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The intrinsic contribution to the spin Hall effect in a 2DEG with non-magnetic impurities is studied
in a quantum Boltzmann approach. It is shown that if the steady state response is perturbative in
the spin-orbit coupling parameter λ, then the precession term—vital for Dyakonov-Perel relaxation
and the key to the spin Hall effect in previous similar Boltzmann studies—must be left out to first
order in spin-orbit coupling. In such a case one would have that to lowest order in the parameters
electric field, spin-orbit coupling, impurity strength and impurity concentration there is no intrinsic
contribution to the spin Hall effect, not only for a Rashba coupling but for a general spin-orbit
coupling. To cover all possible lowest order terms we consider also eletric field induced corrections
to the collision integral in the Keldysh formalism. However, these corrections turn out to be of
second order in λ. For comparison we derive some familiar results in the case when the response is
not assumed to be perturbative in λ.

I. INTRODUCTION

The idea in spintronics is to manipulate the electron spin for information storage and transfer, as done with the
electron charge in electronics. Possible advantages could for example be smaller resistive losses, or the additional
richness that comes from the non-scalar nature of spin. In the study of spin currents particular attention has been
given to the spin Hall effect (SHE) in a two-dimensional degenerate electron gas (2DEG) with spin-orbit coupling.
Perpendicular to an applied electric field, opposite spins travel in opposite directions, thus creating a spin current
without a net charge current. Such a spin-current can lead to an accumulation of spin at the edges of a sample,
although in contrast to the electrical charge analogy this is not given. An individual spin can change its direction,
for example due to spin precession, and therefore the accumulated spin polarization is not a conserved quantity. The
SHE opens up one possibility of manipulating spin with electric fields.

The experiments on the SHE are few and recent.[1, 2, 3, 4, 5, 6] The theoretical side is in contrast very proliferous
(see e.g. the reviews 7, 8, 9) and still in recent years has there been an intense discussion about the different
mechanisms and how to compare results reached by different formalisms. This discussion is closely related to the one
on the anomalous Hall effect (AHE) [10], for example in the distinction between extrinsic (impurity related, e.g. skew
scattering, side-jump etc) and intrinsic (band structure related) mechanisms. The latter could be due to strucutre
inversion asymmetry of the confining potential (leading e.g. to a Rashba coupling) or due to bulk inversion asymmetry
(allowing for a Dresselhaus coupling).

The earliest theoretical works on the SHE were done by Dyakonov and Perel in 1971 [11], who showed that a
spin-orbit coupling leads to a spin current perpendicular to the electric field. The name Spin Hall effect was coined
in 1999.[12] A universal spin Hall conductivity in a 2DEG was proposed.[13, 14, 15] However, impuritites were
neglected in these studies. Many studies have later shown that universality is lost when impurities are taken into
account.[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] On the other hand, there can still be topological edge modes,
responsable for the quantum SHE (see e.g. ref. 29).

The effect of non-magnetic impuritites on the intrinsic contribution to the SHE has been studied using a Boltzmann
approach [16, 17, 18, 19, 20, 21] as well as diagrammatic methods [22, 23, 24, 25, 26, 27, 28] like the Kubo formalism.
The diagrammatic methods are more systematic and have a more general range. The Boltzmann approach offers more
intuition, but has typically been implemented by identifying distinct processes or hand-picking different contributions
rather than systematically covering all possible contributions through a formal apporach. Within the Boltzmann
language one finds several different approaches. We are going to use the quantum Boltzmann approach, which treats
spin coherently.

This paper is going to deal with the intrinsic spin Hall effect in a steady-state calculation to first order in spin-orbit
interaction. We attempt in a Keldysh derivation of the Boltzmann equation to account for all contributions present
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to lowest order in electric field, in spin-orbit splitting and in strength and concentration of non-magnetic impurities.
(Secs. III-V and sec. X.) The spin-orbit interaction HSO = σ · b is chosen to be of the isotropic form b = b(k)b̂(θ),

where the unit vector b̂ has a winding number N , i.e. b̂x + ib̂y = eiθ0+iNθ with θ0 being a constant.
Many recent theoretical studies come to the conclusion that the spin Hall effect vanishes for N = ±1 (e.g. for

the Rashba and linear Dresselhaus spin-orbit couplings) for point-like impurities [16, 17, 18, 19, 20, 21, 22, 23, 25,
26, 27, 28] as well as finite range impurities [17, 18, 19, 21]. General arguments have been proposed to explain this
vanishing.[27, 28] (Sec VII.) A nonzero result can be found in refs. 23, 24. With an alternative definiton of spin
currents, a nonzero result is also found in ref. 18.

For other odd N the SHE is nonzero [18, 19], assumes a universal value in a specific limit [19], but depends otherwise
on the range of the impurity potential and is therefore in general not universal, though it is independent of the spin-
orbit splitting b, the overall strength of the impurity potential and of the impurity concentration [19]. We reproduce
these results in sec. VI. Additionally, we give explicit results on the polarization and spin currents for the components
of the spin parallel to the plane and calculate equilibrium spin currents.

We are also going to see that the above results on the SHE are based on the response not being perturbative in the
spin-orbit coupling. If perturbativeness is assumed (sec. VIII), the spin-precession term—seemingly the prerequisite
for a spin Hall current—must be left out to linear order in spin-orbit coupling, suggesting that to lowest order the
intrinsic spin Hall effect is zero for arbitrary winding N (sec. IX). Possible alternative contributions to the SHE from
electric field induced corrections to the collision integral are discussed in sec. X. A contribution that we believe has
not been discussed before in the Boltzmann approach turns out to be the only candidate when the precession term is
absent. However, this contribution turns out to be of second order in spin-orbit splitting.

