |5 [ an [ dnG® i mirite)| (47)

where the harmonic partition function reads

1
- - 4.8
2 sinh M% (48)
and
h  cosh (hﬁ — |1 — nlw)
G® = 2 4.9
(71, 72) M <inh hﬁ“’ (4.9)

denotes the periodic Green’s function of the harmonic oscillator. The different properties of
the periodic Green’s function (4.9) and the Dirichlet-Green’s function (3.10) are discussed
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in detail in Ref. [49]. We now obtain the partition function Z of the anharmonic oscillator
from the generating functional Z[j(7)] by differentiating with respect to the current j(7)
while setting j(7) = 0 afterwards:

1 ("8 ne 1°
7 =ex ——/ dr [ - ] ARIGE 4.10
A 91550 ()] ) (4.10)
7=0
Thus we get
39 " o
J = 0] 1— % dTlG (7'1,7'1) (4:].].)
e Y] %] ,
+ — dTl/ d |:9G (Tl,Tl)G(p) (7'2,7'2)
2h* 0 0

2

+ 7269 (11, )G (71, 1) G (13, 72) + 24G(p)4(71,7-2)] + } .

In terms of Feynman diagrams this reads
7 = Ao+ 2 OO+ 2 (s CO OO

+72 (X X) +24 @)Jr]
= exp[ O +— XD +2h2 <72 (X X)) +24 @>+] (4.12)

where we have introduced the symbol

1
3 () =logz[0]. (4.13)
Once we rewrite the partition function Z in the form of the cumulant expansion as on the
right hand side of equation (4.12), the disconnected Feynman diagrams disappear [2]. Now
we can easily take the logarithm. Following (4.2) we obtain for the free energy

101

F=-50 O+ 39 OO +2h2 (72 (X)) +2 @)Jr] (4.14)

The above Feynman diagrams are of course constructed with the help of the same rules as
for the imaginary-time evolution amplitude (3.16), (3.17), and (3.18), but instead of the
Dirichlet’s Green’s function (3.10) we have to use the periodic Green’s function (4.9). We
now want to evaluate the four diagrams in (4.14) so that we get a second-order expression
for the free energy for finite temperatures. According to (4.8) and (4.13) we get for the
zeroth-order contribution

1

1
=log | —————| , 4.15
2 O & [2 sinhh’%] ( )
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whereas the first-order diagram becomes

n3p 5 hfw

The integration in (4.16) is trivial, because G®)(r,7) does not depend on 7 any more ac-
cording to (4.9). For the second order the integrations become more sophisticated:

hB hi )
000 = [ [ 4, m)6 ()6 )
0 0

h’ B coth? 252 ,
= oMior sinh;h’ﬂ (hpw + sinh iifw) . (4.17)
2

The other contribution to the second order yields

hi hi
@ = / dT1 / d7—2 p 7'1, Tg)

= sinh 2A 68w + 8 sinh hBw + 6AGw 4.18
256M4w5 s1nh4 % ( b b Bu). ( )

So all in all we get for the free energy (4.14) up to second order in the coupling constant g
the result (4.5). It shows the correct low temperature behaviour

_ fiw  3gh? 21¢°h*
2 _
ﬂlggo FOB) = > T hrer 8M4w5’ (4.19)

which can be found for instance in [2].

4.3 Variational Perturbation Theory

Variational perturbation theory! is a method that enables us to resum divergent perturbation
series in such a way that they converge even in the case that the perturbation couples
infinitely strong. To this end we add and subtract a trial harmonic oscillator with trial
frequency €2 to our anharmonic oscillator (3.2):

M M w? — Q2
V(z) = —Q%” + g—wixQ + gzt (4.20)
2 2 g
Now we treat the second term as if it was of the order of the coupling constant g. The result
is obtained most simply by substituting for the frequency w in the original anharmonic
oscillator potential (3.2) according to Kleinert’s square-root trick [2]

w— Q1+ gr, (4.21)

'In Section 4.6 the reader can find the most general description of the substitutions coming along with
variational perturbation theory that eventually lead to the strong-coupling results.
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where

w? —Q?

e (4.22)

ﬁ
Il

These substitutions are not the most general ones. The square root is just a special case for
the anharmonic oscillator. We will discuss its origin at the end of this chapter in Section
4.6.

We now apply the trick (4.21) to our first-order series representation for the free energy F
(4.4). Substituting for the frequency w according to (4.21), expanding for fixed r up to the
first order in ¢ and resubstituting for r according to (4.22) we get

1 1 3gh? B hQ [W? hB0
1 2
2

So the free energy (4.23) now depends on the trial frequency © which is of no physical
relevance. In order to get rid of it, we have to minimize its effect by employing the principle
of least sensitivity [48]. This principle suggests to search for local extrema of F'(3,) with
respect to 2:2

JAICAY)
U0y, (4.24)
For the first order F(")(3,Q) it turns out that there are several extrema for each 5. As we
seek a curve Q(l)(ﬂ) that is as smooth as possible the choice is easy — we take the lowest
branch for the others are not bounded (see Figure 4.1). Moreover the other branches lead
to diverging results.
To second order, we proceed in a similar way and we find that there are no extrema at all for
F®)(3,Q). In accordance with the principle of least sensitivity we look for inflection points
instead, i.e. we look for solutions to the equation

PF?(8,9)

902 =0. (4.25)

In general we try to solve the equation

" FM(3,9)
— 2= 4.26
aQn (4.26)
for the smallest possible n. Plugging Q") (3) into F(M) (3, ), we finally get back a resummed
expression for the physical quantity F'(3). The results for the first three orders are given
in Figure 4.2. In order to check our results we have to compare them to the numerically
evaluated free energy Féﬁg(ﬁ) which is discussed in the upcoming section.

2Actually P. M. Stevenson restricted this principle to minima, of the variational parameter. H. Kleinert
suggested to minimize its influence by taking into account extrema, inflection points, and higher derivatives.
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Figure 4.1: Branch of the variational parameter Q") (3) which we chose. The
coupling strength is ¢ = 1. Other branches not shown in this figure lead to
highly diverging results. Throughout this chapter all results are presented in
natural units h = M = kg = 1 and, additionally, we have set w = 1.

4.4 Checking Our Results

The spectral representation of the partition function reads

Z=> e, (4.27)
n=0

where the F),, are the energy eigenvalues. Let us define the numerical approximants

N
Zih = e (4.28)
n=0
and
vy Ly
num _B OgZ ) (429)

respectively. One possibility to obtain numerical results for the eigenvalues FE, is provided
for by the so called “shooting method”. We integrate the Schrodinger equation numerically
for the potential (3.2) and for a particular value of the coupling strength g. If the energy
E which we plug into the program does not coincide with one of the energy eigenvalues F,,,
the solution to the Schrodinger equation explodes already for relatively small values of the
coordinate x. If the energy eigenvalue is close to the exact answer, we have |¥(z)| < oo also
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Figure 4.2: Free energy of the anharmonic oscillator up to third order for
intermediate coupling g = 1. The black line represents the exact result F,ngn (8),
obtained by approximating the partition function (4.28) with the help of the
first ten energy eigenvalues. The other lines are variational perturbative results:
The blue line shows the first order, the red line shows the second order, and the
navy blue line represents the third order. Note that the second and third order
are hardly distinguishable from the exact results. Higher orders for special
values of the inverse temperature 8 can be found in Figure 4.5.

Ln | En [n]En |
0 | 0.8037701932 || 5 | 14.203064494
27378891484 || 6 | 17.633934116
51792814619 || 7 | 21.236268508
3
9

7.9423804544 24.994705012
10.963538555 28.896941521

=W N

Table 4.1: The first ten energy eigenvalues E,, of the anharmonic oscillator for
intermediate coupling g = 1. They were obtained by numerically integrating
the Schrédinger equation with the initial condition that ¥(0) = 1, ¥/(0) = 0,
and |¥(z)| < oo for large x.

for larger values of x. This method yields the unnormalized eigenfunctions (the wave func-
tions which still have to be normalized) and the energy eigenvalues to very high accuracy.
Renormalization is necessary, for the computer algebra program?® needs an initial value ¥(0)
which we set to one. Plugging the first ten numeric energy eigenvalues into equation (4.28)
and evaluating (4.29) up to N = 9, we obtain a function Fum(3). So let us first check how
fast the numerically obtained free energy Féflvn)l(ﬂ) from (4.29) converges. To that end we set
g = 1 and we plot Féljynl(ﬁ) for N from 0 to 9 in Figure 4.3 on the interval [0,2]. As one

3This time we used Mathematica 3.1 ©.
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Figure 4.3: Convergence of the spectral representation of the partition func-

tion (4.27). This figure shows the approximants of the free energy F,Eﬁvnl(ﬂ)
from (4.29) for the first ten orders. One can see that the low temperature

behaviour is correct even for the roughest approximant Fégzn(/j) (blue line).
All the curves converge to the ground state energy Fy. For high temperatures
more and more energy eigenvalues have to be taken into account to get realistic
results. Alternatively one can compare the results with the classical expressions
(4.31) (see also Figure 4.4). The colour code is: N = 1: blue, N = 2: gray,
N = 3: violet, N = 4: navy, N = 5: olive, N = 6: whine, N = T7: light blue,
N = 8: orange, N = 9: black.

can see Féﬁﬁl(ﬂ) converges rapidly. For low temperatures T, corresponding to high values of
B3, even the roughest approximant Fégzn(ﬂ) reproduces the correct curve. This should not
surprise us as we know that limg . FO(B) = Ey. It turns out that the first ten energy
eigenvalues F, are sufficient. So we can probe our perturbative results by comparison to
Fim ()

For high temperatures we have another cross check for our results. High temperatures cor-
respond to classical statistical distributions such that we can evaluate the partition function

(2.66) according to

= / V()] (4.30)

00 )\th

with the potential (3.2) and Ay, = 1/27h?/MEgT. This integral can be solved according to
[52]:

1 M2 M2yt M2t
ch e w exp u K1/4 u , (431)
2\h 29 32¢ 32¢
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Figure 4.4: Third-order variational perturbative results for the free energy,

F®)(B) (red line). The blue line represents the numerical free energy Fioh (8),
whereas the black line shows the classical free energy. For small values of the
inverse temperature 3 the classical calculations coincide with the other results.
Lower temperatures, corresponding to higher values of 3, reveal differences
between the classical approach (4.31) and quantum statistics.

where Kj/4(2) is a modified Bessel function. The classical partition function (4.31) can
be evaluated for high temperatures which corresponds to small values of 3. Consequently,
when we test our variational perturbative results, we compare values # < 1/4 to the classical
partition function (4.31), whereas we consider the numerical free energy Fégzn(ﬁ) for higher
values of the inverse temperature f3.

In natural units i = M = w = kg = 1 a value of # = 1/4 corresponds to a temperature of
T = 4. In these units the temperature scales like T = 3.16 x 10°K.

