
EUROPHYSICS
LETTERS

Published under the scientific responsibility of the

EUROPEAN PHYSICAL SOCIETY
Incorporating

JOURNAL DE PHYSIQUE LETTRES • LETTERE AL NUOVO CIMENTO

OFFPRINT

Vol. 68 • Number 5 • pp. 699–705

Discrete charging of a quantum dot strongly coupled
to external leads

∗ ∗ ∗

R. Berkovits, F. von Oppen and J. W. Kantelhardt



or directly to EDP Sciences:

17 av. du Hoggar   B.P. 112   91944 Les Ulis Cedex A France
Tel. 33 (0)1 69 18 75 75   Fax 33 (0)1 69 86 06 78   subscribers@edpsciences.org

Editor-in-Chief

Prof. Denis Jérome
Lab. Physique des Solides - Université Paris-Sud
91405 Orsay - France
jerome@lps.u-psud.fr 

Order through your subscription agency

Subscription 2004

24 issues - Vol. 65-68 (6 issues per vol.)

ISSN: 0295-5075 - ISSN electronic: 1286-4854

France & EU � 1 678 €
(VAT included)

Rest of the World � 1 678 €
(without VAT)

Europhysics Letter was launched more than fifteen years ago by the European Physical Society, the Société
Française de Physique, the Società Italiana di Fisica and the Institute of Physics (UK) and owned now by
17 National Physical Societies/Institutes. 

Europhysics Letters aims to publish short papers containing non-trivial new results, ideas, concepts,
experimental methods, theoretical treatments, etc. which are of broad interest and importance to one or
several sections of the physics community.

Europhysics letters provides a platform for scientists from all over the world to offer their results to an
international readership.

Payment:

❐ Check enclosed payable to EDP Sciences

❐ Please send me a pro forma invoice

❐ Credit card:

❐ Visa ❐ Eurocard ❐ American Express

Valid until:

Card No: Signature:

❐ Please send me a free sample copy

Institution/Library:  . . . . . . . . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Name:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Position:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Address:  . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ZIP-Code:  . . . . . . . . . . . . . . . . . . . . . . . . . . .

City:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Country:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E-mail:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EUROPHYSICS
LETTERS

Taking full advantage of the service on Internet,
please choose the fastest connection:

http://www.edpsciences.org
http://edpsciences.nao.ac.jp
http://edpsciences-usa.org
http://www.epletters.ch

Staff Editor: Yoanne Sobieski
Europhysics Letters, European Physical Society, 6 rue des Frères Lumière, 68200 Mulhouse, France

Editorial Director: Angela Oleandri Director of publication: Jean-Marc Quilbé
Production Editor: Paola Marangon

Publishers: EDP Sciences S.A., France - Società Italiana di Fisica, Italy



Europhys. Lett., 68 (5), pp. 699–705 (2004)
DOI: 10.1209/epl/i2004-10258-6

EUROPHYSICS LETTERS 1 December 2004

Discrete charging of a quantum dot strongly coupled
to external leads

R. Berkovits
1
, F. von Oppen

2 and J. W. Kantelhardt
3

1 The Minerva Center, Department of Physics, Bar-Ilan University
Ramat-Gan 52900, Israel
2 Institut für Theoretische Physik, Freie Universität Berlin
Arnimallee 14, 14195 Berlin, Germany
3 Institut für Theoretische Physik III, Justus-Liebig-Universität Giessen
35392 Giessen, Germany

received 19 May 2004; accepted 30 September 2004
published online 3 November 2004

PACS. 73.23.Hk – Coulomb blockade; single-electron tunneling.

PACS. 71.15.Dx – Computational methodology (Brillouin zone sampling, iterative diagonal-
ization, pseudopotential construction).

PACS. 73.23.-b – Electronic transport in mesoscopic systems.

Abstract. – We examine a quantum dot with Ndot levels which is strongly coupled to leads
for varying number of channels N in the leads. It is shown both analytically and numerically
that for strong couplings between the dot and the leads, at least Ndot − N bound states
(akin to subradiant states in optics) remain on the dot. These bound states exhibit discrete
charging and, for a significant range of charging energies, strong Coulomb blockade behavior
as a function of the chemical potential. The physics changes for large charging energy, where
the same (superradiant) state is repeatedly charged.