Leaving out the precession term leads to some formal difficulties in the case N = ±1. The Boltzmann equation
becomes unsolvable. However, this can be remedied by including a small spin relaxation term (sec. IX). This could
suggest that for N = ±1, non-magnetic impurities are not enough for a consistent steady-state solution in the spin
polarization in the case that the response is perturbative in the spin-orbit coupling.

II. THE MODEL—INTRINSIC VERSUS EXTRINSIC

For a semiclassical Boltzmann description (see e.g. [30, 31, 32, 33]) one needs the Wigner transformed one-particle
Hamiltonian. For the spin-orbit (SO) coupled electrons we are going to study, it is

ham

H(x, p, t) = a(k) + σ · b(k) + eφ(x, t) (1)

with e < 0 and k(x, p, t) = p−eA(x, t). We want to describe a 2d system with x and p chosen to lie in the x, y-plane.
Throughout the paper ~ = 1. In absence of spin-orbit coupling the dispersion is given by a ∝ kζ , typically a = k2/2m.

For the Rashba intercation b := |b| = λk and b̂ := b/b = θ̂ , with λ parametrizing the strength of the coupling.

However, we want to consider an arbitrary odd-integer winding number N in b = b(k)b̂(θ) (with b̂x + ib̂y = eiθ0+iNθ).

The energy bands are ǫs
k = a + sb with s = ± giving the sign of the spin along the spin quantization axis b̂, i.e.

σ · b̂|b̂s〉 = s|b̂s〉.
The total Hamiltonian Htot = H + Himp also includes an impurity potential Vimp(x) =

∑

n U(x− xn) of charged,
non-magnetic impurities at positions xn. Including the spin orbit coupling experienced at impurities one has

Himp = Vimp + λextσ · k ×∇Vimp . (2)

H and Himp are treated very differently in the Boltzmann approach. H enters linearly into the equation of motion,
whereas Himp is in the Keldysh machinery turned into an impurity averaged self-energy to appear to quadratic order
in the collision integral.

A spin-orbit coupling enters both through the intrinsic (i.e. band related) term σ · b and in the extrinsic (i.e.
impurity related) term λextσ · k ×∇Vimp, and the consequences of the two are usually studied separately in the
literature. This paper deals only with the intrinsic contribution to the spin Hall effect.

III. SEMICLASSICAL DESCRIPTION OF A SPIN-ORBIT COUPLED SYSTEM

In a Boltzmann description of an electron system with spin, the spatial degrees of freedom are treated semiclassically,
whereas the treatment of the spin remains quantum mechanical. The state of the system is given by the 2× 2-matrix
valued distribution function fσσ′ (x, p, t), here with the spin index σ =↑z, ↓z. It is related to the equal time density

matrix ρσσ′ (x1, x2)|t2=t1 = 〈Ψ†
σ′(x2, t1)Ψσ(x1, t1)〉 by a Wigner transformation (see e.g. refs. 30, 31, 32, 33). In
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absence of scattering one can derive the Boltzmann equation for f by applying Heisenberg’s equation of motion on
ρ(x1, x2), then identifying t2 = t1, Wigner transforming the result and gradient expanding it to first order. The
approximation to stop at first order in gradient expansion is the semiclassical approximation, which relies on the
external perturbations, such as electromagnetic potentials, changing negligibly on length and time scales of the de
Broglie wavelength λB and time τB = λB/vF.

From the matrix elements of the distribution function f one extracts the densities and current densities of charge
and spin. The matrix elements are most conveniently expressed in the decomposition f = 1f0 + σµfµ = f0 + σ · f in
Pauli matrices (with µ = x, y, z). (Throughout the paper we use the convention of summation over repeated indices.)

Furthermore, we find it convenient to decompose the vector f = f
b̂
b̂ + fĉĉ + fzẑ in its components along the basis

vectors b̂(θ), ẑ and ĉ(θ) = ẑ × b̂(θ), analogous to the cylindrical basis vectors k̂(θ) := k/k, ẑ and θ̂(θ) := ẑ × k̂(θ).
The charge density en and current density ej in phase space are derived from en = Tr (f∂H/∂φ) and ej =
−Tr (f∂H/∂A), which yields

curdef

n(x, k, t) := Tr f = 2f0 = n+ + n−

ji(x, k, t) := Tr (vif) = 2f0∂ki
a + 2f · ∂ki

b = n+v+
i + n−v−i + 2Nb

k
fĉθ̂i

(3)

with i = x, y. Here we introduced the velocity matrices vi := ∂ki
H = ∂ki

a + σ · ∂ki
b. The spin-independent part

of the velocity is ∂ka =: v0. The band velocities are vs := ∂kǫs = 〈b̂s|v|b̂s〉 = vsk̂. The intra-band elements

n± := 〈b̂± |f |b̂±〉 = f0± f
b̂

give the density of each spin band s = ±. The inter-band elements 〈b̂± |f |b̂∓〉 = fz± ifĉ

are important for the coherent treatment of spin and are, for example, present in the last term of (3) [40], containing
the Zitterbewegung of the spin-orbit coupled electrons.