4.5 Higher-Order Variational Perturbation Theory

We now evaluate the convergence behaviour for the variational perturbative results for the
free energy F(V)(B) up to the fifth order. However, in order to reduce the computational
operating expense we restrict ourselves to certain values of the inverse temperature 3. Results
are shown in Figure 4.5. For odd variational perturbation orders we optimized the free
energy according to (4.24), i.e. we determined Q by setting the first derivative of F(Y)(5)
with respect to Q (4.24) to zero. For even orders we had to go for inflection points, instead.
So we had to solve equation (4.25). This pattern is repeated in the convergence behaviour
of the free energy. Odd and even orders oscillate about an exponential best fit curve. Thus,
for each value of the inverse temperature (3, we get an interval of convergence which we
check against the numerical results Fimn(3) and against the classical result (4.31) if the
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Figure 4.5: The free energy of the anharmonic oscillator for intermediate
coupling ¢ = 1 for § = 0.1, 8 = 1, and for 8 = 2 up to fifth variational

perturbative order. The values converge exponentially towards the numerical
values Fioh (8). In the case of high temperatures (8 = 0.1) the solid line rep-

resents the classical results (4.31) as a cross check, as the function Fégzn(ﬂ)
becomes rather inaccurate for such high temperatures.

temperature is high enough. For 6 = 0.1, # = 1, and § = 2 the exact results always turn
out to lie within the interval of convergence, as shown in Figure 4.5. Clearly the variational
perturbative results converge exponentially. For § = 0.1 the interval is [—13.49, —13.46]
which contains the exact classical value F(0.1) = —13.511 if we consider the threefold
standard deviation. For § = 1.0 we obtain the interval [0.6572,0.6585] which includes the
numerical result Féﬁfn(m) = 0.6571. And finally for very low temperatures § = 2.0 the
interval reads [0.7928,0.7935] containing Fim(2.0) = 0.79335.

4.6 On the Square-Root Trick

As mentioned at the beginning of this chapter, the square root (4.21) substituted into the
free energy is only a special case for the anharmonic oscillator potential. Here we quickly go
through the general case [2, 8]. Consider the truncated weak-coupling series of some quantity
f as a function of some coupling constant g

() = fag™. (4.32)
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Let us now rewrite this weak-coupling expansion by introducing an auxiliary scaling para-
meter « [8, 38]

fvlg) =3 1 (L) (4.33)

which we later set to one. The generalized square root trick now reads

k= VK2 + k2 — K2=K\/1+gr, (4.34)

where K is a “dummy” scaling parameter generalizing the trial frequency 2 and

r— 5 (;—Z - 1) | (4.35)

Substituting (4.34) into the truncated weak-coupling series (4.33) we obtain

N
(g, K) =) fuKP7M(1+ gr)r02gn. (4.36)

n=0

The factor (1+gr)* (with @ = (p—ngq)/2) can be expanded by means of generalized binomials
according to

=

(1+gr)* = 3 (Z) (g7)*g"

- ]:0 (Z) (% - 1>kg", (4.37)

where we have used (4.35) and finally have set k = 1. The binomial is defined as

a\ _ [(a+1)
<k> T T+ D)D(a+k+1)° (4.38)

s <@

So we read off that the function fy(g, K') can now be written as

(o) =3 [NZ <%(p 5 jq)) (% ) 1)'“ K] fug". (4:39)

n=0 L k=0

To first order this expression reduces to

filg K) = (1= 2) ok + L foR7=2 4 frgicr. (4.40)
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Applying the principle of least sensitivity [48] leaves us with

8f1(g,K)
0K

p(p —2)
2

~p (1 _ g) fo+ K2+ (p—q)figk 1 =0. (4.41)

Making the strong-coupling ansatz
KW (g) = g% (ko + kag 27+ ...) , (4.42)

we obtain the following equation from (4.41):

p(1-2) ot P22 00 0 1 (o ) gl k)0 = 0. (4.43)

The second term is a subleading contribution in the limit as the coupling g goes to infinity
which we can neglect. Solving for k(()l) we get

m_ (251 p—q Ha

Assuming that the ansatz (4.42) for the variational parameter K(g) also holds for higher
orders we obtain from the function fy(g, K) in (4.39)

b

folo) = o 1066 + 66 (L) T (4.49

K4

where the leading strong-coupling coefficient b(()N)(k(()N)) is given by

N N-n ,q .
7P —q “n
0060 =305 ()t (1.46)
n=0 k=0
The inner sum can be further simplified according to [52], yielding

kzi:(—nk <Z> — (—1)m (”n_l 1) . (4.47)

0

Thus the strong-coupling coefficient (4.46) reduces to

00 = e (BT (449

n=0

So looking at equation (4.45) we see that the fraction p/q tells us the leading power behaviour
in g and 2/q indicates the approach to scaling.
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4.7 Scaling Behaviour

For the ground state energy of the anharmonic oscillator we can derive the values of p and ¢
from the scaling behaviour of its ground state wave function. Consider the time-independent
real Schrédinger equation for the ground state wave function of the anharmonic oscillator

(3.2):

—— =+ —wr’ + 9$4> Uo(x) = EVo(z). (4.49)

r=ar, (4.50)

such that the new derivative reads

0 10

—=—— 4.51

or «aodr! (451)
The ground state wave function transforms like

Ui (2') = p(ax'). (4.52)
Thus the transformed time-independent Schrédinger equation reads

oot M : :
<m8x'2 + 7w20¢4x >+ gabx 4) W) (2") = o’ By W (z) . (4.53)

We now impose that the factor in front of the anharmonicity z'* is equal to one, so we obtain
for a

a=g /S, (4.54)
Consequently o? is proportional to ¢g='/3. In order to get the units right, we now need
0
E (g) = 9" (4.55)

The superscript indicates that equation (4.55) only is a zeroth-order approximation. Taking
into account higher order corrections we get for the ground state energy

Eo(g) = 91/3 (60 + 972/361 + 974/362 + ) . (456)
Corresponding considerations for the wave function yield the expansion

Uo(2') = do(a') + g7 P¢u(a") + .., (4.57)



56 Variational Perturbation Theory for the Free Energy

such that the leading power behaviour of the ground state energy is p/q¢ = 1/3 and the
approach to scaling is 2/¢g = 2/3 which lies well in the range

1 2
e | 4.58
2<q< ’ (4.58)

for which the convergence proof in Ref. [8] holds. So all in all for the anharmonic oscillator
we have

p=1, ¢q=3. (4.59)

The differential equation for the zeroth-order expansion coefficient of the ground state wave
function (4.57) reads

h /
—W%,(x,) +a ¢ (2') = eoo(a’) . (4.60)

The derivation of the numbers p and ¢ was originally invented for the ground state energy
[2, 27]. In this chapter we studied the free energy. As the low-temperature limit of the free
energy is just the ground state energy, we can assume that the numbers p and ¢ can be
extended to our finite temperature calculation.



Chapter 5

Variational Perturbation Theory for
Ground State Wave Function

In this chapter we improve the first-order variational calculations for the ground state wave
function carried out by T. Hatsuda, T. Tanaka, and T. Kunihiro [41] and our second-order
results [40]. First we use our perturbative results for the imaginary-time evolution amplitude
to drive the perturbation expression for the ground state wave function up to seventh order,
so that we reobtain results from the original Bender-Wu recursion [1]. Then we apply
variational perturbation theory up to this order and we study the asymptotic behaviour of
the ground state wave function in order to investigate the convergence of our variational
results.

5.1 Perturbative Results

As discussed before in Section 2.5 the density matrix is defined as

play, ) = D00 D) (5.1

and the ground state wave function follows from the low temperature limit of its diagonal
elements:

Wo(z) =,/ lim p(, 7). (5.2)

Evaluating the ansatz (3.29) for the first-order result (3.24) together with the harmonic
imaginary-time evolution amplitude (3.8), we get the diagonal elements of the imaginary-
time evolution amplitude (3.29) in the low temperature limit

, , Muw Muw hifw g ( 9n?
1 — iiad ez A N
imanae0f® = fim S (-8 10) 1= (G

3n°3 3, 1,
T M oMot Tt )| (5.3)
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The trace of this first-order expression yields the partition function in the low temperature
limit [40]

+oo hfBw  3gh*p
. 1 _ . 1 _ .
[}LrgoZ()_/_m dxﬁlgr;o(xﬁﬂ|0x)()_ﬁlgr;oexp <— 5 1 2w2> . (5.4)

So the diagonal elements of the density matrix (5.1) up to first order read

Mw Mw g 9h? 3h 1
. (1) N MW 9 _ 2+ 4
ﬂhm P (z,x) = exp ( T ) {1 (8 235 5T 5 T )] . (5.5)

Now the ground state wave function can easily be computed according to (5.2). We obtain

Mw\ Mw
\Ijgl) (l‘) = (ﬁ) exp <—ﬁl’2>

q 9h? 3h 1,
X {1 -3 (— 6020 + 4Mw2x + o : (5.6)

To first order this leads to the cumulant expansion

Mo\ Mw g 9h? 3h 1
g — 24 7 — 2 gt . 5.7
0’ (@) < hm ) P [ on N h <16M2w3 M2t T At (5.7)

The higher orders can be obtained in the same way: From the seventh-order imaginary-time
evolution amplitude [51] we get the partition function up to seventh order following definition
(2.35). Then we compute the density matrix according to (5.1), take the low-temperature
limit and the square-root, yielding a perturbation expression for the seventh-order ground
state wave function which is then transformed into the cumulant expansion:

Mo\ Mw g 9h? 3h 1
gl" Y (e o \w 5 9 . 2 L4
0’ (@) < i ) exp [ o Th (16M2w3 M’ T

L9 205h* 218° N 112, N ho
- T T T
72\ G | 8w 16 M 2w* 12M w3
g> [ 8049A° 333n° , 45, TR S
+-3 — x° — xr - T —
B \ 256 M6w? 16 M°ws 8M*w7 8M3wb 16 M2w°
g* 849887h° 30885h7 ,  8669R°
+3 sz T Tt T g 107
R\ 2048 M3w 128 M 7w 128 MSw
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N 1159A° o 163h* o R x10>
96 M5w? 128 M4w8 16 M3w7
g° [ 68941527h'  916731%° ,  33171A°
w (10240M10w15 T 956MOwit T 320w

6453h" ,  823h° 319° |, 7h' 12)

T3MTw2" T 32MSwT T T 160MPw" T 96MAwd
g% [ 3156181949A'*  65518401A" ,  19425763h'° ,  752825R°
+—=5 | — + x°+ r + T
h 24576 M 1218~ 1024 M 1wl7 1024 M 10416 192 M9w15
+143783h8 o 3481h7 210 4 1255h° 2y 3n° L4
256 M 8w 64M7w!3 384 M 612 32 M5!
g’ (12874215367117’114 27232946731 ,  411277893R"*

A7\ 458T52M UL 2048M B T 1024M 1201
44413183n'"  3440609h'° ,  190735R° |,
- T — e T

512M 1118 256.M 10,17 128 M9w16
_7317h° 2 247TH S 33h° L6
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(5.8)

We now check our results against the well known Bender-Wu results [1].

5.2 Checking Our Results — Bender-Wu Recursion

In 1969, C. Bender and T. Wu developed an algebraic recursion formula for energy eigen-
functions and energy eigenvalues of the anharmonic oscillator [1]. In this section we want to
sketch their method for the ground state wave function.