It is well known that the number of electrons in a weakly coupled quantum dot changes
discretely as function of the chemical potential. This phenomenon is the basis for the appli-
cation of such dots as single electron transistors [1]. When the coupling to the external leads
is weak, it may be treated as a perturbation and results in a broadening Γ = πNν|V |2 of the
states of the uncoupled dot. (ν is the density of states (DOS) in a lead, N the number of
leads, and V is the overlap matrix element between a state in the dot and a typical state of
the leads.) Usually, one expects the discrete features of the dot to be lost once Γ is larger
than the typical level spacing ∆ in the dot. This corresponds to the requirement that the
dimensionless conductance through the dot, gdot = Γ/∆, should be larger than one.

Electron-electron interaction in the dot results in the Coulomb blockade phenomenon [1].
Within the “orthodox model” [2], the chemical potential change needed to add an additional
electron to a weakly coupled dot is no longer ∆ but rather ∆ + e2/C, where C is the capac-
itance of the dot. For stronger coupling to the leads, suppression of the Coulomb blockade
is predicted [3], and once Γ ∼ ∆ only a weak remnant of the discreteness of the dot is ex-
pected [4].
c© EDP Sciences
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In this picture the only relevant condition for the appearance of discrete features in the
dot is gdot < 1. Nevertheless, one may extrapolate from the Dicke effect [5,6] that a quantum
dot strongly coupled to a lead will also show sharp resonances. In an extreme strong-coupling
limit, we can think of the dot levels as degenerate, analogous to the identical resonances of
the atoms in the Dicke effect. These degenerate levels are coupled via the continuum of lead
states which is akin to the coupling of the atoms by the radiation field. Indeed, a resonance
in a two-orbital dot strongly coupled to two leads was seen in ref. [7]. The tunneling DOS of
a non-interacting two-orbital dot strongly coupled to a single lead tends towards a delta-like
peak when gdot → ∞ [8]. It was later shown [9] that, when a dot of Ndot states is strongly
connected to a single lead, Ndot−1 delta-like peaks in the tunneling DOS remain for gdot → ∞.
The case of two leads connected to a dot with Ndot = 2 shows interesting dependence on the
overlap matrix element Vk,i (i.e., the i-th level overlap with the k-th lead) [10]. For identical
matrix elements one sharp peak in the local density of states remains, while if one of the four
matrix elements has a different sign, no such features are observed.

In this letter we show that in the limit gdot → ∞, the relevant parameter in determining
the number of bound states in the dot for generic dot-lead coupling is the number of channels
N of the leads, or, equivalently, the dimensionless conductance g of the leads. We demonstrate
that for N channels coupled to a dot, Ndot −N states remain bound to the dot, except when
the coupling matrix elements between leads and dot are independent of either dot level or
channel index. For the latter cases, Ndot−1 states remain bound to the dot. Using numerical
density-matrix renormalization group (DMRG) as well as analytical arguments, we show that
these bound states exhibit discrete charging as well as Coulomb blockade except for very
large charging energies. Thus, in order to wash out all discrete features of a dot in the limit
of strong coupling, one or more leads of total dimensionless conductance g > Ndot must be
connected. With increasing coupling strength, a dot coupled to leads will evolve from Ndot

bound states at very weak coupling, to no bound states at intermediate coupling [3] and finally
to Ndot−g bound states at strong coupling. Criteria for the different regimes and experimental
realizations will be discussed. It is interesting to note that the physics discussed here for
quantum dots is also closely related to the concept of doorway states in nuclear physics [11].

We consider a dot-lead system described by the Hamiltonian

H = Hdot +
N∑

k=1

(
Hk
Lead +Hk

Coupling

)
. (1)

Here, the dot is represented by the Hamiltonian

Hdot =
Ndot∑

i=1

(εi − µ)a†iai + U

Ndot∑

i>j

a†iaia
†
jaj (2)

in terms of the creation operators a†i of an electron in the i-th single-particle eigenstate of the
dot with energy εi, charging energy U = e2/C and chemical potential µ. For disordered dots
its eigenstates and eigenvalues are usually obtained from a random matrix ensemble. The
Hamiltonian of the k-th lead reads