The real space densities are obtained by integrating the phase space densities over momentum, e.g.

j(x, t) =

∫
d2k

(2π)2
j(x, k, t) . (4)

When not otherwise stated, densities are in this paper always assumed to be phase space densities.
The spin density, i.e. the polarization, is given by sµ = ~

2Tr (σµf) = fµ (with ~ = 1). There is not a unique way
to define the spin current because spin polarization is not a conserved quantity. (For a proposal on a conserved spin
current, see ref. 34. For its implications on the SHE, see ref. 18.) When band velocities coincide, i.e. vs = v0, then
it is clearly jµ = fµv0. For the general case we choose the common definition

spincurr

jµ
i =

1

4
Tr σµ{vi, f} = fµ∂ki

a + f0∂ki
bµ (5)

(with {A, B} = AB + BA). The spin Hall effect is a real space current of z-component spins
she

jz =

∫
d2k

(2π)2
fzv0 =

1

e
σSHẑ ×E (6)

perpendicular to the an applied electric field E along the plane. σSH is the spin Hall conductivity.
The Boltzmann equation in matrix form is given by

lhs0

i[H, f ] + ∂T f +
1

2
{vi, ∂xi

f}+ eEi∂ki
f − ǫzijeBz

1

2
{vi, ∂kj

f} = J [f ] (7)

where the matrix-valued functional J is the collision integral. In components it reads (from now on the charge e in
eE and eB is absorbed into the fields)

lhs1

∂tf0 + ∂xi
f0∂ki

a + ∂xi
f · ∂ki

b + Ei∂ki
f0 + ǫzijBz(∂ki

f0∂kj
a + ∂ki

f · ∂kj
b) = J0

2f × b + ∂tf + ∂xi
f∂ki

a + ∂xi
f0∂ki

b + Ei∂ki
f + ǫzijBz(∂ki

f∂kj
a + ∂ki

f0∂kj
b) = J (8)

However, by virtue of definition (5) the equations (8) can be compactly written as
lhs2

∂tn + ∂x · j + ∂k · (nE + j ×B) = 2J0

2(s× b)µ + ∂ts
µ + ∂x · j

µ + ∂k · (s
µE + jµ ×B) = Jµ . (9)

The left-hand side of the first equation is the same as for charged, spinless particles in an electromagnetic field.
Apart from the spin-precession term, the second equation is of similar form. This is what one would expect since the
electromagnetic field does not interact with the spin in the considered model but only with the charge that the spin
sits on. The spin enters in a non-trivial way only through the precession term and through the collision integral.
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IV. DERIVATION OF THE COLLISION INTEGRAL IN THE KELDYSH FORMALISM

The presence of, for example, two-body interactions or disorder averaged impurity interaction is in the Boltzmann
approach described by the collision integral J . It is assumed that one is in the kinetic regime, where the de Broglie
wavelength λB = 1/kF is much shorter than the scattering length ℓ. Like ref. 19 we use the Keldysh formalism (see
e.g. refs. 30, 31, 32, 33), but among other general methods we can mention the Nonequilibrium statistical operator
formalism [30]. For disorder averaged impurities, see also the compact derivation in ref. 21.

The Keldysh derivation of the semiclassical equations starts with relating f to the Wigner transformed Keldysh
Green’s function

f(x, p, t) =
1

2
+

∫
dΩ

4πi
GK(x, p, t, Ω) . (10)

The equation of motion for GK is given by the Dyson equation. Integrating the equation over the frequency Ω results
in the semiclassical Boltzmann equation with the collision term. This should be contrasted with the quasiclassical
Boltzmann approach (see e.g. ref. 33) where the integration is instead performed over |k| to obtain a distribution
function f(x, p̂, t, Ω). This is the approach for example in refs. 19 and 20.

The Dyson equation can be written in two equivalent forms
dyson

1̂ = (i∂t −H − Σ) ∗G or 1̂ = G ∗ (i∂t −H − Σ) . (11)

The product involved here is the convolution product, the identity stands for 1̂ := 1δ (x1 − x2) δ (t1 − t2) and quan-
tities are written in Keldysh matrix space with

G =

(
GR GK

0 GA

)

and i∂t −H − Σ =

(
i∂t −H − ΣR −ΣK

0 i∂t −H − ΣA

)

. (12)

Each element in these matrices is an infinite-dimensional matrix in real space indices, and in our case also a 2 × 2
matrix in spin indices.

The two equations in (11) contain the same information. To derive kinetic equations one takes the difference of
them, which for the Keldysh component yields

gkeq

(i∂t −H) ∗GK −GK ∗ (i∂t −H) = ΣR ∗GK −GK ∗ ΣA −GR ∗ ΣK + ΣK ∗GA . (13)

The right hand side is going to give the collision integral, which we only treat to lowest order in impurity concentration
and impurity strength (first Born approximation),

Σp = nimp

∫
d2p′

(2π)2
|U(|p− p′|)|2G0

p′ , (14)

with G0 = G(Σ = 0). (Σ is diagonal in momentum space due to the disorder averaging of the impurity interaction.)
According to self-consistent Born-approximation we replace G0K by GK. A crucial approximation comes with choosing
the generalized Kadanoff-Baym Ansatz [35]

gkba

GK = i(GR ∗ h− h ∗GA) + . . . (15)

where h := GK|t2=t1 , which generalizes the quasiparticle approximation GK = h(x, p, t)δ(Ω− ǫ) for spinless electrons.
The approximation can be considered to be an expansion in relaxation times of the system and corresponds to a
Markov approximation.

