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Pore opening effects and transport diffusion in the Knudsen
regime in comparison to self- (or tracer-) diffusion
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Abstract – We study molecular diffusion in linear nanopores with different types of roughness
in the so-called Knudsen regime. Knudsen diffusion represents the limiting case of molecular
diffusion in pores, where mutual encounters of the molecules within the free pore space may be
neglected and the time of flight between subsequent collisions with the pore walls significantly
exceeds the interaction time between the pore wall and the molecules. We present an extension
of a commonly used procedure to calculate transport diffusion coefficients. Our results show that
using this extension, the coefficients of self- and transport diffusion in the Knudsen regime are
equal for all regarded systems, which improves previous literature data.
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Introduction. – Diffusion phenomena of gases in
disordered and porous media have been subject to intense
research for several decades [1–5] with applications in
heterogeneous catalysis [6], adsorption [7] and separa-
tion [8]. Recent progress in synthesizing nanostructured
porous materials [7,9] has provided essentially unlimited
options for the generation of purpose-taylored pore archi-
tectures and there is an increasing demand for clarification
of the main features of molecular transport in such systems
[10,11]. In this work, we concentrate on transport pores,
that play an important role in bimodal porous materi-
als [12] where they ensure fast molecular exchange between
the microporous regions, in which the actual conversion
and separation phenomena take place. In the transport
pores, the so-called Knudsen diffusion dominates, where
the intermolecular collisions can be neglected and the
molecules perform a series of free flights and change
direction statistically after collisions with the pore walls.
Experimentally, two kinds of diffusion problems can

be considered, the so-called transport diffusion, where
the particles diffuse in a non-equilibrium situation from
one side of the system to the opposite side (here under the
influence of a concentration gradient) and the self- (or
tracer-) diffusion under equilibrium conditions. Both prob-
lems are described by the transport diffusion coefficient Dt
and the self- (or tracer-) diffusion coefficient Ds, respec-
tively.Dt is defined by Fick’s 1st law as the proportionality

constant between the current density j and the concentra-
tion gradient ∂c/∂x,

j =−Dt ∂c
∂x
, (1)

while Ds is defined by the mean square displacement
〈x2(t)〉 of a random walker

〈x2(t)〉= 2dDst (2)

after time t, where d is the dimension of the pore. Under
the conditions of Knudsen diffusion, both diffusion coef-
ficients are expected to coincide [2]. Using the method of
Evans et al. [13], this has recently been verified numeri-
cally for smooth pores and for pores of different surface
roughness [14] showing, however, slight numerical differ-
ences between Ds and Dt. Since, on the other hand, there
are also studies which do in fact consider the possibil-
ity of a difference between transport and self-diffusion
coefficients in the Knudsen regime [15], even these differ-
ences have to be taken seriously. In [14] their occurence
is attributed to the possibility of a non-constant density
gradient of the gas particles inside the pores that disturbs
the method of [13] slightly. Here, we investigate this prob-
lem in detail both for diffusion in the pores and for quite
general random walks. We find that the deviations from
the expected gradient are strongest when the particles
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Fig. 1: Realizations of the pore geometry generated by a
generalized random 3d-Koch curve of generation ν. (a) Smooth
pore (ν = 0) and (b-c) rough pores of ν = 1 and 2 of length
L and width h (for details see [14]). For the simulations, the
system is covered with a grid of lattice constant a= h/64.

perform discrete jumps with many different velocities. The
deviations disappear completely, if only one fixed jump
length per time step is allowed and they are quite small
(but measurable) for the Knudsen pores of ref. [14] (see
fig. 1). We present an improvement of Evan’s method (that
we call “Enhanced ft Method” (EFM)) that accounts
for the non-constant gradients and show that with EFM,
Ds =Dt for all considered systems.

Calculation of the transport diffusion. – In the
simulations of Dt as well as in a typical diffusion exper-
iment, a concentration gradient ∂c(x)/∂x is applied with
the concentrations c= c0 = 1 on the left-hand side and
c= 0 on the right-hand side (x�L) of the pore, respec-
tively. All particles start at x= 0 and perform a random
walk in d= 1 or a random trajectory between the system
walls in d= 3, using Lambert’s law of reflection [14]. They
are absorbed when they hit the left or the right bound-
ary (Dirichlet boundary conditions). After some relaxation
time, this leads to a constant current density j, described
by eq. (1).
Relaxation of a particle flow into a stationary state is

very time-consuming, as the particle flux has to be moni-
tored throughout the system. In the stationary state the
particle concentration does not depend on the relaxation
time t. In our simulations we consider a state as stationary
if the particle concentrations between two given time steps
differ at maximum by a predetermined threshold value1.
It is common practice to use the faster Evans’ method [13]
to derive j from the (transmission) probability ft that a
particle starting at the left boundary will leave the pore
through the right boundary,

j = c0ft〈ux〉, (3)

where 〈ux〉 is the mean velocity in the x-direction.
Combining eqs. (1) and (3) yields

Dt =−c0ft〈ux〉
(
dc

dx

)−1
. (4)

1For the results shown here we used a threshold of 0.1% for
the maximum concentration change between time t (end of the
simulation) and t/2. We also tested lower percentages and different
time intervals, as e.g. changes between two successive time steps,
but the results remained unchanged.