Hk
Lead = µ

∞∑

j=1

ck†
j ck

j − t

∞∑

j=1

ck†
j ck

j+1 +H.c., (3)

where ck†
j is the creation operator of an electron on the j-th site of the k-th 1D lead, and

t is the hopping matrix element in the lead. The coupling between the dot and the lead is
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Fig. 1 – The increases ∆n(µ, N) in the occupation of a quantum dot with Ndot = 16 orbitals as
a function of the chemical potential µ and the width N of the quasi–one-dimensional lead (length
M = 100) connected to the dot. Non-integer numbers of N correspond to having the connection of
the last channel to the dot and its neighboring channel logarithmically increased (see the text). The
increase in the occupation is color coded, as indicated in the figure. The symbols correspond to the
derivative in the limit of V → ∞.

contained in

Hk
Coupling =

Ndot∑

i=1

Vk,ia
†
i c

k
1 +H.c., (4)

where the dot is assumed to be attached to the edge of the lead, and the coupling amplitude
between the i-th orbital in the dot and the k-th lead is given by Vk,i. The N one-dimensional
leads may also be connected by transverse hopping −t

∑N−1
k=1

∑∞
j=1 c

k†
j ck+1

j +H.c. in order to
turn them into a quasi–one-dimensional lead with N channels.

We begin with exact-diagonalization results for a non-interacting (U = 0) dot coupled to an
external quasi-1D lead of varying width (i.e., number of channels N). Exact diagonalization
can only treat finite systems, and therefore cannot deal with infinite leads. Nevertheless, as
long as the level broadening in the dot is much larger than the level spacing in the lead, the
description of the system is accurate. Diagonalizing the Hamiltonian H gives the eigenvalues
εm and eigenvectors |m〉 of the dot-lead system. The number of electrons on the dot at a
given chemical potential is n =

∑εm<0
m=1

∑Ndot
i=1 |〈m|a†iai|m〉|2.

In fig. 1 we present the discrete increases ∆n(µ,N) =
∫ µ+0.001t

µ−0.001t (dn/dµ
′) dµ′ in the occu-

pation of a disordered quantum dot with Ndot = 16 orbitals (generated by a random matrix
with a Gaussian distribution of width 0.1t) as a function of the chemical potential µ and N ,
the number of channels connected to the dot. In the absence of dot-lead coupling (N = 0),
all increases ∆n(µ,N) > 0 occur at µ = εm. The integer points on the x-axis correspond to
N channels connected to the dot by couplings Vk,i drawn from a random Gaussian distribu-
tion with a zero mean and variance t. The non-integer values of N correspond to increasing
logarithmically the values of the coupling of the N + 1 channel to the dot and its transverse
hopping to the neighboring channel up to the full strength V�N�+1,i and t at integer N . For
integer values of N it can be clearly seen that there are Ndot − N jumps in the occupation
of the dot corresponding to the same number of states bound to the dot. As one couples an
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additional channel to the dot, the energies of these states gradually change, until for some
intermediate strength of coupling some of the states move abruptly, split, or disappear. At
stronger couplings (i.e., close to the next integer N) the ordered structure of the states reap-
pears, with one less state than for the previous value of N . Similar behavior is seen when there
is no transverse hopping between the channels (i.e., N independent 1D leads). If Vk,i = t is
independent of i or k (i.e., all the couplings to the same lead or orbital are identical) a loss
of a bound state occurs only when connecting the first lead to the dot. Attaching additional
leads does not change the number of bound states on the dot.

To understand these numerical results, we approach the system within the scattering-
matrix formalism. For N propagating channels in the leads, the dot-lead system can be
characterized by the N ×N scattering matrix [12]

S = 1 − 2πiνV
1

E −Hdot + iπνV †V
V †, (5)

where V is an N × Ndot matrix describing the coupling of the channels to the Ndot orbitals
of the dot. The local DOS of the dot is given by dn/dµ = (1/π) Im tr[µ−Hdot + iπνV †V ]−1.
If, to be specific, we take Hdot to be diagonal with random-matrix spectrum, the couplings
Vk,i are essentially independent random Gaussian variables of variance v2. We emphasize,
however, that our results are not specific to a random-matrix spectrum.