The convolution product takes after Wigner transformation A(x1, t1, x2, t2)→ A(x, p, t, Ω) the form A∗B = Ae
i
2
DB

with the Poisson-bracket-like gradient D. In a gauge invariant treatment valid when the electromagnetic fields are
weak and vary slowly (see e.g. p. 344, Vol. 1 in ref. 30), one introduces k(p, x, t) = p −A and ω(Ω, x, t) = Ω − φ
and lets {x, k, t, ω} become the new set of independent variables (i.e. ∂xi

k = 0). This changes the gradient into
gigrad

D =
←−
∂ xi

−→
∂ ki
−
←−
∂ ki

−→
∂ xi

+
←−
∂ ω

−→
∂ t −

←−
∂ t

−→
∂ ω + Ei(

←−
∂ ω

−→
∂ ki
−
←−
∂ ki

−→
∂ ω) + ǫijlBi

←−
∂ kj

−→
∂ kl

(16)

with X
←−
∂ Y := (∂X)Y and X

−→
∂ Y := X(∂Y ). Gradient expanding the left hand side of (13) to first order and

integrating over the frequency yields the left-hand side of (7). The right hand side, the collision part, is usually taken
to zeroth order in gradient expansion. Inserting (15) into (13), and using that combinations such as

∫
dω GR[. . .]GR

vanish, one arrives at the collsion integral (with Wkk′ := 2πnimp|U(|k − k′|)|2)
jc
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J = −

∫

k′

Wkk′

2π

∫
dω

2π
(GR

k ∆fGA
k′ + GR

k′∆fGA
k ) =

= −

∫

k′

Wkk′

2π

∫
dω

2π
(G0R

k ∆fG0A
k′ + G0R

k′ ∆fG0A
k ) + . . . (17)

where in the last row only terms of second order in the interaction strength were kept. The shorthand notations

∆f = f(k, x, t)− f(k′, x, t) and
∫

d2k′

(2π)2 =:
∫

k′ were introduced.

In the expression (17) we also need the retarded and advanced components. For this one should take the sum of
the two Dyson equations (11), which for GR(Σ = 0) after Wigner transformation leads to

greq

2 = (ω+ −H0)e
i
2
DG0R + G0Re

i
2
D(ω+ −H0) , (18)

with ω+ := ω + iη (to take care of the boundary conditions provided by the imaginary part of ΣR when Σ 6= 0) and
with H0 := H − φ. To zeroth order in gradient expansion it is solved by

gor

G0R =
∑

s=±

S
b̂s

ω+ − ǫs
S

b̂s
:=

1

2
(1 + σ · sb) (19)

where S is the spin projection operator. With this zeroth order G0R, the last line in (17) can be reformulated to be
identical to the result derived in ref. 21 and essentially also to the one derived in ref. 19.

To the knowledge of the author, one finds in the literature always the zeroth order solution for G0R, maybe because
in the common cases like spinless electrons or Zeeman-coupled electrons (with a constant magnetic field) the first
order contribution to (18) (and thus to G0R) vanishes. However, for a spin-orbit coupled system it does not. We find
the first order contribution

gor2

δG0R = σzNb
E

θ̂
b−Bz(ω − a)∂kb

k(ω+ − ǫ+)2(ω+ − ǫ−)2
= [Bz = 0]

= σzN
E

θ̂

4k

∑

s

(−sb−1 − ∂ω)
1

ω+ − ǫs
, (20)

with E
θ̂

:= E · θ̂ in the polar decomposition E = E
k̂
k̂+E

θ̂
θ̂. In section X we show how the contribution (20) modifies

the collision integral. We will also investigate, whether the corresponding correction could be an alternative source
to the SHE not relying on the precession term.[41]

V. COLLISION INTEGRAL TO LINEAR ORDER IN SPIN-ORBIT COUPLING

In this section the Boltzmann equation is expanded to first order in the spin-orbit coupling, as done in refs. 19 and 21,
hence assuming b(kF) ≪ ǫF. The subscript F indicates the value of the corresponding quantity at the Fermi surface
determined by a = ǫF, where ǫF = µ at low temperatures kBT ≪ ǫF.

The collision integral is taken to the habitual zeroth order in gradient expansion, meaning (17) with (19). To
slim down the often lengthy expression for collision integrals, some more shorthand notation is introduced. x′ means
that the quantity x depends on primed variables such as k′, s′ etc, whereas x correspondingly depends on k, s. For
example S′ = 1

2 (1 + σ · s′b̂k′). Also, ∆x := x− x′, for example ∆ǫ = ǫs
k − ǫs′

k′ or ∆(sb) = sb− s′b′.
Inserting (19) into (17) gives

jcb

J0 = −

∫

k′

Wkk′

1

2

∑

ss′

δ(∆ǫ)

[

1 + ss′b̂ · b̂′

2
∆f0 +

sb̂ + s′b̂′

2
·∆f

]

+ X0

J = −

∫

k′

Wkk′

1

2

∑

ss′

δ(∆ǫ)

[

1 + ss′Bkk′

2
∆f +

sb̂ + s′b̂′

2
∆f0

]

+ X . (21)

with the matrix Bkk′ := b̂(b̂′)T + b̂′(b̂)T − b̂ · b̂′.[42] Not written out in equation (21) are the principal part terms

X =

∫

k′

Wkk′

1

2π

∑

ss′

P

(
1

∆ǫ

) [

ss′b̂× b̂′

2
· (∆f − σ∆f0)− σ ·

∆(sb̂)

2
×∆f

]

(22)
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which are not considered to be a part of the elastic collision integral but are regarded as renormalization corrections.
In the literature such terms are usually left out (however, see ref. 37) and it is beyond the scope of the present paper
to discuss them.