Consider the stationary Schrédinger equation for the ground state wave function of the
anharmonic oscillator:

The unnormalized solution to the harmonic problem g = 0 reads

Mw .2

Uy(x) =€ 2 * Hy(z), (5.10)
where Hj is the zeroth Hermite polynomial
Hy(x)=1. (5.11)

For the solution to the anharmonic problem (5.9) we choose the ansatz [2]

o0

To(z) =e Y (—g)* D (2) (5.12)

k=0
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and
BEy=Y " g'E. (5.13)
k=0

In order to clarify the type face we now drop the superscripts. Plugging our ansatz (5.12)
and (5.13) into the Schrodinger equation (5.9) we obtain

h2 o0 [’ slNe"e) )
—= Y (=) f(z) = DY g (—9)" Ep®i(z) = 0. (5.14)
For the different powers of g we get

hw & i ,
5 (o) - 0y () + hwad) (z) — o7 Ok () = ;(—1)k Ep®p_p (7). (5.15)

We know that the (k' = 0)-term on the right hand side is Ey = hw/2, so we can absorb the
first term on the left hand side into the summation, thereby obtaining

h? Zk /
_ 4 k
hwxq);g(x) =T (I)k_l(fL’) + —2 (I);CI(IL’) + k,_l(—]_) Ek:’q)k—k’ (LL’) s (516)

where @ (z) = 0 for k < 0. For the kth-order contribution to the ground state wave function
(5.12) we can assume the shape of a power series with contributions from even powers only,
for the potential (3.2) is even. Moreover the power series breaks off at 4k. A similar break
off has already been discussed in Section 3.5 for the imaginary-time evolution amplitude.
Thus our ansatz for ®;(z) reads

2k
Oy (z) = A2, (5.17)
p=0

where @, (0) = A;O) is subject to the normalization

/_+00 dz|Wo(z)* = 1. (5.18)

o0

Performing the Gaussian integration to zeroth order we can fix ASO) to

Mw\ Y4
A0 _ ) 1
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Inserting the power series ansatz (5.17) into equation (5.16) we get for the different even
powers of x to first order:

h2
MA?) = ElA(O),
6h2
2hwAP = 2= AW
1hwAP = AD (5.20)

This set of recursive algebraic equations can easily be solved:

1
4@ _ 1,0

! 4hw ’

@ _ 3 )
Al - 4MU}2A0 ’

352
B, = — 21
! AM20? (5.21)

where ASO) is given by (5.19). Again the coefficient ASO) has to be fixed by first-order nor-
malization of the wave function according to (5.18) and leads to

2
9h (0)

O
Ap” = 16M2w3A0

(5.22)
Inserting all the coefficients Ang), p=0,1,2, from (5.21) and (5.22) into equation (5.17) and
then plugging @4 () into the ground state wave function (5.12), we finally reobtain (5.6) by
pulling out the overall factor ASO)

More generally, for any order k, plugging the ansatz (5.17) into the differential equation
(5.16) leads to

2k 2k—2 2 2k
2thpA§€2p)x2p ZAk 1:L,Qz)-l—4 Zp 2 — ) 22P=2
p=1
k 2(k— k'
+Y (-1)¥ By Z ACP) 2 (5.23)
k'=1

Shifting the summation indices in such a way that all terms are proportional to z?”, we can
write down the equations for each (even) power z%:

k

’ ,
2hwpAPP) = AP 4 57720+ 22+ DAZ £ 3 (1P A, (5.24)
k'=1

where A,(fp) = 0 for p < 0 and for p > 2k. This is the Bender-Wu recursion. With the help
of a Maple programme we compared the results for the ground state wave function of our
combined differential and algebraic recursion relation in (5.8) to the Bender-Wu results. Up
to seventh order no deviations could be found.
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5.3 First-Order Variational Results

In this section we apply variational perturbation theory to the ground state wave function.
To that end, as seen in the previous chapter on the free energy, we execute Kleinert’s square
root trick (4.21) together with (4.22) in the cumulant expansion of the ground state wave
function (5.7). Then we expand the result in powers of g for fixed r up to the first order
and finally we resubstitute for r according to (4.22). Thus we obtain an expression for the
ground state wave function which now additionally depends on the trial frequency 2. In the
first order we get

UV (2, Q) = exp[W " (2, Q)] (5.25)

where the cumulant is

1 MQ 1 2 MQ 2
W) = Llog (—) SRS, (1+%> -

1 hr 802 4h

g ( 9’ 3ho, 1,

J - —— ') . 2
5 <16M293 e’ T aa” (5.26)

Analogously to the procedure in Chapter 4 we now eliminate the {2-dependence by applying
the principle of least sensitivity [48]. To that end we look for extrema of the cumulant

Wo(l)(x, Q) with respect to Q. To first order we find that the equation

oWy (z,9)

s =0 (5.27)

has two branches of solutions, separated by a gap in the domain of Q(x) [40, 41]. As suggested
by H. Kleinert, in accordance with the principle of least sensitivity [48], in the gap we search
for inflection points instead [40]:

W (z, Q)

902 =0. (5.28)

Figure 5.1 shows the different branches and our final choice for the variational parameter
Q(z) on the various intervals. Plugging (z) into (5.26), we gain an expression for the ground
state wave function which is at first not normalized. This normalization can be reassured
according to

50(2) — v (z, ) | (5.29)

+00 1 2
[ jueaw)

The results for three different coupling strengths g can be found in Figure 5.2. A comparison
of these variational results to numerical calculations obtained with the “shooting method”
from Section 4.4 shows no visible deviations. Indeed, the standard deviation for intermediate
coupling g = 1/2 is 1.1 x 107°, which is already very small.




5.3 First-Order Variational Results

63

Q(l)(X) 2 [~

0
0.5

Figure 5.1: The variational parameter Q(z) to first order for intermediate
coupling ¢ = 1/2. The branches for z < 0.684 and z > 0.780 (solid line and
dashed line) are solutions to the equation B\Il(()l)(x,Q)/(?Q = 0. For 0.684 <
x < 0.780 there are no real positive solutions to that equation. That is why we
look for inflection points on that interval instead, i.e. we look for real positive
solutions to the equation 62\1161)@, Q)/0Q? = 0. The curve for the inflection
points lies between the two other branches and it neatly fills the gap. So we
choose those branches Q1) (z) which provide us with the smoothest curve on

the entire interval, which is the solid line.

W(x) 4

Figure 5.2: The normalized first-order results for the ground state wave func-
tion ¥y (z) of the anharmonic oscillator for weak coupling (dashed line, g = 0.1),
for intermediate coupling (solid line, g = 1/2), and for strong coupling (dotted

line, g = 50).
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1,0

0,8

0,6

N
Wy (X)
04

0,2

0,0 0,5 1,0 15 2,0
X

Figure 5.3: The first seven orders of the unnormalized ground state wave func-
tion W(N)(z) for strong coupling g = 50. N=1: black, N=2: red, N=3: blue,
N=4: navy, N=5: purple, N=6: olive, N=T7: violet. The curves are hardly dis-
tinguishable. For simplicity the ground state wave function is now normalized
according to ‘I'(()N) (0) =1.

5.4 Higher-Order Variational Results

Order by order we now apply variational perturbation theory to the cumulant expansion (5.8)
of the wave function. As variational perturbation theory especially allows for strong coupling,
we concentrate on the example g = 50 in this section. The first-order ground state wave
function for that coupling strength has already been shown in Figure 5.2. All seventh-order
results are depicted in Figure 5.3. The curves are hardly distinguishable. More interesting
is the collection of the physical branches of the variational parameter Q) (z) for N from
one to seven (see Figure 5.4). In Table 5.1 pointwise convergence of the wave function is
discussed for x = 0.5 and z = 1.0. The orders exponentially converge to the correct limiting
values. However, odd and even order can best be fitted separately (see Figure 5.5). It
turns out that the equation

oW WM ()
o0

has real positive solutions for odd N only. For even values of N we have to go for inflection
points:

o (5.30)

*W WM (z)

oz O (5.31)
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0,0 0,5 1,0 15 2,0

Figure 5.4: The physical branches of the variational parameter Q) (z) for
the first seven orders for the ground state wave function of the anharmonic
oscillator for strong coupling g = 50. N=1: black/squares, N=2: red/dots,
N=3: blue/triangles, N=4: navy/triangles upside down, N=5: purple/hashes,
N=6: olive/triangles left, N=T7: violet/triangles right. For N = 1,3,5,7 the
parameter Q(V)(z) can be obtained from the first derivative (5.30). For even
N =2,4,6 we have to search for inflection points (5.31) instead.

| [2=05 [z=1.0 |

oV (z) || 0.474293 | 0.016468
v (z) | 0.477367 | 0.017073
v (z) | 0.477825 | 0.017050
u{"(z) | 0.477384 | 0.017013
v (z) | 0.477923 | 0.017038
v®(z) | 0.477385 | 0.017002
w0 (z) || 0.477928 | 0.017029
| w5 () [ 0.478128 | 0.016997 |

Table 5.1: Pointwise convergence of the unnormalized ground state wave func-
tion at £ = 0.5 and at x = 1.0 for g = 50. Clearly, the convergence of odd
and even orders of variational perturbation theory are varying (see Figure 5.5).
Fitting odd and even orders separately yields intervals of convergence for the
respective value of z. The best fits are exponentials. Exact results for the
ground state wave function, ¥""™ (z), obtained numerically with the shooting
method (compare Section 4.4), lie within these intervals (see Figure 5.5). The

normalization is done according to \Il[()N) (0) =1 in this example.
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Figure 5.5: Odd and even orders of variational perturbation theory separately
converge to the limiting value. The figures show the best fit curves for all orders.
Fitting separately, however, yields the following intervals of convergence. For
x = 0.5 we get: \Iléoo) (0.5) € [0.47793,0.492]. The upper boundary cannot be
determined more accurately, for we can only consider three points. For x = 1.0
we get: \IIBDO)(LO) € [0.1698,0.1702]. Again the statistical errors prevent us

from a more accurate evaluation of the intervals. However, for both cases the

exact numerical results \Il[()num) (z) lie within the respective intervals.

as in the case of the free energy in Chapter 4. This phenomenon has been observed before
[2], namely for the ground state energy. It is already reflected in the convergence behaviour
of the ground state wave function. As shown in Figure 5.5, odd and even orders can best
be fitted separately. Extrapolation to infinity for both odd and even orders thus yields an
interval of convergence instead of just one limiting value with a purely statistical deviation.
Comparing to numerical results obtained using the “shooting method” (compare Section
4.4), we find that the exact results lie within that interval for all orders.

In the upcoming section we analyze the asymptotic ground state wave function, i.e. the
ground state wave function in the limit as x goes to infinity.

5.5 Asymptotic Limit

We now check whether variational perturbation theory preserves the asymptotic behaviour of
the ground state wave function. The asymptotic behaviour is of special interest as variational
perturbation theory is most likely to converge rather slowly at |x| — oo. In order to find
the asymptotic behaviour of the ground state wave function we have to consider the time-
independent Schrédinger equation (4.49) in the limit || — oo. In this limit the harmonic
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term, proportional to 22, and the energy eigenvalue are negligible, so we obtain

h?
—m\lfg(a:) + g2* Uy (z) =0. (5.32)

In the limit |z| — oo the wave function behaves like
Wo(x) ~exp (=Clz|?)  (Jz] = o0), (5.33)

where C' is some constant depending on the coupling strength g. The absolute value of
the coordinate x reflects the symmetry of the anharmonic oscillator potential (3.2). As the
potential is symmetric, the wave function can either be symmetric or antisymmetric. As we
only consider the ground state wave function, we have to choose the one with the lowest
energy which is the symmetric one. Differentiating the asymptotic wave function (5.33) twice
with respect to the coordinate z and plugging it into the asymptotic Schrodinger equation
(5.32) yields

h?

517 [—Ca(a — 1)z + C?a’2* %] Yo (z) + gz*¥o(2) = 0. (5.34)

In the limit || — oo only the second term in the square brackets survives, so we can neglect
the first one. Comparing the powers of x we see that there is a constraint on the value of «

20 —2=4, (5.35)

which fixes the power a to be @ = 3. With this value for o the time-independent asymptotic
Schrédinger equation (5.32) becomes

<—%02 + g> To(z) =0, (5.36)

so we get for the constant C' in equation (5.33)

9Mg
O == 5.37
972 (5.37)

Thus the strong-coupling asymptotic wave function looks like

2Mg
9h?