Fig. 2: Concentration densities c(x/h) as calculated through
relaxation of 106 particles into a stationary state (open
symbols) and by the Enhanced ft Method (EFM, filled
symbols), plotted vs. x/h for smooth 3d pores of length L=
50h. The results were generated from 106 runs.

Usually, the concentration gradient is assumed to be
constant and equal to

∂c

∂x
=−c0/L. (5)

Combining eqs. (4) and (5) yields

Dt = ft〈ux〉L. (6)

Accordingly, for calculating ft, N random trajectories
are considered that start at x= 0 and end when either
x= 0 or x=L is reached. As we show in this paper,
the problem with Evans’ method is that it only works
if the concentration gradient is well described by eq. (5).
It leads to spurious results, if deviations from a constant
concentration gradient occur and in this case, eq. (4) has
to be taken as starting point.

From probability density to concentration. – To
obtain the correct value of Dt via eq. (4), we need the
concentration c(x) within the pore and the associated
concentration gradient ∂c(x)/∂x. Figure 2 shows the
results for c(x) as calculated by relaxing the density of
gas particles inside smooth 3d pores of length L= 50h and
width h into a stationary state (open symbols).
For the simulation h was subdivided into smaller

segments of size a with h= 64a. Therefore, a is the
lattice constant which for the roughest pores considered
is the size of the smallest boundary structures. When the
particle hits a wall, the new direction is chosen randomly,
according to Lambert’s law of reflection. The path of
the particle and hence the next collision is calculated
by using basic mathematics within successive volume
elements of size a3. The traveled distances are evaluated
after all integer numbers of time steps τ , whereas for the
path lengths, non-integer multiples of a are allowed and
determined by linear interpolation.
We can see that the concentration profile in fig. 2

differs only inside a small boundary region from a linear
profile. Close to the left boundary, c(x) shows a small
bump, whose relative position xmin/L approaches zero
for increasing system size L. Therefore, we can still
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Fig. 3: Schematics for generating the particle histogram and
hence c(x) for (a) 1d jumps with constant velocity and
(b) particle trajectories in 2d. Every time step, the histograms
(below) are incremented at the appropriate location.

apply Evans’ method for x� xmin, where ∂c(x)/∂x=
const but unequal to −1/L. The deviation of the slope
from −1/L changes Dt by several percent. Unfortunately,
the relative deviation between the correct ∂c(x)/∂x and
−1/L is unaffected by the system size, as the absolute
deviation decreases with the system size in the same way
as ∂c(x)/∂x. Hence, the problem cannot be solved by
simply increasing the system size, but only by calculating
the correct c(x).
Therefore, if we want to apply Evans method, we must

find a fast procedure to calculate the correct c(x) for large
systems. Figure 3 shows the schematics of such a procedure
in 1d and 2d, where c(x) is calculated from the trajectories
used to calculate ft. The particle positions at every time
step are indicated by dots. For better statistics we used
64 time steps in every time interval τ that a particle with
u= 1 needs to travel the distance of h. This has to be
taken into account when normalizing the concentration
c(x). The histogram over all particle positions of the whole
simulation is shown at the bottom of the figure. Hence,
the histogram describes the time-averaged concentration
c̃(x). Using the ergodic hypothesis we identify c̃(x) as equal
to the ensemble averaged concentration c(x) that we can
therefore calculate directly from the particle histogram.
To test this assumption, c(x) of our three-dimensional
pores calculated by EFM is shown in fig. 2 by the filled
symbols. It can be seen that indeed c(x) agrees very well
with the profile calculated by relaxing the system into an
equilibrium situation. The time-consuming relaxation into
a stationary state therefore can still be avoided and the
fast method of ref. [13] is maintained and improved.