For a weakly coupled dot, we can compute the S-matrix by first diagonalizing the dot
Hamiltonian Hdot. The broadening of the levels can then be obtained by treating iπνV †V in
first-order perturbation theory. To understand the opposite limit of strong coupling, we first
diagonalize iπνV †V and subsequently account for Hdot perturbatively. We start by writing
V † = (v1,v2, . . . ,vN ) where the vi are Ndot-dimensional vectors. In obvious notation, we can
then write πνV †V = πν

∑N
i=1 |vi〉〈vi| which shows that the Ndot×Ndot matrix πνV †V has at

most rank N and generically only N non-zero eigenvalues λ ∼ πνNdotv
2 with � = 1, . . . , N .

Including Hdot perturbatively, we first need to diagonalize Hdot in the (Ndot −N)-dimen-
sional degenerate subspace of zero eigenvalues. In the limit Ndot � N , this leads to a random-
matrix spectrum of Ndot−N real eigenvalues ei whose width and level spacing ∆ equal those
of the Hamiltonian Hdot of the uncoupled dot. Thus, in first-order perturbation theory we
find Ndot −N infinitely sharp resonances in addition to N imaginary eigenvalues which lead
to an extremely broad background (since λ ∼ Ndot) in the local DOS.

In second-order perturbation theory, these resonances acquire a width since Hdot cou-
ples the sharp resonances to the broad background. The resulting width can be easily esti-
mated to be

∆ei �
N∑

=1

|〈i|Hdot|�〉|2
−iλ

∼ i
N∆2

π2νv2
∼ i

N2∆2

πΓ
. (6)

Here, we used that Hdot is a random-matrix Hamiltonian and defined the golden-rule width
Γ = πνNv2 of the eigenstates εi of the uncoupled dot. We assume strong coupling so that
πνv2 � ∆, which allows us to neglect the unperturbed energy ei in the denominator. When
this width remains small compared to the level spacing, i.e., when N2/πgdot  1, we find
Ndot − N isolated resonances in both conductance and local DOS even though dot and lead
are very strongly coupled, in agreement with our numerical results.

By an analogous argument one finds only one imaginary eigenvalue and hence Ndot − 1
sharp resonances in the non-generic cases in which the coupling Vk,i is independent of either
channel k or dot level i. These resonances have a width of order ∆/πgdot. This width is smaller
by a factor N2 compared to the resonance width in the case of arbitrary dot-lead coupling.
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Fig. 2 – The occupation n as a function of the chemical potential for Ndot = 3 and N = 2. The dot
levels have energies ε1 = −1.3t, ε2 = −1.2t, and ε3 = −1.1t. The interaction U = 0.2t. In (a) the
couplings are V11 = 0.05pt, V12 = 0.09pt, V13 = 0.01pt, V21 = 0.09pt, V22 = 0.01pt, V23 = 0.01pt,
where p = 1, 2, 3, . . . , 12 for the different curves, while in (b) all the couplings are V = 0.05pt.

We now turn to the influence of the charging energy U . We compute the ground state for an
interacting dot attached to several 1D leads using an extension of a DMRG method developed
for a single 1D lead connected to a dot [13] which will be described in detail elsewhere. As
in the single-lead case, the essence of the method is similar to the regular DMRG for 1D
systems [14]. The main difference is that in every iteration a site is added to each of the leads.
Figure 2 shows the occupation number n as a function of µ for a Ndot = 3 dot attached to
two leads for different values of the dot-lead coupling.

In fig. 2a, the case of non-identical couplings is presented. The general behavior seen for
the non-interacting case is repeated in the interacting case. For weak coupling, there are three
discrete jumps in the occupation of the dot separated by ∆ + U . As the coupling increases
only one discrete jump remains. Thus, the interactions in the dot do not eliminate the bound
state. Moreover, interactions shift the position of the remaining jump to higher µ relative to
the non-interacting case.

If the couplings are symmetric to all leads, the number of bound states is Ndot − 1 no
matter how many leads are attached. This is illustrated in fig. 2b, where two discrete jumps
remain even for strong coupling. These bound states are separated by a distance of ∆+U as
one expects from two bound states on an interacting dot. Similar Coulomb-blockade behavior
at strong coupling has recently been seen for the Kondo system [15].