Wo(x) ~ exp (— |fv|3> (lz] = o0), (5.38)

which is the same as in Ref. [41].! Now we check which asymptotic behaviour is generated
by variational perturbation theory. According to the principle of least sensitivity [48] we

! Please note that Tanaka et al. use a different definition for the coupling constant, such that the numbers
in the square root look a bit different.
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differentiate Wo(l)(x, Q) from (5.26) with respect to 2 and look for zeros:

o0 T 40 403 4Rk

owiM@ 1 1 M, 27h 3, 1
_— x+g _16M2Q4+2MQ3:U +4h92:1: =0. (5.39)

As the harmonic ground state wave function

o (x) = exp (—%—3%) (5.40)

has to turn into (5.38) in the limit |z| — oo, we assume for {2
Q(z) = Cg'?|x| (5.41)

as an ansatz. Taking into account this ansatz in (5.39), we can drop a lot of terms, as |z|
goes to infinity. We obtain

MxQ_ g x4—Mx2— 1 22
4H 41R0?2 47 45K C'2

=0. (5.42)

All other terms do not contribute, for they vanish in the limit |z| — oco. Solving equation
(5.42) for C' we get

C=M1?, (5.43)

In order to obtain the asymptotic ground state wave function we plug C' back into the
ansatz (5.41). Then we evaluate the cumulant (5.26) for that function for QM (z) in the
limit |x| — oo, which yields

M
Wy (@) = =5 Mg Pl — Mg Paf = —COlaf, (5.44)

where of course the constant C'™) is

1 Mg
M =_,/=Z 4
C 3\ 72 (5.45)

This is a very good first-order approximation for the exact value (5.37), which is

C = 0.471404520... x @ . (5.46)
h?

The higher orders can be found in Table 5.2. The numbers are converging to the correct
limiting value (5.46). However they do not converge algebraically, for Richardson extrapola-
tions [53] oscillate wildly around the correct value. The convergence is exponentially as can
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(N[ ™ |
T |05
2 [ 0.4871392898
3| 0.4791666667
1 ][ 0.4776822078
5 [ 0.4752604167
6 || 0.4749049495
7 [[0.4737955740

| C ] 0.471404520 |

Table 5.2: The coefficients C'"Y) which determine the asymptotic behaviour
of the ground state wave function for strong coupling. The numbers converge
to the correct limiting value C' = /2/9.
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1,
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Figure 5.6: Asymptotic ground state wave function showing exponential con-
vergence. The correct limiting value is in good accordance with the exponential
fitted to the seven numbers from Table 5.2. Fitting odd and even orders sep-
arately we get an interval of convergence: C(*)/C' = [1.00496,1.00505]. This
does not exclude the correct limiting value, for the statistical errors associated
with these extrapolations are still very large.

be seen in Figure 5.6. As in the case of the ground state wave function for g = 50 discussed
in the previous section, odd and even orders scatter a bit around the best fit curve which is
an exponential. Taking into account all the seven orders we get for the ratio of extrapolated
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constant C(®) to the exact value C' = 1/2/9 from (5.37)

/()
——— = 1.005 +0.002, (5.47)
V2/9

where the deviation is purely statistical. Extrapolating odd and even orders separately we
get the interval

/()

NoTE

This seems to exclude the correct limiting value (5.37). However, the statistical errors
associated with the upper and lower boundary of this interval are very large. Going to
higher orders will certainly correct for that, and include the correct result (5.37)

€ [1.00496, 1.00505] . (5.48)



Chapter 6

Boundary-Layer Theory,
Strong-Coupling Series, and
Large-Order Behaviour

In this chapter we report some progress in understanding (albeit not a complete solution to)
a general class of problems in mathematical physics. We consider here the conversion of a
continuum problem into a discrete problem by the insertion of a lattice spacing parameter
a, the perturbative solution of the continuum problem on the lattice, and the subsequent
extremely subtle continuum limit a — 0.

Almost every continuum physics problem is singular as a function of the parameters in the
problem. As a result, only rarely does the perturbation series take the form of a Taylor series
having a nonzero radius of convergence. As an elementary example, consider the algebraic
polynomial equation

erd +2—1=0. (6.1)

This problem is singular in the limit ¢ — 0. In this limit, the degree of the polynomial
changes from three to one and thus two of the roots abruptly disappear. As a consequence,
a perturbative solution to this problem (expressing the roots z(e) as series in powers of ¢)
yields expressions that are more complicated than Taylor series:

v(e) =€ Px_y + mo + €Pay + x5 + €71y + ... (6.2)

would be the real root to the problem (6.1) expressed as a series in e.
A more elaborate example of a singular problem is the time-independent Schrédinger equa-
tion

h?

——V?U(x) + [V(x) — E]¥(x) = 0. (6.3)

2M
In the classical limit A — 0 this differential equation abruptly becomes an algebraic equation,
and thus the general solution no longer contains any arbitrary constants or functions and, as
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a result, it can no longer satisfy the initial conditions. We know that for small A the solution
is not Taylor-like but rather is a singular exponential in WKB form:

U(x) ~ SN (1 0), (6.4)

In the study of quantum field theory, it is well known that infinities appear in the perturb-
ative expansion in powers of the coupling constant. There are two kinds of infinities. The
first kind, which is due to the point-like nature of the interaction, requires the use of renor-
malization. The second kind, which is due to singularities in the complex-coupling-constant
plane, forces the perturbation series to have a zero radius of convergence.

A quantum field theory can be regulated by introducing a lattice spacing. The resulting
discrete theory is completely finite and can be studied numerically by using various kinds
of numerical methods such as Monte Carlo integration. However, the underlying singular
nature of the continuum quantum field theory resurfaces in the continuum limit ¢ — 0.
The introduction of a lattice spacing and the singular nature of the continuum limit was
investigated in a series of papers by Bender et al. [54, 55, 56, 57, 58, 59, 60, 61, 62].

A quantum field theory is just one instance in which discretization regulates and eliminates
the singular nature of the problem. Another example is provided by a boundary-layer prob-
lem, which is a singular perturbation problem, as introducing a lattice spacing converts it
into a regular perturbation problem [63, 64, 65]. A boundary-layer problem is a differential-
equation-boundary-value problem in which the highest derivative of the differential equation
is multiplied by a small parameter e. Consider as an example

ey’ (z) + a(z)y () + b(z)y(z) = c(z), (6.5)
where the boundary conditions on the function y(z) typically have a form such as
y(0)=4, y(1)=B. (6.6)

This boundary-value problem is singular because in the limit ¢ — 0 one of the solutions ab-
ruptly disappears and the limiting solution is not able to satisfy the two boundary conditions
in (6.6). The usual way to solve the boundary-value problem (6.5) — (6.6) is to decompose
the interval 0 < z < 1 into two regions, an outer region, in which the solution varies slowly
as a function of x, and an inner region or boundary-layer region, in which the solution varies
rapidly as a function of x. The boundary-layer region is a narrow region whose thickness is
typically of order € or some power of € [53].

An important example of a boundary-layer problem is the instanton equation

ef'(z) + f(z) = fH2) =0, (6.7)

with the associated boundary conditions
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The exact solution to this instanton problem is

f(z) = tanh ok (6.9)

Note that the solution f(x) varies rapidly at the origin 2z = 0 over a region of thickness e;
this is the boundary-layer region. The solution varies slowly (it is approximately 1) outside
of this region. The outer region consists of those x not near the origin.

A novel way to solve the instanton problem is to discretize it by introducing a lattice. On
the lattice, the differential equation becomes a difference equation that can easily be solved
perturbatively. In the continuum limit, as the lattice spacing vanishes, we then obtain
a strong-coupling expansion that must be evaluated by means of a Padé or a variational
perturbation theory method. To illustrate the approach our objective will be to calculate
the slope of the instanton at z = 0, which from (6.9) has the value

1
=5

We introduce a lattice with lattice spacing a so that the real axis is discretized in steps of
width a. The spatial coordinate reads x, = na, where the function f(z) assumes the value
fn = f(x,). On the lattice the second spatial derivative in (6.7) becomes

f'(0) (6.10)

fn-l—l - 2fn + fn—l ‘

f(z) — o (6.11)
Thus, from the instanton equation (6.7) we obtain the difference equation
€ 3
?(fn+1_2fn+fnfl)+fn_fn:Oa (612)
where the boundary values follow from (6.8):
fo=0, fu=1. (6.13)
The natural expansion parameter in (6.12) is €2/a?, to which we assign the name §:
2
€
6= (6.14)

The singular perturbation problem in the continuum (whose solution f(z) in (6.9) does not
possess a Taylor expansion in powers of €), has become a reqular perturbation problem. That
is, we can now expand the solution f, to the difference equation (6.12) as a Taylor series in
powers of §:

fn = Qnp,0 —+ an,15 —+ an1252 + ... (615)
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We impose the boundary values (6.13) by requiring that
ap=0 and apo=1(n>1). (6.16)

Inserting the ansatz (6.15) into the difference equation (6.12), we get the recursion relation
[63]

1 Jj—1 1 j—1 j—k
(n,j = 50nt1,j-1 + Q-1 + 3 0n—1,j-1 Z O kn.j—k ~ 3 O JoOn, 1O j——1- (6.17)
k=1 k=1 I=1
For the first derivative at the origin x = 0 this leads to the series
fi—fo . f L I :
! = L A AL Z §7
FO) =l 72 =l =l > o0
J:
1 § 6% 116t
= lm—-|(1—=-+—4+—+...]. 6.18
ali%a( 2+8+128+> (6.18)

We have calculated the coeflicients a, ; with the help of Maple V R7 up to order j = 200. A
complete list of these coefficients can be found on the webpage of the author FW [66]. The
first 20 numbers are given in Table 6.1. Note that the expansion parameter ¢ in (6.18) is
not small but rather tends to infinity in the limit as the lattice spacing a approaches zero.
Using the parameter ¢ defined in (6.14) we rewrite the series (6.18) as

f’(0):1nm\/3<1—g+5—2+£64+ ) (6.19)

€ 600 8 128 7

Taking into account the exact result (6.10), we obtain the identity

1 582 114
= 1-242 4229 L), 6.20
/2 55330‘/‘_5( 5T s T T ) (6.20)

The purpose of this chapter is to examine equations like (6.20). This equation shows that
the singular nature of the instanton problem has resurfaced in the continuum limit § — oo
of the lattice expansion. The expression on the right side of (6.20) should have the value
1/4/2 =0.7071067812.. . ., but it is not at all obvious why this is so, and the objective of this
chapter is to analyze this difficult and subtle limit.

This chapter is organized as follows. In Section 6.1 we use Padé techniques [63] to perform
the limit in (6.20). We will see that while the results are not bad (the accuracy is about
1%), better methods are needed. We perform the Padé analysis to much higher order than
has ever been done before and we discover a new qualitative behaviour that has not yet been
observed. In Section 6.2 we use of the variational perturbation theory techniques introduced
by H. Kleinert to perform the sum in (6.20). These techniques increase the accuracy by a
factor of about 10, but they still do not give the exact result. While variational perturbation
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J ayj J ai,j
1 2887747
1 ) 11 T 262144
1 99392471
2 8 12 4194304
215798295
3 0 13 4194304
11 3781670831
4 128 14 33554432
23 8349041385
5 128 15 33554432
6 295 16 1188129285795
1024 2147483648
7 589 17 | 2659104132201
1024 2147483648
8 39203 18 47890245452569
32768 17179869184
9 | _80723 || 1q | _ 108383753179167
32786 17179869184
10 | 1354949 || 5 | 39433620359113981
262144 274877906944

Table 6.1: The first 20 weak-coupling coefficients a; ; for the instanton prob-
lem (6.16) and (6.17).

theory works very well in summing the strong-coupling series for the ground state energy of
the anharmonic oscillator [2], and for critical exponents of second-order phase transitions [8],
we show that the series in (6.20) is at the very edge of validity for Kleinert’s methods. We
then examine the large-order behaviour of the terms of the sum in (6.20) in Section 6.3. We
show definitively that the Taylor expansion has a nonzero radius of convergence and thus,
on the lattice, the instanton problem is a regular perturbation problem.

