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Magnetic impurities play an important role in many spintronics-related materials. Motivated by this
fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-
dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on
the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a
consequence of the remarkable result that the linear term is independent of the spin-orbit coupling
strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly
enhanced, due to interference between potential and magnetic scattering.
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Introduction.—In ferromagnetic materials, the Hall re-
sistance acquires an anomalous contribution that is propor-
tional to the magnetization of the sample [1–3]. Although
this anomalous Hall effect (AHE) has become a standard
tool to determine the magnetization of ferromagnets and
has been known for more than a century, its mechanism is
still under debate. The interest in the origin of the AHE has
recently been renewed due to its close relation to the spin
Hall effect. Particular attention has been paid to intrinsic
mechanisms [1] based on the Berry phase, which can arise
when the spin-orbit interaction modifies the band structure.
This is in contrast to extrinsic mechanisms [2–4], which
require the presence of impurities for the occurrence of an
anomalous Hall effect. Surprising results have been found
even for simple systems such as a two-dimensional elec-
tron gas (2DEG) with Rashba spin-orbit interaction where
it turns out that in the presence of pointlike potential
disorder the AHE vanishes when both of the spin-split
bands are occupied [5–11].

So far, most treatments of the AHE have only considered
the presence of potential impurities. However, in many
materials, which are of interest for spintronics applications
such as diluted magnetic semiconductors, magnetic impu-
rities play a fundamental role. Although extrinsic mecha-
nisms for the AHE based on scattering by magnetic
impurities have been suggested [12], little is known about
the influence of magnetic impurities in materials with
strong spin-orbit interaction, where the AHE is induced
by intrinsic mechanisms. To learn about the role of mag-
netic impurities, we avoid the complexities of realistic
band structures and instead provide a thorough analysis
of a simple model: a 2DEG with Rashba spin-orbit inter-
action where the presence of magnetic impurities is known
to induce a finite AHE even when both spin-split bands are
occupied [9]. We find that surprisingly rich physics
emerges even in this model system.

We expect that our model can be tested experimentally
in magnetically doped 2DEGs [13], once they are produced
with asymmetric confinement potentials. This may be
realized in heterojunctions made of a material with large

spin-orbit coupling. At present, a robust AHE has been
observed in a magnetically doped 2DEG with weak spin-
orbit coupling, based on a modulation-doped quantum well
of Zn1�x�yCdyMnxSe (x� 0:02, y� 0:12) sandwiched
between ZnSe barriers [14].

To model a magnetically doped 2DEG with Rashba
spin-orbit coupling, we use the Hamiltonian

 H�
p2

2m
��� � �p� ẑ��

X
i

	V�JSi ��
��r�Ri�: (1)

Here, � denotes the strength of the spin-orbit interaction.
The impurities at positions Ri affect the conduction elec-
trons through a potential V��r�Ri� and an exchange
coupling JSi � �. (Here, Si denotes the impurity and �
the electron spin.) Note that we average only over the
positions of the impurity atoms whereas the potential
parameters V and J are the same for all impurities. Thus
our treatment does not correspond to a white noise ap-
proximation. Our analysis below includes interference of
amplitudes from potential and magnetic scattering, and
accounts for all significant contributions to the AHE, in-
cluding skew scattering. Remarkably, we find that the AHE
deviates significantly from the conventional linear magne-
tization dependence except for the region of very small
polarization of the impurity spins. For strong impurity
polarization, we obtain a resonant behavior of the anoma-
lous Hall conductivity. This enhancement arises from an
interference-induced suppression of the scattering rate for
the minority carriers.

Anomalous Hall conductivity.—Our theory is based on
the Streda-Kubo approach, which decomposes the Hall
conductivity �yx � �Iyx � �IIyx into a Fermi-surface con-
tribution �Iyx and a contribution �IIyx from the entire Fermi
sea [15,16]. In our model the AHE is dominated by the
Fermi-surface contribution

 �Iyx � �
e2

2�V
Tr	vyG

R
�FvxG

A
�F 
; (2)

where GR;A denotes the retarded and advanced Green
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functions and the velocity operators are given by vx;y �
px;y=m� ��y;x. Since the contributions of GRGR and
GAGA are of higher order in the disorder scattering rate
� [17], they have already been omitted in Eq. (2).
Regarding �IIyx it is known that it vanishes for �F > h in
clean systems [11], where h is the effective magnetic field.
This remains true also in the presence of magnetic impu-
rities as long as vertex corrections are neglected, which
contribute only to higher order in � [17].

