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Abstract 
 We study molecular diffusion in (linear) nanopores with different types of roughness in the 
so-called Knudsen regime. Knudsen diffusion represents the limiting case of molecular 
diffusion in pores, where mutual encounters of the molecules within the free pore space may 
be neglected and the time of flight between subsequent collisions with the pore walls 
significantly exceeds the interaction time between the pore walls and the molecules. In this 
paper we present in full detail the algorithm, which we used in our previous studies, where we 
showed complete equivalence of self- (or tracer-) and transport diffusion. 
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1. Introduction 
 Diffusion phenomena of gases in disordered and porous media have been subject to intense 
research for several decades [1-6] with applications in heterogenous catalysis [7], adsorption 
[8] and separation [9]. Recent progress in synthesizing nanostructured porous materials [8,10] 
has provided essentially unlimited options for the generation of purpose-tailored pore 
architectures and there is an increasing demand for clarification of the main features of 
molecular transport in such systems [11,12]. 
 In matter conversion and separation, as two prominent technical applications, bimodal 
porous materials have attained particular attention. These materials contain “transport pores” 
that ensure fast molecular exchange between the microporous regions, in which the actual 
conversion and separation takes place [13]. In these transport pores the so-called Knudsen 
diffusion dominates, where the interaction of the molecules with the pore walls play the 
crucial role and the intermolecular interaction can be neglected. In this case, the molecules 
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perform a series of free flights and change direction statistically after each collision with the 
pore wall.  
 Two different kinds of problems can be considered in a typical diffusion experiment or 
simulation, respectively: The so-called transport diffusion, where the particles diffuse in a 
non-equilibrium situation from one side of the system to the opposite side (under the 
influence of a concentration gradient) and the self- (or tracer-) diffusion under equilibrium 
conditions. These processes are described by the transport diffusion coefficient Dt and the 
self- (or tracer) diffusion coefficient Ds, respectively. Dt is defined by Fick’s 1st law as the 
proportionality constant between the current density �� and the concentration gradient  ��� ��⁄ , 

�� � �	
 ����                                                           (1) 

while Ds is defined by the mean square displacement ������� of a random walker 

������� � 2�	��                                                      (2) 

after time t, where d is the dimension of the pore. 
 In our previous works [14-18] we showed equivalence of self- (or tracer-) diffusion and 
transport diffusion in the Knudsen regime. In this paper we present our diffusion algorithm in 
full detail, including structure generation, particle attributes, diffusion simulation and the 
correction method (Enhanced ft method, EFM, see [18]) which we used to obtain complete 
equivalence between both diffusion coefficients. 

2. System structure 
 Usually a direct approach is used to calculate collisions of particle trajectories with pore 
walls. Thereby every possible wall has to be checked for possible hits of the particle 
trajectory. For simple systems with easy geometries and only few different walls, especially in 
two dimensions, such a direct approach may be sufficient (indeed we used this approach in 
the 2D calculations in [14]). But for systems with many walls even an optimized wall sorting 
scheme that searches for possible collisions in order of ascending distance of the wall from 
the starting point of the particle (often used in 3D graphics) becomes too time-consuming.  
 In our algorithm, we use cube elements (cubicles) to generate the pore structure. Particle 
trajectories are calculated successively by short path elements through adjoining cubicles. 
Since only those cube elements are needed that are actually passed by the particle, the 
calculation time hereby scales strictly linear with the system size, see Fig. 1. Hence large 
systems can easily be implemented into our simulation. Additionally (not shown in the 
figure), for simple geometries, the calculation time can be optimized using larger cubicles. 

 
 Fig. 1: Different approaches to determine the particle trajectory. The computation time for a cube based 
algorithm depends linearly on the system size, whereas a direct calculation of the intersection of a particle 
trajectory with the pore wall grows with the number of possible wall elements like ��nlogn�. Of course, the size 
of a cubicle may be increased in (a) and (b). 