The delta functions δ(ǫs
k − ǫs′

k′) connecting Fermi surfaces at different |k| make it difficult to find an analytical
solution. However, in the considered limit b(kF)≪ ǫF one can use the expansion

deltexp

δ(∆ǫ) = δ(∆a) + ∆(sb) δ′(∆a) +O(λ2) (23)

after which one is left with the spin-independent delta function δ(ak − ak′) implying |k′| = |k|. With this expansion
the collision integral reads

jlin

J0 = −

∫

k′

Wkk′ [δ(∆a)∆f0 +

O(λ2)
︷ ︸︸ ︷

δ′(∆a)∆b ·∆f ]

J = −

∫

k′

Wkk′ [δ(∆a)∆f + δ′(∆a)∆b∆f0] . (24)

The terms with δ′(∆a) = −∂a′δ(∆a) are made sense of by integration by parts.
If f = O(λ) (i.e. if the polarization vanishes as λ → 0), the term indicated as of order O(λ2) can be neglected to

linear order in λ. This resulting collision integral is essentially the one found in ref. 21 and is similar to the one in
ref. 19.[43] For a physical interpretation of spin-orbit coupling dependent contributions, see ref. 19.

In section X we discuss corrections to the collision integral when one goes beyond zeroth order in gradient expansion.

VI. SOLVING THE BOLTZMANN EQUATION

We now set out to solve the uniform, steady state Boltzmann equation
eboltzn

2σ · f × b + E · ∂kf = −

∫

k′

Wkk′ [δ(∆a)∆f + δ′(∆a)∆b · σ∆f0] (25)

without implementing the assumption of perturbativeness in λ, to be discussed in sec VIII. The distribution function
f = f eq + f (E) is linearized only in the electric field and not in the spin-orbit coupling.

The distribution n± = f0± f
b̂

of respective spin band is in equilibrium given by the Fermi-Dirac (FD) distribution.
The equilibrium distribution is therefore given by

equil

f eq
0 ± f eq

b̂
= fFD

(
ǫ± − µ

)
i.e. f eq =

∑

±

S
b̂±fFD

(
ǫ± − µ

)
, (26)

with vanishing inter-band elements f eq
ĉ = f eq

z = 0. Time reversal symmetry requires the real space equilibrium
polarization feq =

∫

k
feq(k) to be zero, which also follows trivially from the vanishing angular part of the integral.

The real space spin current, on the other hand, need not vanish since it is even under time reversal symmetry. For
|N | 6= 1 the real space spin current is trivially zero, but for N = ±1 we find jx

y = ∓jy
x = −m2λ3/2π + O(λ5) for a

quadratic dispersion a = k2/2m.
The equilibrium distribution is from now on taken to linear order in λ, i.e.

equil2

f eq
0 =

∑

±

fFD(ǫ±−µ)
2 = fFD (a− µ) +O(λ2)

f eq

b̂
=

∑

±±
fFD(ǫ±−µ)

2 = b∂afFD (a− µ) +O(λ2)
=⇒

f eq
0 = fFD

feq = b∂afFD
(27)

where fFD ≡ fFD (a− µ) from now on. From (27) one sees that a small spin-orbit coupling does not change the charge
density but induces a small polarization at the Fermi surface. The distribution f eq = fFD + σ · b∂afFD satisfies (25)
for E = 0.

The charge part of (25) does not depend on the polarization. When a uniform, static electric field is applied, one

finds the usual solution f
(E)
0 = −τtrEk̂

∂kfFD where τtr is the transport relaxation time. Gathering the known terms
on the left-hand side one can write the polarization part of the equation as

inc1

E · ∂kf eq +

∫

k′

Wkk′δ′(∆a)σ ·∆b∆f
(E)
0 = 2b× f (E) −

∫

k′

Wkk′δ(∆a)∆f (E) . (28)
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It turns out (see the appendix) that the equation can be written in the form
fLE

F (E
k̂
b̂− E

θ̂
ĉ) + G(E

k̂
b̂ + E

θ̂
ĉ) = 2b× f (E) −

∫

θ′

K∆f (E)|k′=k , (29)

with the shorthand
∫

θ′ :=
∫

dθ′

2π
. The functions F and G depend on k and are proportional to λ. They do not depend

on θ, on E, on the impurity concentration nimp or on the overall strength of the impurity potential U . However, they
depend on the range of the potential through dimensionless fractions of the Fourier components of the functions

K(k, ∆θ) := D(a)Wkk′ |k′=k =:
∑

m

eim∆θKm

K̃(k, ∆θ) := D(a)kv0[∂a′Wkk′ ]k′=k =:
∑

m

eim∆θK̃m . (30)

[44] Particularly, for N = 1 we find for a general dispersion a ∝ kζ that
FandG

F = λ

[
∂afFD

2

(
(ζ − 2)τ−1

tr + ζτ−1
12 − 2τtrτ

−1
12 τ̃−1

01 − τ̃−1
01 + τ̃−1

12

)
τtr +

k∂k∂afFD

2

(
1 + τtrτ

−1
12

)
]

G = 0 (31)

with τ−1
tr = K0−K1 and introducing shorthands τ−1

12 := K1−K2, τ̃−1
01 := K̃0− K̃1 and τ̃−1

12 = K̃1− K̃2. We find that
G = 0 also when b is not proportional to k. The vanishing of G is going to imply the vanishing of the spin Hall effect
for the Rashba coupling.