To compute the anomalous Hall conductivity, we treat
the exchange interaction at a mean-field level, average over
the impurity positions, and incorporate disorder effects
perturbatively. Within the mean-field approximation, the
exchange interaction leads to an additional internal
Zeeman field acting on the electrons, which is typically
larger than the applied magnetic field hext. Thus, the elec-
trons are subject to an average effective Zeeman field
h ’ �JhSzi=S, where �J � niJS is the maximal exchange
field and ni denotes the concentration of impurities. At
mean-field level, the nonzero impurity-spin expecta-
tion values are given by hSzi � �@ lnZ=@��~h�, hS2

zi �

�1=Z�@2Z=@��~h�2 with the Brillouin partition function
Z � sinh	�J~h�2S� 1�=2
= sinh��~h=2� and the effective
field ~h � nJh�i acting on the impurity spins. Here, n and
h�i denote the density and polarization of the electrons.
Instead of calculating hSzi self-consistently, we treat it as a
parameter which also determines the impurity-spin fluc-
tuation hS2

zi within this mean-field approach.
Let us now consider the effects of disorder. In the mean-

field approximation, the dispersion of the two subbands is
given by Ek;� � k2=2m� �k with �k �

����������������������
h2 � �2k2
p

, and
the retarded Green function takes the form G0;R � G0;R

0 �P
i�x;y;zG

0;R
i �i with

 

G0;R
0 �

1

2
�G0;R
� �G

0;R
� �; G0;R

z ��
h

2�p
�G0;R
� �G

0;R
� �;
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x=y��

�py=x
2�p

�G0;R
� �G

0;R
� �; G0;R

� �
1

!�Ep�� i0�
:

(3)

Deriving the retarded self-energy of the 2DEG within the
Born approximation, we obtain �R � �i��� �z�z� with
 

�R��
ini
4
f	V2�J2S�S�1��2VJhSzi�z
K1�	2VJhSzi

�fV2�J2	2hS2
zi�S�S�1�
g�z
hK2g: (4)

Here,K1 � ��� � ��� andK2 � ��=�� � ��=�� where

�� � m��=
�������������������������������������������
h2 � 2�so�F � ��so�

2
p

with �so � �2m is re-
lated to the density of states of the two bands at the Fermi
energy �F and �� � �k� with k� being the corresponding
Fermi wave vectors. If only pointlike potential scatterers
are present and scattering from magnetic impurities is
neglected, the anomalous Hall conductivity vanishes ex-
cept for the extreme limit �F < h. Here, we focus on the
more realistic regime of �F > h where both subbands are

partially occupied and where it is the magnetic impurities
which induce a nonzero anomalous Hall effect.

When both subbands are occupied, one findsK2 � 0 and
hence a significant simplification of the self-energy in
Eq. (4). The impurity averaged Green function also takes
the form of Eq. (3), with the replacements E! E� i� and
h! h� i�z. In the following, we assume weak disorder
scattering in the sense �z  �p, such that

 GR
� ’

1

!� Ep� � i��
; �� � �� �z

h
��

: (5)

The anomalous Hall conductivity �Iyx can now be com-
puted as the sum of the ladder diagrams �I;lyx [see Fig. 1(a)]
and the skew-scattering contribution �I;syx [see Fig. 1(b)].
Using ni ~V2 � ni�V

2 � J2hS2
zi�, a lengthy but standard

evaluation of the diagrams yields �Iyx � �I;lyx � �
I;s
yx with
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e2
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�
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�
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2
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2
;

�I;syx �
e2

2�
2nimJhSzi	V2� J2S�S� 1�
	2

2

�1�ni ~V2I1�
2

(6)

where

 	1 � i�I3 � �I2�; 	2 � I4 � �I1 (7)

and
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: (8)

Here we have taken the weak scattering limit of �I;syx . As a
result of several cancellations these expressions turn out to
be formally similar to the ones of Ref. [11], derived for
purely potential scatterers. The main differences are that

(a)

vvy x

vy v vy vx

(b)

+

= +vx vx vx
with

FIG. 1. Anomalous Hall conductivity: (a) ladder and (b) skew-
scattering contributions. In analogy to Refs. [10,11] we consider
for skew scattering only diagrams with a single third order
impurity vertex and both external current vertices renormalized
by ladder type vertex corrections. Since �IIyx � 0 in the parame-
ter regime considered here, only diagrams for �Iyx are depicted.
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additional terms proportional to hSzi appear in the self-
energy and that niV2 is replaced by ni ~V2 in the vertex
corrections. Furthermore, V2 is replaced by V2 � J2S�S�
1� in the numerator of the skew-scattering contribution.