2.1. The Framework  
 Our pore system is based on a periodic cubic lattice of size �,�� � � ,�� � �!,��, 
consisting of elementary cubicles. The cubicles assemble the porous structure of the whole 
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system and can be either empty, i.e. part of the inner pore, or solid, i.e. part of the pore walls. 
Clearly, the particles only move inside the empty cubicles. If a particle hits a cubicle 
belonging to the wall, it is reflected back into the empty part of the inner pore, where it can 
move freely.  
 The location of any given particle is represented by three different sets of coordinates, i.e. 
by the 'house number' n that summarizes the cubicles inside a certain region (see Fig. 2), the 
cubicle vector �� � "�, � , �!# to the center of the given cubicle in the given 'house' and the 
incubicle coordinate $� � "$, $ , $!# inside the cubicle, with �1 & $, $ , $! & 1 and the 
geometrical center at $ � $ � $! � 0. Trajectories within individual cubicles are calculated 
using basic mathematical formulas and the trajectories through neighboring cubicles are 
combined to the flight path. The particle velocity is given by (� � "(, ( , (!#, where the 
absolute value v stays constant during our simulations, but this can be changed if necessary. 

 

 Fig. 2: The framework of the simulation. The pore system is based on a coordinate hierarchy: Empty or filled 
cubicles determine the local geometry of the pore. They are embedded into a superstructure of house numbers 
which repeat the local geometry throughout the pore length. The location of a particle i is described by its house 
number n), cubicle coordinate  c�) and incubicle coordinates r�). 
 Summarizing the cubicles of a certain geometrical region under one 'house number' is very 
convenient to keep the program flexible for different tasks. When implementing identical 
periodic structures along the pore, the house number n simply enlarges the system of cubicles 
by a multiplicative factor ,�� by repeating the basic structure. In this picture, we compare 
the cubicles to chambers in identical houses repeating along the pore. The three different 
coordinate frames of house number n, cubicle coordinate �� and incubicle coordinate $�, are 
visualized in Fig. 2. In this case of exactly repeating houses, only the cubicle structure of one 
house has to be stored, making it possible to generate arbitrary large pores without needing 
lots of computer memory. If, on the other hand, the houses are not identical, we have to store 
the information of all houses. In this case the most convenient way in terms of computer 
memory is, to store the necessary information to re-generate every house “on the fly” at the 
moment when the particle enters, e.g. to store the seed of the random number generator for 
each house. 
 Networks of pores can be implemented by using a three component “house numbering” 
scheme like already used in the cubicle coordinates. The substructure then is repeated 
periodically in all three directions 

2.2. Structure generation 
 Every cubicle of the pore system can be generated individually, giving rise to a whole 
variety of shapes, ranging from simple linear pores with a smooth surface to percolation 
clusters. In our studies [14-18] we used different iterations of a generalized Koch surface. For 
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this task we applied a random iterator that is shown in Fig. 3(a). Every surface element of a 
given generation of the pore is divided into a grid of size 4 � 4. The four grid elements in the 
middle are alternating augmented or reduced, resulting in 2 cubicles more above und 2 
cubicles less below the original surface. Thus the iterator is designed to be volume conserving 
while doubling the surface with every generation. Figure 3(b)-(d) show pores with different 
roughnesses that were generated using this iterator. 

(a)    (b)    (c)    (d)  

 Fig. 3: Examples of pore geometries. (a) Volume conserving and surface doubling random iterator used to 
generate rough surfaces from (b) the basic smooth pore, (c) and (d) show the 1st and 2nd iteration, respectively.   

3. Algorithm 
 Diffusion of particles through the above described pores is completely based on the 
underlying cubicle geometry. Only trajectories inside the cubicles are calculated. Whenever a 
particle leaves such a cubicle, it enters a neighboring one and the next part of the trajectory is 
determined.  

3.1. Particles 
 The diffusion particles move within the framework of the above described hierarchy of 
house numbers and cubicles. For every particle, at least the following data have to be stored: 
House number n, cubicle coordinate ��, location $� within the cubicle and velocity (�. The range 
of the coordinates is 0 & , . ,��, 0 & �, ,! . �, ,!,��, and �1 & $, ,! & 1, 
respectively. The latter coordinate does not start from zero, which optimizes the programming 
code as shown in the next chapter. It is convenient to keep track of additional parameters, e.g. 
the time t after the particle was inserted at the insertion location (e.g. ,/, ��/, $�/). Since this 
algorithm is lattice based instead of time based, it is mandatory to also keep track of the time. 
An example to extract discrete time steps is shown below.  