This behavior can be explained by extending the scattering theory above to include U
within the Hartree approximation. This approximation accounts for U by replacing ei →
ei + U

∑
j �=i〈b†jbj〉, where bj annihilates an electron in the dot state ej . The charging of the

broad resonances can be neglected as long as we consider chemical potential changes which
are small compared to the bandwidth. With this approximation, subsequent resonances are
separated by ∆ + U .

Remarkably, the behavior changes for very large charging energy U � πνNdotv
2, where the

superradiant state becomes Coulomb-blockaded. In this regime, we observe numerically that
the number of Coulomb-blockade steps equals the number of dot states Ndot, cf. fig. 3(a). The
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Fig. 3 – Occupations vs. µ for Ndot = 3 (ε1 = −1.41t, ε2 = −1.4t, ε3 = −1.39t) coupled to one
lead (all couplings V = 0.2t) with strong charging energy U = 0.6t. (a) Dot occupation n = n1 +
n2 + n3. (b) Individual dot-orbital occupations n1 (full line), n2 (dashed line), n3 (long-dashed line).
(c) Occupation in the strong-coupling basis: superradiant (full line) and subradiant states (dashed
and long-dashed lines).

width of the steps is of order πνNdotv
2, large compared to the step widths of subradiant states

at weaker charging energy. Figure 3(b) shows that the charging steps are due to simultaneous
charging of all three dot orbitals which leads to an oscillatory structure in the occupations of
the dot states. The origin of these oscillations can be traced by considering the occupations of
the strong-coupling super- and subradiant states (i.e., the eigenstates of iπνV †V ), as shown
in fig. 3(c). Clearly, the origin lies in oscillations in the occupation of the superradiant state
which, in this case, is a symmetric superposition of all dot orbitals. At the conductance step,
one predominantly charges the superradiant state, while in between steps there is a tendency
to exchange occupations between the superradiant and a subradiant state.

To understand this behavior, consider the configuration of the dot when µ takes a value
on the charging plateau n = 1. In this case, the dot could either charge the superradiant or
a subradiant state. In perturbation theory, the dot-lead coupling changes the (many-body)
energy of these configurations (Esuper and Esub, respectively) due to virtually exciting an
electron from the lead to the superradiant state, if the latter is unoccupied, or by virtually
exciting an electron from the dot to the leads, if the superradiant state is occupied. (We
neglect virtual processes involving subradiant states since their coupling to the leads is much
weaker.) This gives an energy difference ∆E = Esuper − Esub = W

2π [ln(t/|ε + U |) − ln(t/|ε|)]
between the two configurations, where ε is the energy of the dot state relative to µ and W is
the width of the superradiant state. (The single-particle level spacing is neglected here.) Thus,
for |ε| < U/2 (|ε| > U/2) occupying the superradiant (subradiant) state gives the lower energy
so that the charging steps are due to charging of the superradiant state, while somewhere on
the plateau the occupations of the superradiant and subradiant states are exchanged. The
precise location of this switch is affected by the single-particle level spacing of the dot. This
mechanism was considered by Silvestrov and Imry in a different context [16].

We close with a discussion of possible experimental realizations. Generically, for a semicon-
ductor quantum dot perfectly coupled to leads by quantum point contacts, in the sense that
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there are N perfectly transmitting channels, one finds that Γ ∼ N∆, leading to N2∆/πΓ ∼ N .
This shows that this situation is not in the strong-coupling limit and thus there are no sharp
resonances, in agreement with the description of this regime, e.g., in refs. [3, 4].

One situation in which the effect discussed here can be observed is when, by a mesoscopic
fluctuation or by symmetry, several dot levels bunch together so that their effective level
spacing is much smaller than the average ∆. Alternatively, a situation with an anomalously
small ∆ can be engineered by a judicious choice of the device. E.g., one can think of a set of
n quantum dots with weak interdot tunneling whose energy levels can be manipulated into
almost degeneracy by a set of external gates. This realizes a situation withNdot = n and strong
coupling Γ � N2∆ to the leads. Finally, one may also think of cases in which leads and “dot”
are made from different materials, allowing for an independent manipulation of Γ and ∆. For
example, when tunneling through a series of identical impurities or a suitable molecule between
metallic electrodes, one expects Γ to be enhanced by the large DOS in the metallic leads.
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