In Section 6.4 we turn to a more difficult singular perturbation problem; namely, the Blasius
equation of fluid dynamics. We use the same approach as for the instanton equation. In
Sections 6.5, 6.6, and 6.7 we study the summation of the lattice perturbation expansion
using Padé and variational methods and we examine the large-order behaviour of the lattice
perturbation series. We find that Padé methods give good but not excellent results and
that variational perturbation theory is better than Padé. Again, the series that we need
to evaluate in the continuum limit lies at the very edge of validity for Kleinert’s methods.
We also find that, unlike the lattice perturbation expansion coefficients for the instanton
problem, the sign pattern of the Blasius weak-coupling series does not alternate. Rather, it
is governed by a cosine function with a frequency different from 7.

6.1 Padé Resummation for the Instanton Equation

In this section we examine what happens if we attempt to evaluate the right side of (6.20)
by using Padé techniques. Padé resummation has already been applied to the instanton
problem up to 50th order [63]. However, we have been able to perform the procedures to
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| NV | Sn [ V| Sw |
111 11 | 0.709998411
2 1 0.840896415 || 12 | 0.708235422
3 | 0.781934407 || 13 | 0.706789935
4 1 0.757237797 || 14 | 0.705659505
5 | 0.740759114 || 15 | 0.704734605
6 | 0.731210449 || 16 | 0.704006945
7 1 0.723927185 || 17 | 0.703419862
8 | 0.719045188 || 18 | 0.702964717
9 | 0.715146335 || 19 | 0.702610220
10 | 0.712308458 || 20 | 0.702349024

Table 6.2: The first 20 Padé approximants for the solution to the instanton
problem (6.20).

much higher order. We have discovered that remarkable and unsuspected new phenomena
occur just a few orders beyond what has been computed previously.
The procedure is as follows. Consider the formal Frobenius series

S(@) =oM> " an, (6.21)
n=0

where M is a non-negative number. Raising this series to the power 1/M, inverting the right
hand side and re-expanding, we obtain

)
> byo"
n=0

with new expansion coefficients b,. Assuming we know the first N 4+ 1 terms of the original
power series in (6.21), we raise equation (6.22) to the power N. We then truncate the
summation at n = N, finally getting

Sl/M(5) —

(6.22)

SNM (§) = L, (6.23)

N
Z CgLN)(Sn

n=0

where we have re-expanded and obtained new expansion coefficients C%N). In the limit 6 — oo,

only the Nth term in the denominator survives and we obtain the approximant

SANM = Jim SNM(§) = 1 o1
(Sn) = lim SV (0) = lim = . (6.24)

d—00 §—o0 N Cy
§ :C%N)(Sn

n=0
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Figure 6.1: The real part of the Padé approximants Sy up to 200th order.
Note that the approximants do not converge to the exact solution, which is
represented by the horizontal solid line. The phases where the approximants
become complex are marked by spikes.

~M/N
The approximant Sy = <cg\],v>> is the zeroth-order survivor of the limiting process. Also,

taking into account the first-order correction we observe that, as in the case of variational
perturbation theory (see Section 6.2), there is an approach to scaling. In the limit 6 —
oo the Frobenius series S(d) in equation (6.21) converges to a constant C'. Additionally,
the approach to scaling, following from the Padé resummation (6.24), reveals how fast it
converges:

S@)~C+C'6" (6§ — ). (6.25)

We now apply this procedure to the boundary-layer problem (6.12). (Recall that the weak-
coupling coefficients for the first 20 coefficients a, ; obtained from (6.17) are shown in Table
6.1 and that more can be found in [66].) Resumming the series (6.15) for n =1,

N

fi= Za1,j5j, (6.26)

J=0

according to the Padé procedure (6.24) with M = 1/2 as follows from (6.20) and evaluating

(N>> —MIN

the approximants Sy = (cN , we get the numbers listed in Table 6.2.
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Compared with the numerical solution 1/ V2 7~ 0.7171067812..., this strong-coupling expan-
sion seems to converge quite well. However, when we go to higher orders, we find that the
numbers drop below the exact solution and assume a minimum at N = 24, where the approx-
imant has the value Sy, ~ 0.70198319. The approximants then rise again, cross the exact
solution at N = 41 and become complex at N = 52. The appearance of complex numbers is
a consequence of taking the Nth root in equation (6.24) when the coefficients cs\],v) become
negative. This phenomenon has not been observed before in the course of using this Padé
procedure. The imaginary part then becomes smaller and smaller as NV rises. Abruptly, at
N = 68, the approximants become real again. As one can see from the spikes in Figure 6.1
this pattern is repeated for higher N. Note that the figure only shows the real part of the
Padé approximant Sy.

Apparently, the sequence of approximants Sy does not converge. The singular nature of the
instanton equation has the effect of making the Padé approximants behave like the partial
sums of a divergent (asymptotic) series; at first the partial sums appear to converge to a
limit, and then they veer off. In the case of the Padé’s shown in Figure 6.1 the approximants
approach to within 1% of the correct limit before veering off. It appears that another more
powerful resummation technique is needed to treat the expression in (6.20). In the next
section we apply a technique due to Kleinert.

6.2 Variational Perturbation Theory for the Instanton
Equation

As seen in Chapter 4 where we discussed the free energy of the anharmonic oscillator we
now have to derive the numbers p and ¢ again in order to fix the leading power behaviour
p/q and the approach to scaling 2/q according to [2]:

> a6 (b + 0104 L) (6= o0). (6.27)

§=0

For the instanton equation we do this by re-obtaining the differential equation (6.7) from
the difference equation (6.12). The positive real axis is discretized in steps of width a, so
that we let x,, = na. The power series expansion for the discrete function f, = f(z,) has
the form

st = flan) + F(an)a + % F(@)a? + é £ () + 21—4 P (an)at 4 (6.28)

Thus, the numerator of the second derivative (6.11) becomes

1
Jos1 = 2fn + fno1 = ,’{a2+ﬁf{{”a4+---, (6.29)
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LN [0 | N [0
180 | 0.707530492 || 190 | 0.707471024
181 | 0.707524250 || 191 | 0.707465419
182 | 0.707518076 || 192 | 0.707459872
183 | 0.707511970 || 193 | 0.707454384
184 | 0.707505930 || 194 | 0.707448952
185 | 0.707499955 || 195 | 0.707443575
186 | 0.707494044 || 196 | 0.707438253
187 | 0.707488197 || 197 | 0.707432986
188 | 0.707482412 || 198 | 0.707427771
189 | 0.707476687 || 199 | 0.707422609
Table 6.3: The last 20 variational strong-coupling coefficients béN) from equa-
tion (6.40).
‘ order ‘ value for ng) convergence
1 0.70640049 decreasing
2 0.70639983200 increasing
3 0.706399832082 increasing
4 0.7063998320858658 increasing
5 0.706399832085884411 increasing
6 0.70639983208588446498 | increasing

Table 6.4: Six orders of Richardson extrapolations for the strong-coupling

coefficient b(()N)(ko) up to N = 200 for the instanton problem. The last value is
only 0.099% away from the correct limiting value 1/v/2 = 0.7071067812....

so the zeroth-, first-, and third-order contributions cancel. Translating the lattice result for
fn back to the continuous function f(z,) = f,, the difference equation (6.12) reads

1

e | f"(x) + ﬁf”"(x)a2 + .|+ f@) = fz)=0. (6.30)
Writing out the power series

f(x) = fo(z) + a®fi(z) + a* fo(x) + ..., (6.31)
and comparing even powers of a, we get from equation (6.30) for a°

e fo (#) + folz) — f3(x) =0, (6.32)
which is just the original instanton equation (6.7), whereas for a® we have

1
€1 (w) + filz) (1= 3f5(x)) = —5€ f"(2) - (6.33)



80 Boundary-Layer Theory, Strong-Coupling Series, and Large-Order Behaviour

2,0
< 15}f
s L
=10t
P %
2
o 05}
> oo
g (=]
< o5}

_1,0 1 1 1 1

0 5 10 15 20 25

(N)

Figure 6.2: The function b; (k(()N)) from (6.40) for N = 200 (solid line) and

its second derivative with respect to k(()N) (dotted line). The upper horizontal
line equals 1/v/2, the correct limiting value of the instanton problem. All ex-

trema of b(()N)(kéN)) are far from this value. Only the inflection point on the
right-hand side comes close. The value for k[()N), for which the second derivat-
ive vanishes, is k(()N) = 18.42510. Substituting that number into the function

b(()N)(k[()N)), we obtain 65200) = 0.707417. The corresponding Richardson extra-
polations can be found in Table 6.4.

The boundary values read

fO(O) =0, fU(OO) =1, (634)
and
f1(0) = fi(oc0) =0, (6.35)

respectively. The solution to equation (6.32) with the boundary values (6.34) is of course

fo(z) = tanh % : (6.36)

So, finally from (6.31) we get for the derivative at the origin x = 0:

li _pl 62 ! _ 1 62 li
1(0) = f5(0) + gf1(0)+... = E'Fgfl(O) +... (6.37)
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Comparing equation (6.37) with (6.19), we resum the weak-coupling series in (6.19) as

§ 5 e | 1
- h — 5 /2|~ 3 pl -1
1 5t A +..=90 \/5+e [0 + ... . (6.38)

Also, comparing with (6.27), we conclude that the leading power and the approach to scaling
are given by

P 1 2

p__1 z_q 6.39
.3 . (6.39)
respectively. So we read off p = —1 and ¢ = 2.

We now evaluate the leading strong-coupling coefficient by from (6.27) according to (4.48),

) = 3oy (B0 ) (6.40)

with p = —1 and ¢ = 2. To that end we substitute our 200 weak-coupling coefficients into
the formula using a computer algebra program. Now we are confronted with the following
problem: The principle of least sensitivity cannot be unambiguously applied. Optimizing
with respect to extrema, inflection points, or higher derivatives does yield converging results
for the strong-coupling limit. However, all these strong-coupling series converge to the wrong
values.

There is one very unpleasant case: The second derivative with respect to k((]N) for the largest
k((]N) where this derivative exists (see Figure 6.2) gives a convergent strong-coupling series.
The numbers come extremely close to 1/\/§ as one can see from the 20 numbers in Table 6.3.
The 200th leading strong-coupling coefficient is b(()QOO) = 0.707417.... However, a Richardson
extrapolation [53] based on the first 200 orders then unfortunately shows that variational
perturbation theory produces a value slightly smaller than 1/4/2. The first six orders of
Richardson extrapolations are presented in Table 6.4. Hence, the strong-coupling series ng)
does converge, but it converges to the wrong number, only one part per 1000 away from the
true value:

200
FYPD 2 lim S ay,6" = b = 0.7063998320858845 & 0.0000000000000001 (6.41)

d—00
n=0

compared with f/(0) = 1/v/2 = 0.7071067812... . The deviation is just 0.099%, but 1/v/2
can unfortunately be ruled out.