3.2. From Cubicle to Cubicle 
 From the exact location and velocity of a particle after j steps (,0 , ��0 , $�0 , (�0), given by the 
house number, cubicle coordinate and location within the cubicle, it is possible to determine 
the next location where the particle will hit the surface of this cubicle, using the intercept 
theorem from basic mathematics. On that basis, it is determined, if the particle is reflected or 
if it enters the adjacent cubicle or if it even enters the next house number. 
 Depending on entry point and flight direction three walls of the cubicle are possible 
candidates for the next collision. To determine the actual wall hit by the particle, one has to 
calculate the time to get from the current location $� � "$, $ , $!# to all three (infinite) 
bounding planes, embedding the three possible wall elements. The minimal time �1 to reach 
one of those bounding planes is 

�1 � min4� �
56|56|896:6 , � �

5;<5;<89;:; , �! �
5=|5=|89=:= >.                               (3) 

The two remaining bounding planes would be crossed outside of the current cubicle, so the 
time to reach them can be discarded. The new incubicle coordinates $�? � "$@, $@ , $@!# of the 
particle will then be  
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$@, ,! � $, ,! A (, ,! · �1        or        $�? � $� A (� · �1.                            (4) 

Accordingly, the simulation time has to be increased by �1. That component of $�? which is on 
the boundary of the present cubicle always has an integer value of C1. It can directly be used 
to determine the adjacent cubicle ��@ on whose boundary the particle is located now. We 
truncate all three vector components of $� to integer values and add the corresponding 
component of ��, yielding the new cubicle coordinate ��@:  

�@, ,! � �, ,! A int�$?, ,!�.                                                (5) 

This simple formula includes every possibility of entry point and flight direction by exploiting 
the properties of the range of the incubicle coordinate $�@. 
Including periodic boundary conditions in the calculation of ��@, this equation is changed to 

�@, ,! � ��, ,! A int�$?, ,!� A �, ,!,���mod�, ,!,��.                         (6) 

Hereby the house number has to be increased or decreased appropriately. 
 Now, two cases have to be taken into account. If ��@ is empty, the particle starts the next 
computation step in the new cubicle �, ,! � �@, ,! with the new incubicle coordinates  

$, ,! � $@, ,! � 2 · int�$?, ,!�.                                              (7) 

Simultaneously that coordinate that shares the boundary between old and new cubicle inverts 
its sign, while the others remain unchanged. If ��@ is filled and the particle may not diffuse 
inside, ��@ is discarded, the particle remains in cubicle ��, and the starting point of the next 
computation step is the end point of the previous one $, ,! � $@, ,!. In this case, a new 
velocity vector through the cubicle has to be chosen according to an appropriate reflection 
law. 

3.3. Reflections 
 From many possible reflection laws, like specular or glossy reflection, we choose the 
diffuse reflection governed by Lambert’s cosine law. A particle emitted thermally from a 
surface leaves with an angle F G H�I/2, I/2K to the normal component of the surface, where F occurs with a probability �L�F, M� N cosF�Ω. Hereby �Ω is the solid angle, which is equal 
to �F in two dimensions and equal to sinF�F�M in three dimensions. This establishes the 
same luminance in every direction. In some works, the solid angle �Ω is not clarified and we 
therefore believe that sometimes the same �L�F, M� N cosF�F behavior is applied in 2D and 
3D. In this case, anomalous diffusion effects may arise, that are beyond the scope of this 
article. These effects can be used to test the correct implementation of Lambert’s law. 

4. Simulations 
Simulations of different properties usually imply different approaches. As examples we show, 
how transport diffusion and self-diffusion, both in the Knudsen regime, have to be 
implemented. Additionally we illustrate the correction method that was used in [18] and how 
to relax a many particle system into a stationary state. 

4.1. Self- (or tracer-) diffusion 
 Calculating self- (or tracer-) diffusion implies a distinct time scale, since for every discrete 
time ti the mean square displacement �����R�� has to be calculated. This is accomplished by 
linear interpolation within the cubicles. Every calculation step starts at a certain time t at $, ,! 
and ends at a time �? � � A �1 at $@, ,!. If �S,��� . �S,���@ the simulation has advanced more 
than one time step since the last measurement. In this case the exact location at the discrete 
times is determined by  
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$��int��?�� � $���� A "$���?� � $����# · �int��?� � ��/�1.                            (8) 

Depending on the flight path, within the cubicle more than one discrete time step may have 
passed, which has to be taken into account accordingly. From these discrete measurements of $�, the mean square displacement �����R��  can easily be averaged, leading to the self diffusion 
coefficient Ds 
 This method to extract discrete time steps also has to be used for other measurements, e.g. 
relaxation into stationarity or the later described correction method for transport diffusion. 