The combination E
k̂
b̂∓ E

θ̂
ĉ has a winding N ± 1. Particularly, for the Rashba case b̂ = θ̂ (i.e. N = 1) one has

angin-

dep
E

k̂
b̂− E

θ̂
ĉ =

(

b̂(k̂)T − ĉ(θ̂)T
)

E =

(
− sin 2∆θ cos 2∆θ
cos 2∆θ sin 2∆θ

)

E E
k̂
b̂ + E

θ̂
ĉ =

(
0 −1
1 0

)

E , (32)

i.e. the left-hand side of (29) has an angularly independent term.

The solution can be found by Fourier decomposition in the basis {b̂, ĉ, ẑ}
decomp

f (E) =
∑

n

einθ(b̂f
b̂n + ĉfĉn + ẑfzn) =

∑

n

einθ
(

b̂ ĉ ẑ
)





f
b̂n

fĉn

fzn



 (33)

where the Fourier coefficients {f
b̂n

, fĉn, fzn} of course only depend on k and not on θ. With E := Ex + iEy one has

2(E
k̂
b̂± E

θ̂
ĉ) = eiθE∗(b̂± iĉ) + e−iθE(b̂∓ iĉ) and therefore the left-hand side of (29) can be written as

n1

1

2
eiθE∗

(

b̂ ĉ ẑ
)





F + G
iG− iF

0



 + c.c. , (34)

which contains only the n = 1 Fourier component and the complex conjugate n = −1 component. This is going
to imply that f

b̂n
, fĉn, fzn = 0 for |n| 6= 1. (Choosing a cartesian basis in (33), in contrast, couples the equation

for component n with the components n ± N .) This fact has some direct implications for the electric field induced

contributions to the real space densities. For example, the real space density of z-spins f
(E)
z is trivially zero. For

|N | 6= 1 the in-plane components f
(E)
x and f

(E)
y also vanish trivially in real space, whereas for |N | = 1 they can be

nonzero. The real space spin Hall current jz can be nonzero for all N , whereas the contribution to jx and jy vanishes
trivially for all N .

On the right-hand side of (28) we find
inc2

−

∫

θ′

K∆f |
(E)
k′=k = −

∑

n

einθ





b̂
(
f

b̂n

∫

θ′ K(1− cosN∆θ cosn∆θ) + ifĉn

∫

θ′ K sin N∆θ sin n∆θ
)
+

+ ĉ
(
fĉn

∫

θ′ K(1− cosN∆θ cosn∆θ)− if
b̂n

∫

θ′ K sin N∆θ sin n∆θ
)
+

+ ẑ fzn

∫

θ′ K(1− cosn∆θ)



 .

Here, b̂′ = b̂ cosN∆θ− ĉ sin N∆θ was used and terms odd in ∆θ were left out, using that K is even in ∆θ. Including
the precession term 2b(ẑfĉ − ĉfz) the equation for the n = 1 Fourier components of f (E) becomes

matrixb
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E∗

2





F + G
iG− iF

0



 = −





τ−1
cos iτ−1

sin 0
−iτ−1

sin τ−1
cos 2b

0 −2b τ−1
tr









f
b̂1

fĉ1

fẑ1



 (35)

where

τ−1
cos :=

∫

θ′

K(1− cosN∆θ cos∆θ) = K0 − (KN−1 + KN+1)/2

τ−1
sin :=

∫

θ′

K sinN∆θ sin ∆θ = (KN−1 −KN+1)/2 (36)

(possibly negative) were introduced.
With the λ-dependent b, the matrix and hence the solution will be inhomogenous in λ. For |N | 6= 1 the solution

nonetheless goes to zero when λ→ 0. For point-like impurities (τ−1
cos = τ−1

tr = K0 and τ−1
sin = 0) we find

n3

fz1 = i
NE∗λ2k∂afFD

4k2λ2 + K2
0

=⇒ jz =

∫

k

v0fz =
Nk2

Fλ2

2π(4k2
Fλ2 + K2

0 )
(−Ey, Ex) (37)

for the real space spin current. As in ref. 19 one recovers in the clean limit τ−1
tr = K0 ≪ kFλ a universal spin Hall

conductivity σSH = N
8π

, whereas σSH decreases to zero in the opposite (dirty) limit.

For the case N = ±1 one has for arbitrary impurity range that τcos = ±τsin =: 2τ02. The determinant 4b2τ−1
cos +

τ−1
tr (τ−2

cos − τ−2
sin ) of the matrix in (35) becomes singular at b = 0. For N = 1 we find the solution

shysol

f
b̂1 = −E∗

(

τ02(F + G) +
G

4τtrb2

)

fĉ1 = −iE∗
G

4τtrb2

fz1 = −iE∗
G

2b
. (38)

The real space spin density
∫

k
fz must vanish trivially as noted after equation (34). The real space density of the

in-plane spin components is nonzero

∫

k

(b̂f
b̂

+ ĉfĉ) = −ẑ ×E

∫

da D

(

τ02(F + G) +
G

2τtrb2

)

. (39)

According to (31), G = 0 for N = 1 for arbitrary dispersion and arbitrary range of impurities according. Thus,
fz = 0 for a Rashba coupling, implying a zero spin Hall current. A similar analysis applies to N = −1, e.g. for the
linear Dresselhaus coupling, since a model of winding −N is related to one of winding N through reflection (say along
the x-axis).

If for the Rashba coupling there was a nonzero spin Hall effect, i.e. G 6= 0, then fz and consequently the spin Hall
current would be indpendent of λ (since in general, G ∝ λ). Furthermore, the in-plane components fx and fy of the
polarization would diverge as λ−1 as λ→ 0, i.e. one would not recover an unpolarized distribution when sending the
spin-orbit coupling to zero. However, in the derivation of the Boltzmann equation there were only assumptions of λ
and f being small enough, no assumptions of them not being too small. Therefore, to the extent that a diverging
polarization in such a case is an unthinkable result, the vanishing of the SHE for the Rashba case is a natural
implication.