Given p = —1 and ¢ = 2, the failure of variational perturbation theory is not surprising.
According to Ref. [8] the fraction 2/¢ must lie within the open interval (1/2,1). Otherwise,
one cannot prove that variational perturbation theory converges. Thus, this problem lies
exactly on the boundary of the region in which the summation method is known to work.
We can understand the upper edge of the range of the parameter 2/¢ that describes the
approach to scaling 2/¢ by looking at the standard deviation from the actual limiting value.
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‘ order ‘ value for A ‘ convergence ‘

1 -1.4998 increasing
2 -1.500017 decreasing
3 -1.5000011 decreasing
4 -1.49999874 | increasing
5 -1.5000004 decreasing
6 -1.499999893 | increasing

Table 6.5: Six orders of Richardson extrapolations for the exponent A of the
large-order instanton weak-coupling coefficients, based on the first 200 weak-
coupling coefficients. The value A = —3/2 is quite plausible.

It turns out [8] that the deviation in the limit as the perturbative order N goes to infinity
assumes the shape

b(N) — by

0

S|~ e (-CN'%7) (N — o0), (6.42)
0

where C' is a constant. So, to obtain exponential convergence for the sequence formed by
the b(()N), we need 1 — 2/q > 0. In other words, the approach to scaling 2/¢ is bounded and
it must be smaller than one. The lower edge is more subtle and is discussed in Ref. [8].

In conclusion, we have applied variational perturbation theory to a case that lies at the very
edge of its applicability. We see that variational perturbation theory gives better results by
about a factor of 10 than the Padé approximations examined in Section 6.1. However, we
have not yet found a systematic method for resumming (6.20) that enables us to perform
the continuum limit of the discrete lattice theory up to an arbitrary accuracy. Therefore, we
now lay the foundation for further investigations by analyzing the large-order behaviour of
the instanton series.

6.3 Large-Order Behaviour for the Instanton Equation

It can be seen from the numerical results in [66] that the instanton weak-coupling series is
of Borel type. That is, it exhibits an alternating sign pattern. From the ratio test we can
see that the coefficients a, ; do not grow factorially fast. The large-order behaviour of a, ;
has the general form

nj~ (=1)" VKT B, (j — o0). (6.43)
The constant A, can be obtained by evaluating the limit

l anaJ+2 a/n’j

2
A, = lim M, (6.44)
e JU+2)

(J+1)2
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‘ order ‘ value for K ‘ convergence
1 2.46692 decreasing
2.4668283 increasing
2.46682911 decreasing
2.466829065 | decreasing
2.4668290597 | increasing
2.4668290635 | decreasing

S| O =] W DN

Table 6.6: Six orders of Richardson extrapolations for the inverse radius of
convergence K of the large-order instanton weak-coupling coefficients, based on
the first 200 weak-coupling coefficients under the assumption that A = —3/2.

‘ order ‘ value for B ‘ convergence
1 0.0170837 increasing
0.0170864 increasing
0.017087 increasing
0.0170893 increasing
0.0170908 increasing
0.0170922 increasing

| Y = | W N

Table 6.7: Six orders of Richardson extrapolations for the overall factor B
of the large-order instanton weak-coupling coefficients, based on the first 200
weak-coupling coefficients and under the assumption that K = 2.4482906 and
A = —3/2. The value of By strongly depends on the numerical values for A
and K. Changing K in the sixth decimal place influences the third significant
figure of B;. Also, all the Richardson extrapolations are increasing so, strictly
speaking, we only have a lower boundary for B;. Thus, the accuracy of By
may not be very good.

and the reciprocal of the radius of convergence is

. An
K, = — lim 2t <L> . (6.45)

Also, the overall factor B,, is determined from

(6.46)

Using the 200 weak-coupling coefficients, we find that the exponent A, and the reciprocal
radius of convergence K, are independent of n. The value of Ky, = 2.46682906 coincides
with K; = 2.46682906 for all significant digits. The same is true for A; = —1.500000
and A, = —1.500000. Thus, it appears that we may omit the subscripts n for K, and
A,. In contrast, the data suggests that B, strongly depends on n. B, is the numerical
value associated with the largest uncertainty. In fact, equation (6.46) suggests that small
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‘ order ‘ value for By ‘ convergence ‘
1 0.119069 increasing
0.119083 increasing
0.119093 increasing
0.119054095 | increasing
0.119054125 | increasing
0.119054146 | increasing

S| O =] W DN

Table 6.8: Six orders of Richardson extrapolations for the overall factor B,
of the large-order instanton weak-coupling coefficients based on the first 200
weak-coupling coefficients under the same assumptions as in the case of B; (see
Table 6.7). The value of Bs depends strongly on A and K.

deviations in K and A lead to dramatic changes in the value of B,. Therefore B, = B
cannot be ruled out completely. We calculated A, K, B;, and By up to 200th order with
the help of Maple V R7. We then extrapolated these 200 orders to infinity using Richardson
extrapolation [53]. We obtained

A = —1.500000 % 0.000001,

K = 2.46682906 + 0.0000001 ,

B, = 0.0171+0.0001,

B, = 0.1190 + 0.0001 . (6.47)

Detailed numerical results for the first three Richardson extrapolations for the exponent A,
the inverse radius of convergence K, and the overall factors By, By can be found in Tables
6.5, 6.6, 6.7, and 6.8. The calculation of B; and B, is extremely delicate; changing the
inverse radius of convergence in the sixth decimal place influences the third significant figure
of Bl.

Unfortunately, there is no way to derive these values by applying an asymptotic analysis to
the recursion relation (6.17). The problem is that the double summation in this equation
includes small j, so we cannot let j go to infinity and use the large-order behaviour (6.43).
Substituting the ansatz (6.43) into equation (6.17) and taking the limit leads to contradictory
results. For n =1 we get

j—1

, 1, . 3 .
Ki‘B, = 5(; —1)*By+(j—1)"B, — 5331{2/&(; — k)4
k=1
1 j—1 j—k
—5331(2 S RN -k - D" (6.48)
k=1 =1

Pulling out some factors and letting x = k/j, we obtain for the first summation
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Figure 6.3: One can obtain the inverse ratio of convergence K by apply-
ing methods normally used for critical exponents. Plotting the ratio R, =
a1,n+1/01,n, versus 1/n gives K as the offset of the linear regression and its
slope is the exponent «, according to (6.55).

if and only if A > —1. For A < —1 which is strongly favored by the data we obtain

/0 d [(1 — 2)]* = 2¢ (—A) . (6.50)

The double summation reduces to

]ll)rgloizkAlA< ————) /dx/ dy [zy( l—x—y)]A:%, (6.51)

where y =1/j and A > —1. For A < —1 the result is

/01 dx /01 dy [zy(1 —z — y)]* = 3¢% (—A) . (6.52)

Substituting the results in (6.50) and (6.52) into (6.48) leads to a contradiction: The inverse
radius of convergence then turns out to be

1+ 55
CLH3C(3) B+ 3¢ (3) B

(6.53)
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which would imply that, given By = 0.0171 and By = 0.1190, the value of K would be
K =3.940. (6.54)

This result can be ruled out because of the numerical result (6.47). Also, (6.53) does not
contain the exponent A because all the factors j4 in (6.48) cancel. So A cannot be determined
analytically using this asymptotic analysis.

The inverse radius of convergence K can also be obtained in a different manner from that
usually employed for critical phenomena. According to Ref. [8], the ratio R; = a;41/a;
approaches the inverse radius of convergence as

1 [0
R, =—-K (1 + 3> : (6.55)

where « is some exponent. So, if we plot R, versus 1/n, then the slope of the linear regression
is o and the offset is K, as one can see in Figure 6.3. We get

K = 2.46656 + 0.00001 and « = 3.6598 £ 0.0007 . (6.56)

This value for K differs from the number in (6.47) in the fifth digit. The difference is due
to not taking into account the factor j* as in (6.43) and (6.45).

6.4 Boundary-Layers on the Lattice — Blasius Equa-
tion

The Blasius equation [67] arises in the study of fluid dynamics. It is a special limiting case
of the Navier-Stokes equation and determines the flow of an incompressible fluid across a
semi-infinite flat plate. The Blasius equation reads

2ey" (z) + y(z)y"(z) = 0. (6.57)

Assuming that the tangential velocity y'(z) at the outer limit of the boundary layer is
constant, the boundary conditions read [68]

y(0)=y'(0)=0,  y'(0)=1. (6.58)

Our objective here is to calculate the second derivative y”(0), which represents the stress on
the plate. We discretize the Blasius equation (6.57) by introducing a lattice spacing a:

26(fn+1 - 3fn + 3fn71 - fnf2) + fn(fn+1 - 2fn + fnfl) — 07 (659)

where we define f,, = y(na)/a and 6 = ¢/a*. The boundary conditions (6.58) now read

fo=f1=0,  fui~n (n—o0). (6.60)
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Expanding f, as a series in powers of § as in equation (6.15), we obtain the recursion relation
[63]

2

Un+1j — 20p5 + Gpo1; = 0 (@nt1,j-1 — 3anj—1 +3an_1,-1— An_2,-1)
1

—— Z Oy (an+1,j,k — 2an,j,k + an,l,j,k) . (661)
"=
The boundary values are
ano = n(n>0),
a_10 = 0,
Uon-1j = ang (n20). (6.62)

Equations (6.61) and (6.62) can be solved order by order by using a computer algebra
program. Table 6.9 shows the first 20 weak-coupling coefficients a; ;. All coefficients up to
the 300th order can be found at [69].

6.5 Padé Resummation for the Blasius Equation

We now resum the weak-coupling coefficients using the Padé method (6.24) with M = —1/2.
This value of M will be derived in Section 6.6 in equation (6.69). The exact solution [63]
to the Blasius equation (6.57), obtained numerically up to five digits, is y"(0) = 0.33206.
Unfortunately, the sequence formed by the approximants Sy appears to converge, but not
to the correct value. According to Table 6.10 the sequence becomes very flat and Richardson
extrapolation [53] shows that the Sy approach the wrong limiting value (see Table 6.11). A
third-order Richardson gives S, = 0.3430, based on the first 70 weak-coupling coefficients.
This value is significantly higher than the correct value 3" (0) = 0.33206.

The failure of the Padé resummation is not surprising because the Padé method assumes the
approach to scaling =" according to (6.25). However, in the case of the Blasius equation
the approach to scaling is 6~'/2, as we will see in equation (6.69) in the next section.

6.6 Variational Perturbation Theory for the Blasius
Equation

Variational perturbation theory for the Blasius equation fails to converge to the correct
answer in the same way as for the instanton problem. We determined the leading strong-
coupling term (6.40) up to 300th order and again it was impossible to find extrema, inflection
points, or higher derivatives that yield the correct result. By determining the values of p
and ¢ we show why variational perturbation is likely to fail for this problem.
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J ayj J ai,j
30868632383
1 2 11 5457375
6325029622
2 2 12 637875
3 8 13 _ 487693745019181
3 13408770375
_  4774319527974167
4 6 14 37819608750
5 184 15 430321251088745734
15 2212447111875
6 136 16 796235344548876790517
9 603998061541875
7 11062 17 _2249988054506764174584049
105 6776858250499837500
8 8162 18 _ 178060537619150189817796
225 14237097164915625
9 _ 10557416 19 _13224896152219729667498038639
14175 1301909768346024337500
10 _ 57628622 20 121756993154067534451733120837029
99225 1153217968487557347375000

Table 6.9: The first 20 weak-coupling coefficients for the Blasius recursion
relation (6.61) and (6.62). Observe that the coefficients aq ; are not of Borel
type (they do not alternate in sign). A cosine function with a frequency different
from 7 governs the sign pattern (see Section 6.7).