4.2. Transport diffusion 
 In the simulations of the transport diffusion coefficient Dt, a concentration gradient ������ ��⁄  along the pore length T is applied with the concentrations � � �/ � 1 on the left 
hand side and � � 0 on the right hand side �� U T�. All particles start at � � 0, which means ,/ � 0, �,/ � 0, $,/ � �1, with a randomly distributed velocity (�/. Then they perform a 
random walk in 2D or 3D, according to the chosen reflection law. They are absorbed when 
they hit either the left boundary (� � 0, where they entered) or the right boundary at � � T 
(,R � ,�� � 1, �,R � �,��, $,R � A1), which corresponds to Dirichlet boundary 
conditions. After some relaxation time, this leads to a constant current density ��, as described 
above.  
 Since relaxation of a particle flow into a stationary state is usually very time-consuming, as 
the particle flux has to be monitored throughout the system, we use a method proposed by 
Evans et al. [19]. The particle flux V in x-direction is derived from the (transmission) 
probability W
 that a particle starting at the left boundary will leave the pore through the right 
boundary, 

V � �/W
�(�                                                            (9) 

where �(� is the mean velocity in x-direction.  
Combining this equation with Fick’s law yields 

	
 � ��/W
�(� XY�YZ8[.                                                  (10) 

Usually the concentration gradient is assumed to be constant and equal to  
Y�
Y � ��//T.                                                           (11) 

We can now combine both equations to 

	
 � W
�(�T.                                                          (12) 

Accordingly, for calculating W
, N random trajectories are considered that start at � � 0 and 
end when either � � 0 or � � T is reached.  

4.3. Correction method 
 A problem arises if the concentration gradient ��� ��⁄  within the pore is not well 
approximated by a constant. This can be due to simple entrance effects, as shown in [18], 
where the Enhanced ft method was introduced for correction. If deviations from a constant 
concentration gradient occur, this gradient can only be taken as a starting point. 
 To obtain the correct value of 	
, we need the concentration ���� within the pore and the 
associated concentration gradient �����/��. For this purpose we need to determine the exact 
location for each particle after every integer time step. The discrete times can be easily 
extracted through linear interpolation as shown above. Figure 4 shows the schematics of such 
a procedure 2D, where ���� is calculated from the trajectories used to calculate W
. The 
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particle positions at every time step are indicated by dots. The histogram over all particle 
positions of the whole simulation is shown at the bottom of the figure.  

 
 Fig. 4: Schematic for generating the particle histogram and hence c(x) for two particle trajectories in two 
dimensions. Every time step, the histogram (below) is incremented at the appropriate location.   

 Normalized this histogram describes the time-averaged concentration �̃���, which can be 
identified as equal to the ensemble averaged concentration ���� using the ergodic hypothesis. 
The corresponding concentration gradient then is applied to Fick’s law.  

4.4. Relaxation into stationarity 
 To compare the results from Evans’ method or its enhanced version, it might be necessary 
to, indeed, relax the system into a stationary state, where the particle concentration does not 
depend on the time. This can be very time consuming, since the particle flux has to be 
monitored throughout the system and deviations have to be compared.  
 In our simulations we divide the pore length into equal sized bins (e.g. every house number 
corresponds to one bin) and insert a fixed number of particles every time step until the flux of 
entering and exiting particles is statistically equal. Again, the particle locations at discrete 
time steps are determined as shown above. We consider a state as stationary, if the particle 
concentration between two given discrete time steps at a fixed number of bins differ at 
maximum by a predetermined threshold value (see [18]). The discrete time steps are 
determined as described above. 

5. Conclusions 
 We have presented the algorithm that we used in our studies of molecular diffusion in 
narrow pores in the Knudsen regime in full detail. We laid out the structure of the pore 
system, including an example to generate Koch shaped rough pores. This framework of the 
pore system is based on small cubicles wherein the successive steps of free flight or reflection 
are calculated. These elementary building blocks are embedded into a periodic structure to 
enlarge the system size. The diffusing particles are described by their velocity and three 
different coordinate sets, incubicle coordinate $�, cubicle vector �� and house number n. The 
algorithm depends only on the system size and is completely independent of the number of 
walls, making it perfectly adequate for very rough pore surfaces. A discrete time scale can be 
extracted in run-time during the simulation; this is needed since many applications are based 
on discrete time intervals. We also showed examples of different tasks the algorithm can 
accomplish, e.g. how to determine self-diffusion or transport properties and relaxation into a 
stationary state. Based on these examples it should be possible to enhance the algorithm to 
serve many other purposes, e.g. the inclusion of particle interactions.  

* * * 
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 The authors are open for any further questions regarding the simulation algorithm. 
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