We remark that the expression for the ladder contribu-
tion reduces to the results of Inoue et al. [9]: i.e., �I;lyx �
e2�so�

2
F�

2=�2�h3� with � � �z=� � 2JhSzi=V, when tak-
ing the special limit of small spin-orbit interaction, large
Fermi energy �so  h �F with �so � �kF, as well as
small exchange component of the impurity potential. Here,
however, we focus on the remarkably rich behavior of the
anomalous Hall conductivity beyond this special limit.
Although our treatment is set up for quantum spins, we
shall restrict most formulas to classical spins. The corre-
sponding expressions for quantum spins are similar but
more complicated. We do, however, include the results
for quantum spins in the figures.

Mechanisms.—Our model Eq. (1) contains the spin-
orbit interaction only in the band structure. Several mecha-
nisms contribute to the anomalous Hall conductivity, such
as the Berry-phase, the skew-scattering, and the side-jump
contributions. Our diagrammatic results properly capture
all of these contributions. However, beyond low-order
perturbation theory [17] it is difficult to disentangle the
diagrammatic results. Specifically, the ladder diagrams in
Fig. 1(a) contain intrinisic and side-jump contributions.
Third order skew-scattering diagrams are collected in
Fig. 1(b). Due to the vanishing of �IIyx in our model, all
contributions to the AHE come from the Fermi surface,
while in general (see, e.g., Ref. [18]) the Berry-phase
contribution is associated with the entire Fermi volume.

The skew-scattering diagrams collected in Fig. 1(b)
dominate for strong spin-orbit coupling �so��J;�V where

 �I;syx � �I;lyx
�so��4

V � �
4
J�

4�2
J�V��

2
V � 3�2

J�
: (9)

Here, we introduced the energy scale �V � niV, which
measures the potential disorder strength. By contrast, for
weaker spin-orbit coupling �so  �J; �V , skew scattering
and the ladder contributions can be of similar order of
magnitude. For this reason, our plots always refer to the
sum �I;lyx � �

I;s
yx cf. Figs. 2 and 3.

Small impurity magnetization.—In the Rashba model
with pointlike disorder, the AHE vanishes in the absence
of magnetic scattering when both subbands are occupied
[9,11]. At small impurity magnetization we therefore ex-
pect that the anomalous Hall conductivity is proportional
to the magnetization, i.e., to h � niJhSzi. However, in our
model this holds only for very small polarization of the
impurity spins. This can be understood analytically from
the small magnetization expansion (for classical spins)
 

�I;lyx �
e2

2�
hSzi
S

16�3
J

3�2
V � 7�2

J

�
�V

�2
V � �

2
J

�
2�2

J

�F�3�
2
V � 7�2

J�

�
;

�I;syx � �
e2

2�
hSzi
S

18�so�J��2
J � �

2
V�

�7�2
J � 3�2

V�
2 : (10)

Note that a nonzero exchange coupling J is required for a
nonvanishing AHE. Moreover, since the skew-scattering
contribution �I;syx is negligible for �so  �J; �V , we obtain
the remarkable result that in this limit, the slope of the
anomalous Hall conductivity becomes approximately in-
dependent of the magnitude � of the spin-orbit interaction.
Since a finite spin-orbit coupling is required for the exis-
tence of the AHE in the first place, this implies that the
regime over which the linear magnetization dependence
holds must shrink with decreasing spin-orbit coupling �,
entailing a strongly nonlinear behavior of the anomalous
Hall conductivity vs polarization of the impurity spins hSzi,
as illustrated in Fig. 2.

Remarkably, we find that the AHE can even change sign
as a function of impurity magnetization [see Fig. 2(b)].
This behavior is reminiscent of sign changes found experi-
mentally in other systems [18,19]. Inspecting the expres-
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FIG. 3 (color online). Fully spin-polarized hSzi � S anoma-
lous Hall conductivity for classical S � 1 spins (solid lines) and
quantum spins (dashed and dashed-dotted lines) for constant ��,
n�i , and J� as a function of V�. Panel (a) shows the limit �J �
�so and (b) the limit �so  �J  �so. All conductivities are
plotted in units of e2=�2��, using the dimensionless units of
Fig. 2.
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FIG. 2 (color online). Anomalous Hall conductivity for quan-
tum spins with S � 1 as a function of the polarization of the
impurity spins hSzi. The insets display zoom-ins for small hSzi,
where the dotted lines indicate the �-independent slope. All
conductivities are plotted in units of e2=�2��, using dimension-
less units of the form n�i � ni=k