Consider again the Taylor expansions for f,1; in (6.28) together with the Taylor series for
fon_2 = f(x, — 2a), namely

Foo = F(an) — 2f (@)a + 2f" ()a? — % £ (mn)a® + g £ (za)at £ (6.63)

Inserting these expressions into the difference equation for the Blasius problem (6.59) and
translating back to the continuous function f(x,) = f,, we get

2¢ <f"'(:c)a — %f”"(x)aQ + ) + f(z) <f”(:c)a2 + %f””(x)a‘1 + ) =0. (6.64)

Next we transform back to the function y(z) = af(x) and assume the Taylor series

y(x) = yo(z) + ay1(z) + a®yz(2) + ... (6.65)
To zeroth order in a we obtain

2eyq () + yo(z)yg(z) =0, (6.66)

which is just the Blasius equation (6.57). The small parameter a, which is the lattice spacing,
relates € and § by a = \/€/d. Thus, if we evaluate the Taylor series (6.65) for the second
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BAE" [N ]S
1105 11 | 0.3574632121
2 | 0.4204482076 || 12 | 0.3563326651
3 1 0.3948201830 || 13 | 0.3553848048
4 1 0.3819443732 | 14 | 0.3545795944
5 | 0.3742062309 || 15 | 0.3538882842
6 | 0.3690504811 || 16 | 0.3532891509
7 1 0.3653779673 || 17 | 0.3527655813
8 1 0.3626359060 || 18 | 0.3523046588
9 | 0.3605155915 || 19 | 0.3518961929
10 | 0.3588309707 | 20 | 0.3515320399
Table 6.10: The first 20 Padé approximants for the solution to the Blasius
equation (6.61). The sequence formed by the Sy converges extremely slowly.
| order | value of ”(0) | convergence |
1 0.3445 decreasing
2 0.3436 decreasing
3 0.3430 oscillating
Table 6.11: Three orders of Richardson extrapolations for the Blasius equation
(6.57), based on the first 70 Padé approximants Sy .
derivative at the origin, we see that
0.33206 €
y"(0) = yo(0) + ayy (0) + ... = +4/=y1(0) + ... (6.67)
Ve )
Comparing this series to the original weak-coupling series
" 0 2
y"(0)=1/-(1—20+26"+...), (6.68)
€
we can now determine the leading power p/q and the approach to scaling 2/¢:
1—26+26% + ... = 07/2(0.33206 + 62y} (0) + ...) , (6.69)

so we obtain p = —2 and ¢ = 4.

Again we find that the approach to scaling 2/q = 1/2 lies just on the boundary of the open
interval (1/2,1), for which the proof of convergence [8] holds. This situation here is the
opposite of the instanton case in that it sits at the lower boundary of the open interval in
which variational perturbation theory works. Table 6.12 shows some variational results for
(6.27) in the Blasius case. The numbers were obtained by searching for extrema. Unfortu-
nately they do not aim at the correct limiting value, as one can see from the Richardson
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N o | N 6"

180 | 0.33696017793094 || 190 | 0.33695971119646
181 | 0.33696012777085 || 191 | 0.33695966849139
182 | 0.33696007843082 || 192 | 0.33695962644843
183 | 0.33696002989308 || 193 | 0.33695958505396
184 | 0.33695998214034 || 194 | 0.33695954429471
185 | 0.33695993515575 || 195 | 0.33695950415774
186 | 0.33695988892292 || 196 | 0.33695946463046
187 | 0.33695984342591 || 197 | 0.33695942570058
188 | 0.33695979864918 || 198 | 0.33695938735612
189 | 0.33695975457760 || 199 | 0.33695934958540

Table 6.12: The last 20 variational strong-coupling coefficients béN) for the

Blasius equation. The very last coefficient is b(()QOO) = 0.33695931237713, as
opposed to the correct value 3" (0) = 0.33206.

‘ order ‘ value for b(()N) convergence
1 0.3369518 increasing
2 0.336955563 increasing
3 0.336955600539 increasing
4 0.3369556008803 increasing
5 0.336955600883462 increasing
6 0.33695560088349232 | increasing

Table 6.13: Six orders of Richardson extrapolations for the strong-coupling

coefficient b(()N)(k()) up to N = 200 for the Blasius equation. The last value is
1.5% away from the correct limiting value y"(0) = 33206.

extrapolations in Table 6.13.

Still the accuracy of the variational perturbative calculations is considerably higher than the
one of the Padé resummation. The latter one is 5.9% away from the correct result whereas
variational perturbation theory only deviates by 1.5%.

6.7 Large-Order Behaviour for the Blasius Equation

The Blasius equation exhibits a large-order behaviour which is a more subtle than for the
instanton problem (6.43). As one can see from Table 6.9, the Blasius weak-coupling coef-
ficients are not of Borel type; that is, the sign pattern is not alternating. Rather, the sign
structure is governed by a cosine function with a frequency that is significantly different from
7. Remarkably, it turns out that a pure cosine cos(an) cannot reproduce all signs correctly.
Up to 300th order the sign structure given by cos(an) is broken twice: The signs at n = 62
and at n = 212 are not correct. So we must consider an additional phase shift cos(an + b).
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a b |
13941 | 3.00
13939 | 3.11

7.67830 | 3.031
7.67686 | 3.130

Table 6.14: Examples of the parameters a and b that give the first 300 signs of
the Blasius weak-coupling coefficients correctly, assuming that the sign struc-
ture of the underlying large-order behaviour is of the form cos(an + b). The
last two values for a can be obtained approximately by summing 27 to the first
two values.

The parameter b turns out to be slightly smaller than 7, but it reproduces all 300 signs
correctly.
In order to determine the numerical values of @ and b we define

cos(an+0b) ayp
b) 6.70
(a, Z|Coscm—|—b||aln| (6.70)

The sum ends at N = 300 because this is as high as we can calculate using Maple; we know
the first 300 weak-coupling coefficients a; ; [69]. For the correct values of @ and b the function
f(a, b) must be equal to 300. We then plot the function f(a,b) over the a—b plane and search
for peaks. A careful study of the peaks yields values for a and b which allow the function
f(a,b) to assume its maximum at 300. These numbers are given in Table 6.14.

The large-order behaviour of the Blasius weak-coupling coefficients (unlike the large-order
behaviour of the instanton coefficients) has an additional overall factor cos(an + b), and
we can now see that the remaining structure differs from the structure of the instanton
weak-coupling coefficients. Dividing by the cosine, we observe that the coefficients

! ally.]
= 6.71
“ cos(aj + b) (6.71)

grow factorially fast. Thus, we also divide by j!:

— ay,j
b = —————. 72
77 cos(aj + b)j! (6.72)

The coefficients b; are unstable under a ratio test. That is, the ratio b;1/b; decreases and
then begins to oscillate. This reflects the inaccuracy that results from the delicate sign
pattern of the first 300 coefficients a, ;.






Chapter 7

Discussion

Having gone through the recursive calculation of the imaginary-time evolution amplitude
and through several applications of variational perturbation theory we now want to discuss
a few properties of both of them.

First of all we critically rate our recursion relation from Chapter 3 in Section 7.1, comparing
it to other methods like for instance evaluating Feynman diagrams. In Section 7.2 we will
discuss its limitations. Then we review the convergence behaviour of variational perturba-
tion theory in Section 7.3. In Section 7.4 we will overview possible further applications of
the recursion relation and of variational perturbation theory such as Bose-Einstein condens-
ates, Type-II super conductors, Markov processes, and stochastic resonance. Thereafter we
quickly look at the results obtained for the two boundary-layer problems in Section 7.5.

7.1 Bearing of the Combined Differential and Algeb-
raic Recursion

The recursive technique that has been developed throughout Chapter 3 of this thesis defin-
itely out classes all diagrammatical perturbative calculations. Using the conventional evalu-
ation of Feynman diagrams, the partition function and the free energy have been evaluated
up to third order [18]. Diagrammatical results for the density matrix came as far as up to
second order [33]. In contrast to that we could drive our recursive calculations up to seventh
order for the free energy and for the ground state wave function. Variationally we came us
high as the fifth order in the case of the free energy and up to seventh order for the wave
function. The free energy requires more computational resources due to the subtle expan-
sion of the logarithm (4.3). State of the art computer algebra programmes such as Maple
can evaluate the imaginary-time evolution amplitude up to the seventh order perturbatively
within a couple of hours, whereas the integrals represented by eight loop Feynman diagrams
are not solvable with such programmes, nor by hand. Variational perturbation theory costs
even more time and five variational orders for the free energy is at the edge of what can be
done at the moment.

Possible future applications of the combined differential and algebraic recursion are discussed
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in Section 7.4.

7.2 Limitations

The combined differential and algebraic recursion definitely is a challenge for every computer
algebra program. Going up order by order and thus making use of the cache memory of
our PCs it still took Maple 15 hours to calculate the seventh order of the imaginary-time
evolution amplitude.! Comparing the computation times for each order roughly yields an
exponential growth. Also the further simplification procedures and especially the “series”-
command (Maple) required a lot of computation time again. This was the price we had
to pay for the idea, to get one universal recursion relation for all the quantum statistical
anharmonic oscillator quantities at the same time.

Still it is easy to overcome diagrammatical calculations and further streamlining of the Maple
script should probably push the limits further.

7.3 Exponential Convergence of Variational Perturba-
tion Theory

For the free energy as well as for the ground state wave function the convergence of vari-
ational perturbation theory was found to be exponential. The fact that the principle of least
sensitivity [48] as interpreted by Kleinert produces extrema for the odd variational orders
and inflection points for even orders, both in the case of the free energy and in the case of the
ground state wave function, is reflected in the respective convergence behaviours: Odd and
even orders can best be fitted separately by exponentials. Thus we obtained intervals of con-
vergence for certain values of the free energy or the ground state wave function which always
turned out to contain the exact numerical result when taking into account the statistical er-
rors associated with the boundaries of the intervals. For the free energy the numerical results
were obtained using its spectral representation reverting on the first ten energy eigenvalues
obtained with the “shooting method”, sketched in Section 4.4. And for high temperatures
the classical free energy was available for comparison. For the ground state wave function
numerical results could be obtained directly from the “shooting method”.

7.4 Next Steps

There are quite a few interesting problems which could now be tackled with either recursive
techniques or with variational perturbation theory or both:

'We used a Pentium III, 450MHz and later an AMD with 1.5GHz which was much quicker. But at that
stage this thesis was almost finished.
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Quantum statistics

Recently a lot of research has been done on the stochastic and dynamic properties of flux
lines in high-T,. super conductors with arbitrary pinning centres [70, 71]. Of all the possible
pinning mechanisms, one seems to be most promising, namely the interaction of the flux
lines with columnar defects [72, 73]. From a theoretical point of view, this mechanism
has been examined by Nelson and Vinokur [74] on the foundation of the Bose analogy
(75, 76]. Only recently Ettouhami succeeded in describing the physics of a single flux line
without using columnar defects and their pinning effect [77], but instead he employed the
Feynman-Kleinert variational perturbation theory [6], to generate the partition function and
the effective pinning energy. It turned out that the mean square deviation of the flux lines
from the pinning centre diverges for a certain critical temperature. This was taken as a hint
for a localization-non localization phase transition. The final experimental and theoretical
evidence of such a phase transition is still missing though [77].

Therefore it would be very interesting to investigate the question whether other pinning
potentials than the Gaussian potential chosen by Ettouhami could create a phase transition.
Also the competing influences of different pinning centres on the localization properties of the
flux line can be studied. Finally one could check, whether the results of the Feynman-Kleinert
variational perturbation theory is altered for higher orders. Especially for a Gaussian pinning
potential corrections from higher variational perturbative orders could be evaluated by means
of the smearing formula [12].