VII. GENERAL ARGUMENTS FOR A VANISHING SHE

The vanishing of the SHE for the Rashba case has been found by numerous previous studies (see the introduction).
To the knowledge of the author it has not been related to the finiteness of the in-plane polarization like done in the
argument above. In linear response studies general arguments have been given [27, 28], where from [σy, λ(p×σ)z] =
2iλpyσz it is noted that for Heisenberg operators

d

dt
σ̂y = −i[σ̂y, Ĥ + V̂imp] = 2λp̂yσ̂z = 2λmĵz

y (40)
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for non-magnetic impurities. The steady state condition 〈 d
dt

σ̂y〉 = 0 forces the spin Hall current 〈ĵz
y 〉 to be zero. A

similar argument applies to ĵz
x.

The analog to this argument in the Boltzmann approach can be established for the real space densities. In phase
space, (s× b)y = bxsz = jz

ybx/v0y. Only for N = ±1 does one have a constant fraction bx/v0y = ∓λm. According to
(9) one has ∂ts

y = −2(s × b)y − E · ∂ksy + J in the uniform case. In the integration over momentum the last two
terms vanish, resulting in ∂ts

y = ±2λmjz
y in real space for N = ±1. Likewise, ∂ts

x = −2λmjz
x. In a steady state,

∂ts = 0 implies jz = 0.
In phase space, on the other hand, the steady state condition 0 = ∂ts

y = −2(s× b)y−E ·∂ksy . . . does not imply a
vanishing zy . We could have had G 6= 0 as long as

∫
da Dv0G/b = 0 guaranteed the vanishing in real space. However,

in the previous section we find that jz = 0 also in phase space.

VIII. ASSUMPTION OF LINEAR RESPONSE IN THE SPIN-ORBIT COUPLING

We are now going to study the implications of a basic assumption, namely that the steady-state response of a spin-
orbit coupled system in an electric field is perturbative in the small parameter λ (vF is kept constant), analogously
to the usual assumption of linear response in the electric field strength E. For the latter assumption it means that

one can expand the solution f eq + f (E) + f (E2) + . . . in nonnegative powers in the electric field and solve the equation
iteratively by solving equations that are homogenous in orders of E, see e.g. equation (28). With the assumption
now to be studied, the same is expected to apply also for the spin-orbit coupling parameter λ (vF is kept constant),
wherefore the solution can be expanded in powers of E and λ

f =
∑

m,n≥0

f (λm,En) (41)

assuming that the solution is analytic both in λ and E.
The equations are going to be solved order by order in both parameters as illustrated in (45). In the expansion of

the Boltzmann equation in a small spin-orbit coupling, there is in this case no ambiguity about which terms to include
in a given equation. This should be contrasted with the previous section, where we chose to include the precession
term 2b× f —a term of order O(λ2)—though we discarded other terms of the same order, for example in (24). The
reproduced results seem to be based on hand-picking terms with physical insight.

IX. BOLTZMANN EQUATION WITHOUT THE PRECESSION TERM

Due to the assumption in sec. VIII, not only the equation but also the solution is linearized in the spin-orbit coupling.
Together with the habitual linearization in the electric field this means that we consider

expf

f = f (0) + f (λ) + f (E) + f (λ,E) (42)

where the superscripts denote the order in λ and E, respectively (e.g. f (E) ∝ λ0E1). The equilibrium distribution is
f eq = f (0) + f (λ), where f (0) = 1fFD.

The left-hand side of the Boltzmann equation (8) is in the static, uniform case

df

dt
= E · ∂kf + 2σ ·

O(λ2)
︷ ︸︸ ︷

f × b (43)

where the precession term must be neglected to order λ. However, leaving out the precession term leads to some
formal trouble in the case N = ±1. The derivative E · ∂k = eiθ(Ex − iEy)(∂k + ik−1∂θ) + c.c. comes with a winding
number ±1. For a spin-orbit coupled system the equilibrium polarization feq = f(E = 0) has a also winding number,
here N . Thus, the combination E · ∂kf comes with terms of winding N ± 1. For N = 1 (e.g. Rashba) or N = −1
(e.g. linear Dresselhaus) the left hand side therefore contains terms without angular dependence, as seen in (32).
Such terms cannot be matched by the collision integral, essentially because an equation like 1 =

∫
dθ′ (f(θ) − f(θ′))

has no solution. (A collision integral cannot be a source/drain.)
This lack of solution might be related to the discarding of the principal part terms X in (21), but we have not been

able to investigate this. As a simple remedy, we introduce instead a small spin relaxation term, which could come
from spin relaxation processes not related to the spin-orbit coupling. The Boltzmann equation then reads

eboltz
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σ · τ−1
S f + E · ∂kf = −

∫

k′

Wkk′ [δ(∆a)∆f + δ′(∆a)σ ·∆b∆f0] (44)

where it is assumed that τ−1
S is much smaller than τ−1

tr , is independent of λ and is a number though in general it
could be a matrix.