2
F, m� � 1=2, J� � 2mJ=@2,

V� � 2mV=@2, �� � 2m�=�@2kF�.
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sions for the slope [Eq. (10)] and for the conductivity at
maximal spin polarization hSzi � S [Eq. (12) below], we
find that for �so  �J; �V , where the skew-scattering con-
tribution to the slope is negligible, the conductivity as a
function of hSzi changes sign for scalar impurity potentials

V of intermediate strength, i.e., for JS > V > JS �J
�F
�

2�2
V�2�2

J

3�2
V�7�2

J
. Note also that the overall sign of the AHE depends

on the sign of the exchange coupling J.
Large impurity magnetization.—The most intriguing

behavior of the anomalous Hall conductivity occurs in
the limit where the impurity spins are near full polariza-
tion, i.e., for hSzi ’ S. We first focus on the regime of weak
spin-orbit coupling �so  h � niJhSzi (i.e., �F �����������������������
h2 � �2k2

F

q
� h), where the scattering rate of the minor-

ity band
 

������z
h
�F
�
ni
2
	V2�2VJhSzi

h
�F
�J2S�S�1�
 (11)

vanishes at V � JS for classical spins. This absence of
scattering arises from interference between the potential
and magnetic components of the impurity potential and
implies a divergence of the anomalous Hall conductivity.
Note that this absence of scattering holds for minority spins
only. For the majority band, �� is enhanced due to the
opposite sign of the interference term / �z [see Eq. (5)].

Indeed, near hSzi ’ S the anomalous Hall conductivity
for classical spins in the regime � �J; �V reads

 �I;lyx�
e2

2�
4�so�2

F�
2
V��

2
J��

2
V�

�J��2
V��

2
J�

3 ;
�I;syx
�I;lyx
�

2�2
J

�2
J��

2
V

: (12)

This expression obviously diverges for �V � �J and also
implies a sign change of the anomalous Hall conductivity
at �V � �J. For quantum spins the true divergence is
eliminated. Nevertheless, a strong enhancement of the
AHE is predicted at full spin polarization for �V � �J.
As expected, the result for quantum spins approaches the
classical divergence as the spin increases (see Fig. 3).

In addition, the divergence in the approximate expres-
sion, Eq. (12), is also cut off by a finite spin-orbit coupling
�. However, the AHE remains strongly enhanced near full
polarization hSzi � S even when �so  �J  �so. In this
regime of strong spin-orbit scattering, we obtain
 

�I;lyx�
e2

2�
4�3

J�
2
V��

2
V��

2
J�

�so��2
V��

2
J�

2��2
V�3�2

J�
;

�I;syx
�I;lyx
�

2�2
J

�2
V�3�2

J

(13)

for classical spins. Obviously, the true divergence of the
anomalous Hall conductivity at �V � �J is replaced by a
pronounced maximum of the anomalous Hall conductivity
at �V � 2:2�J as can be seen in Fig. 3(b) (solid line). Again
quantum spins behave very similarly, and the classical
result is recovered for large spins. Interestingly, for fully
polarized quantum spins, hSzi � S, the anomalous Hall

conductivity becomes maximal in the crossover regime
between the two limits discussed above, i.e., for �J � �so.

Conclusions.—We have investigated the effects of mag-
netic impurities on the anomalous Hall effect and uncov-
ered rich and unexpected behavior of the anomalous Hall
conductivity. We find a highly nonlinear dependence on the
spin magnetization and sign changes of the AHE as func-
tion of magnetization, as well as a resonant enhancement
due to interference between potential and magnetic scat-
tering from the magnetic impurities.

Although our work is motivated by the ubiquitous pres-
ence of magnetic impurities in spintronics materials, we
have focused here on a thorough theoretical analysis of a
simple model system, namely, a two-dimensional electron
system with Rashba spin-orbit coupling. A more realistic
description of the band structure of real spintronics mate-
rials remains an important task for future research. Indeed,
recent experimental work [19] on the diluted magnetic
semiconductor (In,Mn)Sb exhibits an intriguing sign
change of the anomalous Hall conductivity as function of
the impurity magnetization, which is interpreted in terms
of the Berry-phase contribution to the AHE [18]. Our work
shows that the occurrence of such sign changes is much
more generic and a conclusive interpretation of the experi-
mental data must await more detailed research.
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[16] A. Crépieux and P. Bruno, Phys. Rev. B 64, 014416

(2001).
[17] N. A. Sinitsyn et al., Phys. Rev. B 75, 045315 (2007).
[18] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev.

Lett. 88, 207208 (2002).
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