Bose-Einstein condensates, Type-II super conductors

After the pioneering work, that has been done to realize Bose-Einstein condensates of atomic
gases in magnetic traps [78, 79, 80], these condensates are now routinely produced in labs
around the world.2 Therefore scientific interest has shifted from production and structure
of these condensates to a deep understanding of their dynamics [83]. Especially for the
interpretation of experimental data it is indispensable to examine the dynamics of collapsing
and exploding Bose-Einstein condensates and the influence of interaction between the matter
in the condensate and the radiation. For low temperatures the mean-field theory has proved
to be successful. It assumes that all atoms are in the same one-particle state [84]. The
Bose-Einstein condensate is then described by a macroscopic wave function U(r,t) which
is the order parameter. Its modulus squared is interpreted as the residence probability of
the atoms in the condensate. The unitary time evolution of the macroscopic wave function
U(r,t) obeys the Gross-Pitaevskii equation [85], which reads

'hg\lf( t) = —hQ—A+V (r) + g |¥( t)|2 U(r,t) (7.1)
7 8t I‘, = 2M ext \T g I‘, I‘, . .

2In December 2001, for the second time in ten years, the Nobel Prize was awarded to three physicists
who worked on Bose-Einstein condensates [81, 82].
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We have to solve equation (7.1) with the wave function ¥(r, ) being normalized for all times:

/d3x|\Il(r,t)|2 ~1. (7.2)

Contrarily in experiments atoms can be scattered out of the trap inelastically. We can
account for that loss by adding imaginary loss terms to the Gross-Pitaevskii equation (7.1)
which then destroy the normalization of ¥(r, ) [85].

Up to now the Gross-Pitaevskii equation has been solved either numerically [84] or in the
Thomas-Fermi approximation [86, 87]. In the latter case one assumes that the evaluation
of the wave function of the condensate can be simplified by neglecting the term for the
kinetic energy in the limiting case of many atoms. It turns out that the Thomas-Fermi
approximation is quite rough [86] and, moreover, it depends on the properties of the trap
[87]. It is therefore necessary to improve the Thomas-Fermi approximation with the help of
variational techniques [87]. It would be worth a try to solve the Gross-Pitaevskii equation
by means of a Bender-Wu like double expansion ansatz. Afterwards one could resum the
perturbative result with the help of variational perturbation theory. We expect that this
procedure would improve the accuracy of the results for the Bose-Einstein condensate as well
as in other applications of the Thomas-Fermi approximation like for instance the physics of
atoms and molecules [2].

As the Gross-Pitaevskii equation is also used to describe super fluid Helium and super
conductivity in the mean-field approach [88], a recursive ansatz would be very promising in
these fields, too.

Dissipative quantum mechanics

The recursive methods which have been developed in chapter 3 of this thesis can also be
extended to dissipative quantum systems. Such a system consists of a few macroscopic de-
grees of freedom which are coupled to a large number of microscopic degrees of freedom and
is usually described by the path integral quantization [2, 42]. As the microscopic structure
of the reservoir is of no importance, one usually integrates over these degrees of freedom.
For simplicity the reservoir is modeled by independent oscillators. What is left over is the
reduced density matriz which now depends on the coordinates of the macroscopic degrees of
freedom only. The essential kernel of the path integral is the so called influence functional
that effectively contains the complete influence of the reservoir [89]. Both the Caldeira-
Leggett model [43, 44, 42, 90] and the model of optical and acoustic polarons [5, 42, 91] are
of this general form. The actual evaluation of the reduced density matrix in the framework
of these models unfortunately is very difficult, because the underlying action is bilocal.

One could try to find more efficient methods for this computation. A double expansion
ansatz for the imaginary-time evolution amplitude would solve the Schrédinger equation.
Again one would obtain a set of recursive ordinary differential equations. Taking the trace
over the reservoir coordinates in the imaginary-time evolution would yield a perturbative
result for the reduced density matrix, which could then undergo variational perturbation
theory. The recursive technique would allow for higher orders, such that the first-order res-
ults [43] based on the variational methods by Giachetti and Tognetti [22] could be exceeded.
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Especially a study of the g-dependence of the density of states of the damped harmonic
oscillator [92] would be interesting.

Markov processes, Brownian motion

Bender-Wu like recursive solutions may also be useful for Markov processes [93, 94, 95, 96, 24].
Following Ref. [23] for a nonlinear drift coefficient [97]

K(z) = —kx — g2°, (7.3)
the probability density will factorize according to
P(l‘b tb|£L‘a ta) = Pn(l‘b tb|l‘a ta)F(LL‘b tb|£L‘a ta) y (74)

where P, (xyty|7,t,) denotes the probability density of a Brownian particle. The resulting
Fokker-Planck equation for the correction F'(xzty|7,t,) then reads

0? 3 Ty — xae )] 9
a_tbF(l‘b tb|1‘a ta) - {DG—xz + |:be + 9% = 2K 1— 672K/(tb*ta) a—;pb
K gTp — Tee Hbta)
+ [39:0% - ngg T e F(zpty|mats). (7.5)

Diagrammatical considerations suggest to solve this partial differential equation with the
ansatz

oo 4n
F(xptpleats) =1+ Z Z 9" (20, ty, to) i . (7.6)
n=1 m=0

Similar to the recursion which was developed in chapter 3 of this thesis, the expansion
coefficients cg{ ) (x4, ty, t,) should obey an ordinary partial differential equation. With the help
of a computer algebra program it should be possible to drive this perturbative calculation
to very high orders as seen in the case of the quantum statistical imaginary-time evolution

amplitude. Initial results leading in this direction have now been shown in Ref. [24].

Stochastic resonance

Normally an increase of the noise background leads to a higher signal-to-noise ratio. Some
20 years ago it was discovered that under certain circumstances also the opposite counterin-
tuitive effect can happen. This phenomenon is know as stochastic resonance [98]. Stochastic
resonance is believed to explain many physical problems, as well as it has applications in
chemistry and biology. Even the periodicity of the ice ages can be modeled by means of
stochastic resonance.
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Consider a particle in the double well potential together with a periodic external weak force.
This weak force can induce periodic movements of the particle. This stochastic synchroniz-
ation occurs when the mean time between two noise induced transitions is of the order of
half the period of the external force. This model of stochastic resonance has been studied
in the adiabatic limit, in the fully non-adiabatic regime and by means of linear-response
approximation (compare the bibliography in [98]).

So similarly to the above described approach to Markov processes one could in this case
solve the Fokker-Planck equation for the explicitly time-dependent drift coefficient

K(z,t) = —kx — g2 + F(t) (7.7)

for arbitrary forces F'(t) and especially for periodic forces F(t) = Acos(wt + ¢). But also
other time dependencies as, for instance, the competition between two Fourier modes could
be interesting.

Theory of reaction rates

One of the most important applications of Markov theory is the description of thermally
activated transitions between meta stable states. This process is especially significant for
the theory of reaction rates in chemistry and biology which was founded by Kramers [98]. A
typical model is the over damped Brownian motion of a particle in a double well potential
where the position of the particle is identified with the reaction rate coordinate. By solving
the underlying Fokker-Planck equation, the mean transition rate between the two minima
can be calculated. Using several different approximations one can show that the mean trans-
ition rate grows with a decreasing damping whereas the rate drops again for strong damping
[99]. Variational perturbation theory would enable us to investigate this interesting trans-
ition further on the scaffolding of the results obtained for Markov theory mentioned earlier.
For low temperatures also quantum mechanical tunneling becomes more important com-
pared to thermally activated transitions. The competing influence of these two phenomena is
described by the Caldeira-Leggett model. It predicts a critical temperature: Above this tem-
perature thermally activated transitions are dominant, below this temperature only quantum
mechanical tunneling processes are relevant. A variational perturbative study of these phe-
nomena could refer to previous work [2, 28, 29, 30, 100] where purely quantum mechanical
tunneling has been described. For instance one could compute the splitting in the double
well potential by resumming the weak coupling perturbation series into a strong coupling
series with the help of variational perturbation theory which then is analytically continued
to negative coupling constants. The results are practical for low barriers and high tunneling
rates. Combining variational perturbation theory with the semiclassical approximation, one
could extend their practicability to high barriers and low tunneling rates.

Brownian motors

Is it possible to transform the arbitrary microscopic fluctuations of Brownian motion into
mechanical work? This basic question can be studied by means of the stochastic ratchet
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model [99] which is based on a gedanken experiment by Smoluchowski [101] and Feynman
[102]. Consider the over damped Brownian motion of a particle in a spatially periodic
potential V(z) = V(z + L) with spatially broken symmetry. This could be realized for
instance by superimposing two Fourier modes

2 4
V(z) = Asin %x + Bsin %x . (7.8)

Then one solves the underlying Fokker-Planck equation with the drift coefficient
K(z)=-V'(z). (7.9)

The ratchet effect occurs when appropriately chosen system parameters do not let the particle
current vanish

() = — /_ﬂo iz [—V’(x) + D%] Platlzots). (7.10)

o0

Investigating such stochastical systems with ratchet effects, which are also referred to as
Brownian motors, has become very important especially for the biology of cells. Recently
it was discovered that the ratchet effect is responsible for the intra cellular transport of
so-called molecular motors, which migrate along polymer filaments (compare the extensive
bibliography in [99]).

This ratchet effect can be studied with the help of variational perturbation theory. To this
end one of the few exactly solvable cases of the stochastic ratchet model [99] can be chosen
as the reference system, around which one can then expand perturbatively. Its parameters
become the variational parameters. The results could be compared with approximative
results [99] for the particle current (7.10). Moreover it would be interesting to find out
which system parameters can change the current (7.10) most efficiently.

Also one could extend the studies on quantum ratchets. Their microscopic fluctuations are
both of thermal and quantum mechanical origin. Important experimental realizations are
Josephson junctions and SQUIDS [103]. Quantum ratchets are described in the framework
of the Caldeira-Leggett model of dissipative quantum mechanics, which has already been
mentioned in connection with quantum dissipation.

7.5 Boundary-Layer Theory, Strong-Coupling Series,
Large-Order Studies

Unfortunately we did not succeed in finding a systematic resummation algorithm for the
instanton problem and for the Blasius equation, solved on the lattice in the limit as the lattice
spacing goes to zero. This would have enabled us to quickly switch from difference equations
to differential equations and vice versa. Also our analytic understanding of field theories
would have benefited. However, we could study the respective large-order behaviours. May
be these considerations will enable us, to at least push the convergence radii further out. Or
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they might tell us which set of base functions can be used to re-expand the two weak-coupling
series in such a way that they converge even for infinite coupling. What definitely can be
said at this stage is, that the numerics have been pushed to the limits. Our Maple programs
blocked various computer clusters on both sides of the Atlantic® for periods of time as long
as two weeks.

7.6 Concluding Thoughts

We have seen that recursive techniques in quantum statistics together with powerful com-
puter algebra systems enhance our possibilities to obtain high-order perturbative results for
all the relevant quantities. Furthermore we could use these results to study variational per-
turbation theory for the anharmonic oscillator systematically. It is now about time to apply
the two formalisms — the recursion techniques and variational perturbation theory — to
the very interesting problems that have been mentioned in Section 7.4.

The boundary-layer problems from Chapter 6, solved on the lattice in the limit as the lattice
spacing goes to zero, still wait for a suitable systematic resummation algorithm.

3At the Freie Universitit in Berlin and at the Washington University in St. Louis, Missouri.
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