Examples and results. – In the following, we show
c(x) and the uncorrected and corrected diffusion coeffi-
cients Ds and Dt for several different systems, including
smooth and rough linear 3d pores (fig. 4) and different 1d
random walks (figs. 5 and 6). All diffusion coefficients are
in units of h2/τ since we measure the length in units of h
and the time in units of τ . We show that using our new
method, in all considered cases, both diffusion coefficients
are in excellent agreement.
We start with the 3d pores as the experimentally rele-

vant case (see fig. 1). We know from [14] that their
jump lengths l asymptotically show a Levy-distribution

P (|l/h|)∼ |l/h|−(1+β) with β = 3. Therefore we include

Fig. 4: (a) Particle concentration c(x/L) plotted vs. the
normalized position x/L along the x-axis for smooth 3d pores
(squares) and the corresponding case of Levy distributed jumps
in 1d (×). (b) Self- (open symbols, +) and transport (filled
symbols, ×) diffusion coefficients for the 3d pores and the 1d
jumps without correction and (c) with correction. (d) Concen-
tration profile and (e) uncorrected and (f) corrected self- and
transport diffusion coefficients (open and filled symbols, respec-
tively) for rough 3d pores of generation ν = 1 (triangles) and
ν = 3 (circles). The results were generated from 107 runs.

Fig. 5: Concentration densities c(x/h) of several linear systems
calculated by relaxation into a stationary state (open symbols)
and by EFM (filled symbols), plotted vs. x for systems of length
L= 24h. (a) Gaussian distributed step sizes with different
velocity profiles: constant velocity (squares), velocity propor-
tional to the jump length (circles) and Gaussian distributed
velocities (triangles). (b) Discrete random walks with fixed
velocity u= h/τ and stepsizes l= 1h (squares), 1h, 2h (circles)
and 1h, 2h, 3h (triangles), (c) Same random walks but with
velocity u= l/τ . The expected c(x) = c0−x/L only applies to
the cases of l= 1h (in (b) and (c)). The results were generated
from 106 runs.

simulations in 1d with a similar Levy jump length distrib-
ution with β = 3 into the same figure. To make the simula-
tions in 3d and 1d more comparable we used a composed
jump length distribution in our 1d simulations: Jumps
larger than h are Levy distributed, jumps smaller than
h occur equally often. This is to imitate the influence of
the pore geometry for small jump lengths. Figure 4 shows
(a) the resulting concentration profiles c(x) for these 1d
and the smooth 3d systems, and the resulting diffusion
coefficients (b) without correction and (c) with correction.
Figures 4(d)-(f) show the equivalent results for rough 3d
pores of first and third generation. All deviations between
Ds and the uncorrected Dt are about 5% and we can see
they disappear by using EFM.
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Fig. 6: (a) Concentration density c(x/L) for random walks with
discrete jump lengths l= 1h (squares), l ∈ {1h, 2h} (circles)
and l ∈ {1h, 2h, 3h} (triangles up) and Gaussian distributed
l (triangles down) with µ= 0 and σ= 2.5h, plotted vs. the
normalized position x/L. Self- (empty symbols) and transport
(filled symbols) diffusion coefficients for some of the 1d random
walks from (a) without correction (b) and with correction (c).
The straight lines show the values of Ds and Dt obtained
analytically. The results were generated from 106 runs.

It is interesting that the deviations are smaller for the
rough pores than for ν = 0. We believe that this is due
to the very large jump lengths occuring in the smooth
pores that are more strongly suppressed by the boundary
roughness. Since higher generations only influence smaller
length scales, this effect saturates for higher roughness.
Additionally for small lengths L and for small times
t we see huge finite-size effects, but both Dt and Ds
are converging asymptotically. In this regime the rough
geometries show more statistical fluctuations since fewer
particles diffuse as far into the pore.
Next, we show the calculations of c(x) by EFM for some

more theoretical cases of 1d random walks with differ-
ent jump length and velocity distributions. In fig. 5 we
compare c(x) for these cases as calculated by relaxation
into a steady state (open symbols) to c(x) as calculated by
EFM (filled symbols). Also here, the agreement between
both methods is excellent. In fig. 5(a) the jump lengths
l are Gaussian distributed, whereas the velocities u are
i) constant, ii) proportional to l and iii) Gaussian distrib-
uted. Figure 5(b) shows c(x) for random walks of step
size l= nh, n∈ {1, 2, 3} with constant velocity u= h/τ ,
where u can be identified with the mean velocity in real
systems. Figure 5(c) shows c(x) for the same random walks
but in this case per time step τ one complete jump is
made and jumps of different length therefore have different
velocities.
In all considered 1d systems, only for systems with a

