Universität Potsdam Quantenmechanik II Sommersemester 2011 Priv.-Doz. Dr. Axel Pelster Prof. Dr. Jens Eisert Blatt 13

Aufgabe 34: Dirac-Elektron im Magnetfeld

(14 Punkte)

In minimaler Kopplung lautet die Dirac-Gleichung

$$\left(i\gamma^{\mu}D_{\mu} - \frac{mc}{\hbar}\right)\Psi = 0,$$
(1)

wobei $D_{\mu} = \partial_{\mu} + ieA_{\mu}/\hbar$ die kovariante Ableitung und $(A_{\mu}) = (\Phi/c, \mathbf{A})$ das Vierervektorpotential des elektromagnetischen Feldes bezeichnen.

a) Zeigen Sie, dass sich aus (1) die Klein-Gordon-Gleichung herleiten läßt

$$\left(D_{\mu}D^{\mu} + \frac{e}{2\hbar}\,\sigma^{\mu\nu}\,F_{\mu\nu} + \frac{m^2c^2}{\hbar^2}\right)\Psi = 0\,,$$
(2)

wobei $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ die Komponenten des elektromagnetischen Feldstärketensors darstellen und die Matrizen $\sigma^{\mu\nu}$ gegeben sind durch

$$\sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] . \tag{3}$$

(4 Punkte)

b) Zeigen Sie, dass sich mit der Zeitabhängigkeit $\Psi(\mathbf{x},t) = e^{-iEt/\hbar}\psi(\mathbf{x})$ für den oberen Zweierspinor ϕ aus (2) die folgende Gleichung mit $\hbar = c = 1$ herleiten läßt

$$(E^2 - m^2) \psi = \hat{K}\phi, \qquad (4)$$

wobei

$$\hat{K} = -\Delta + e\mathbf{B}(\mathbf{l} + \boldsymbol{\sigma}) + e^2\mathbf{A}^2$$
(5)

eine Art Hamilton-Operator, $\mathbf{l} = \mathbf{x} \times \hbar \nabla / i$ den Bahndrehimpuls und $\boldsymbol{\sigma}$ den Pauli-Spin bezeichnen. (4 Punkte)

c) Es handelt bei (4) um ein Eigenwertproblem, das Sie nun für den Fall eines konstanten Magnetfeldes \mathbf{B}_0 lösen sollen. **Hinweis:** Wählen Sie das Vektorpotential $\mathbf{A} = \mathbf{B}_0 \times \mathbf{x}/2$, legen Sie das Magnetfeld \mathbf{B}_0 in z-Richtung, und überzeugen Sie sich zunächst davon, dass (4) die Form

$$(E^2 - m^2) \phi = -\Delta \phi + \frac{m^2 \Omega^2}{4} (x^2 + y^2) \phi + m\Omega (l_z + \sigma_z) \phi$$
(6)

annimmt. Welche Bedeutung hat die nichtrelativistische Zyklotoron-Frequenz $\Omega = eB_0/m$? Zur Lösung von (6) dürfen Sie annehmen, dass ϕ keine Funktion von z ist und Eigenzustand von

 σ_z zum Eigenwert +1 oder -1 ist. Beachten Sie, dass die ersten beiden Terme in (6) wie zwei ungekoppelte harmonische Oszillatoren mit Vernichter bzw. Erzeuger $\hat{a}, \hat{a}^{\dagger}$ und $\hat{b}, \hat{b}^{\dagger}$ aussehen und dass man den Drehimpulsoperator schreiben kann als $l_z = -i \left(\hat{a}^{\dagger} \hat{b} - \hat{b}^{\dagger} \hat{a} \right)$. (6 Punkte)

Aufgabe 35: Kleinsches Paradoxon

(13 Punkte)

- a) Betrachten Sie eine stationäre Lösung $\Psi(\mathbf{x},t) = e^{-iEt/\hbar}\psi(\mathbf{x})$ der Dirac-Gleichung (1), bei der der Viererspinor $\psi(\mathbf{x})$ in zwei Zweierspinoren $\phi(\mathbf{x})$ und $\chi(\mathbf{x})$ zerlegt wird. Leiten Sie aus (1) zwei gekoppelte Gleichungen für die Zweierspinoren $\phi(\mathbf{x})$ und $\chi(\mathbf{x})$ ab. (3 Punkte)
- b) Spezialisieren Sie nun mit A(x) = 0 und

$$e\Phi(\mathbf{x}) = V(z) = \begin{cases} 0 & ; z < 0 \\ V & ; z > 0 \end{cases}$$
 (7)

auf eine Potentialstufe. Bestimmen Sie den Viererspinor $\psi(\mathbf{x})$ in den beiden Bereichen z < 0 und z > 0 für ein Elektron mit $E > mc^2$ und mit Spin +1/2. (3 Punkte)

- c) Fordern Sie nun, dass der Viererspinor $\psi(\mathbf{x})$ an der Stelle z=0 stetig ist. Zeigen Sie, dass der Viererspinor $\psi(\mathbf{x})$ dann bis auf eine Normierungskonstante eindeutig festgelegt ist. (2 Punkte)
- d) Werten Sie nun die Stromdichte $j_z = \psi^{\dagger} \alpha_z \psi$ für z < 0 und z > 0 aus und geben Sie dadurch die einfallende Stromdichte $j_{\rm in}$, die reflektierte Stromdichte $j_{\rm refl}$ und die transmittierte Stromdichte $j_{\rm trans}$ an. Berechnen Sie den Transmissionskoeffizienten $T = j_{\rm trans}/j_{\rm in}$ und den Reflexionskoeffizienten $R = j_{\rm refl}/j_{\rm in}$. (2 Punkte)
- e) Diskutieren sie R und T für die drei Fälle: i) niedrige Barriere $V < E mc^2$, ii) hohe Barriere $E mc^2 < V < E + mc^2$, iii) sehr hohe Barriere $E + mc^2 < V$. (3 Punkte)