single jump length l=±h, c(x) does not deviate from
the expected linear concentration profile with ∂c(x)/∂x=
−1/L. A very pronounced deviation can be seen for
systems with high probabilities to make either short or
long jumps per time step. In this case, the concentration
profile can be much higher or much smaller than in the
other cases (figs. 5(a) and (c)). For constant velocities or
for a Gaussian velocity profile which is not correlated to
the jump lengths, the enhancement of the concentration
profile is comparable to the results of the 3d pores.
As a last example, fig. 6(a) shows the concentration

profile for random walks with discrete step sizes of l= 1h,

Fig. 7: Sketch of the diffusion process, when jumps of lengths
±h,±2h occur with equal probability (one jump per time
step) and a hypothetical linear profile c(x/h) is applied with
fixed c(x= 0) = 100. The left part shows the jumps at the left
boundary, where the postulated linear concentration profile
would lead to a non-stationary situation. The middle part
illustrates the flux at a location x= 12h (far from boundary
influences), where a constant concentration gradient leads to a
stationary situation.

l ∈ {1h, 2h}, l ∈ {1h, 2h, 3h}, each with equal probability,
and for Gaussian distributed step sizes with mean µ= 0
and standard deviation σ= 2.5h, all with constant u.
Figure 6(b) shows Ds and Dt, where Dt is calculated
using eq. (6). We see clearly that all cases of non-linear
c(x) lead to large deviations between both coefficients.
Accordingly, we now correct Dt by using ∂c(x)/∂x from
EFM instead of eq. (5). The corrected results are shown
in fig. 6(c). For the discrete cases, we also calculated Ds
and Dt analytically, yielding Ds =Dt. These values are
displayed in figs. 6(b, c) by straight lines and it can be seen
that only Dt as calculated by the uncorrected procedure
deviates from the analytical value.
Finally, we show an easy example to understand the

occurrence of a non-linear c(x) close to the boundaries.
We note that a stationary current requires c(x, t) = const
in time. Therefore at each lattice site, the number of in-
and outgoing particles has to be statistically equal and
constant. For illustration, we have plotted a hypothetical
linear concentration c(x) = c0−x/L in fig. 7 for a linear
system with discrete jumps of lengths l=±h and ±2h,
each with a probability 1/4. In accordance with the
method of [13], c(0) is kept constant. For simplicity, we
assume one jump per time step, as in fig. 5(c).
Only for x� 2h, this concentration profile leads to a

constant current j at all positions x, as a prerequisite
for stationarity. For the boundary sites, as e.g. for the
site at x= h, however this is not true: as a consequence
of the different spectrum of jump probabilities, a strictly
linear c(x) would not lead to a stationary current at
the boundaries. Hence, close to the channel entrance,
stationarity implies concentration profiles deviating from
linearity as observed in fig. 5. Note that the condition of
all particles starting at x= 0 is different from the given
experimental situation where particles could enter from
outside the system, but it is a necessary ingredient of the
method of [13]. Even when a homogeneous concentration
outside the pore is applied a similar behaviour would
emerge.

Conclusions. – We have considered molecular diffu-
sion in 3d channel pores with different roughness under
the so-called Knudsen conditions, i.e. for negligible mutual
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molecular collisions and for flight times notably exceed-
ing the periods of interaction with the pore walls and
1d systems with many different jump lengths and jump
time distributions. In the case of the three-dimensional
pores, which reflect a situation possibly occurring in the
real nano-world, complete compatibility with the laws of
normal diffusion is predicted. For non-interacting parti-
cles, as implied in the considered case of Knudsen diffu-
sion, this has to lead to equivalence between transport
diffusion and self-diffusion, as illustrated in [2], on the
basis of Fick’s and Einstein’s diffusion equations. Assum-
ing a constant concentration gradient, errors between
∼ 5% (for the three-dimensional pores) and ∼ 50% (for
certain random walks) occur in the calculation of Dt
when applying the method of [13] without calculating c(x)
explicitly.
This complication is related to the fact that, as a typical

feature of this type of simulations, for molecules entering
the system only the cross-section at x= 0 is considered,
while jumps out of the system may get to positions far
beyond this plane. We have shown that the transmission
probability ft from [13] may as well be applied to calcu-
late the real concentration profiles, so that one is released
of the computational expenses needed for the establish-
ment of stationary conditions. With these thus calculated
concentration profiles, complete equivalence of both diffu-
sion coefficients Ds and Dt is found in all considered cases.
Accordingly transport diffusion and self- (or tracer-) diffu-
sion are equal with respect to both their absolute values
and their dependence on the surface roughness. Having
clarified the diffusion behaviour in single pores we have
established a sound theoretical basis for the exploration of
mass transfer in the numerous mesopores of nanoporous
materials. This is important since in many technological
applications [2,3,6,7], it is this process of mass transfer
which decides about the performance of these materials.
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