We now solve the Boltzmann equation (44) order by order in λ and E as shown in equation (45)
LE

λ0E0 : 0 = −
∫

k′ Wkk′δ(∆a)∆f (0)

λ1E0 : σ · τ−1
S f (λ) = −

∫

k′ Wkk′

[

δ(∆a)∆f (λ) + δ′(∆a)σ ·∆b∆f
(0)
0

]

λ0E1 : E · ∂kf (0) = −
∫

k′ Wkk′δ(∆a)∆f (E)

λ1E1 : σ · τ−1
S f (λ,E) + E · ∂kf (λ) = −

∫

k′ Wkk′

[

δ(∆a)∆f (λ,E) + δ′(∆a)σ ·∆b∆f
(E)
0

]

. (45)

Note that terms known to be zero were left out.[45] We are out to find f (λ,E), which is of order λ1E1 and therefore
the first contribution that incorporates the combined effects of an electric field and spin-orbit coupling.[46] However,
to solve the λ1E1 equation one needs to solve the previous equations to find out f (λ) and f (E).

The λ0E0 equation is consistent with f (0) = 1fFD from (27). The spin-relaxation term in the λ1E0 equation
decreases the equilibrium polarization in (27) into f (λ) = γσ · b∂afFD with γ := (1 + τ−1

S τtr)
−1 ≈ 1. The λ0E1

equation is solved by f (E) = −1τtrEk̂
∂kfFD. So finally at the λ1E1 equation one knows already the terms E · ∂kf (λ)

and
∫

k′ Wkk′δ′(∆a)∆b ·σ∆f
(E)
0 . Collecting these contributions on the left-hand side we get an equation of the same

form as (29), but with the spin precession term replaced by the spin relaxation term, and with F and G modified due
to the factor γ in E · ∂kf (λ). The equation for the n = 1 Fourier coefficients turns into

f1eq

E∗

2





F + G
iG− iF

0



 = −





τ−1
S + τ−1

cos iτ−1
sin 0

−iτ−1
sin τ−1

S + τ−1
cos 0

0 0 τ−1
S + τ−1

tr









f
b̂1

fĉ1

fẑ1



 (46)

For N = ±1 one has τcos = ±τsin for a general impurity potential, leading the determinant of the matrix to be zero
unless τ−1

S 6= 0. (With τ−1
S = 0 there is either no solution when G 6= 0 or multiple solutions when G = 0.) For |N | 6= 1

one has τcos 6= τsin for realisitc impurity potentials, wherefore τ−1
S 6= 0 is not needed.

Important to retain is that the matrix does not depend on λ. The polarization f (λ,E) is therefore proportional to
λ. Clear is also that fẑ = 0 and the spin Hall current jz are zero—for an arbitrary spin-orbit coupling.

For N = ±1 we can adopt the derivation in sec. VII to show that ∂tsy = ±mλjz
y − τ−1

S sy in real space. For
our steady state case we therefore find sy ∝ jz

y = 0 in real space for N = ±1. Likewise, sx = 0. For |N | 6= 1
the real space polarization is trivially zero (see under equation (34)). Summarizing we have that for no N in the
perturbative case does the electric field alter any real space densities to lowest order in λ. The only nonzero real space
densities are the equilibrium spin currents jx and jy for |N |=1. From f eq = fFD + γσ · b∂afFD for N = ±1 we find
jx
y = ∓jy

x = 1
4π

(γ − 1)bFkF.

X. ELECTRIC FIELD INDUCED CORRECTIONS TO THE COLLISION INTEGRAL

The precession term seemed so far like the only term that could involve the fz component and lead to nonzero spin
current jz. In this section we are going to see that the electric field E modifies the collision integral in a way that
involves the fz component. However, the corrections turns out to be of order λ2.

In trying to incorporate in our Boltzmann equation all terms present to first order in our parameters we so far
left out terms by gradient expanding the right-hand side of the Dyson equation (13) for GK only to zeroth order
and not to first order in the electric field. First order corrections have been accounted for example in the case of
electron-phonon renormalization of the ac conductivity [38] (see also [33]) and have also been discussed in the SHE

and AHE literature (see e.g. refs. 18 or 39). However, a derivative such as 2E · ∂kS
b̂s = sk−1E

θ̂
∂θb̂ ·σ, which occurs

in the derivation of these corrections, gives a vector that remains in the plane. The collision integral becomes more
complicated but does not involve the fz component.

The contribution discussed in this paper comes about in a slightly subtler way, and has to the knowledge of the
author not been discussed previously. It comes from gradient expanding the equation of motion also for the retarded
Green’s function G0R, which results in the correction δG0R given by (20). With Bz = 0 one obtains

deltaJ
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δJ = −

∫

k′

Wkk′

2π

∫
dω

2π
(δG0R

k ∆fG0A
k′ + G0R

k ∆fδG0A
k′ + G0R

k′ ∆fδG0A
k + δG0R

k′ ∆fG0A
k ) =

= −
∑

ss′

∫

k′

Wkk′

8

[
( σz∆S′ + S′∆fσz)Eθ̂

(∂a − sb−1)δ(∆ǫ)+

+ (σz∆S + S∆fσz)Eθ̂′(∂a′ − s′b′
−1

)δ(∆ǫ)

]

=

= σ ·
1

2

∫

k′

δ′′(∆a) (Wkk′ [ẑM ·∆f + M∆fz]) (47)

where for the last line the expansion (23) was used and where

M(k, k′) := k−1E
θ̂
b′ + k′−1

E
θ̂′b . (48)

Note that δJ0 = 0, i.e. there is no contribution to the charge part of the equation, only to the polarization part.
Note particularly that δJz 6= 0, which would give a nontrivial equation for fz. However, since M ∝ λE and f ∝ λ,
this correction contributes to order λ2E as announced, wherefore the result fz = 0 in last section is not changed to
lowest order.

One can ask if this correction could change the result fz = 0 for the Rashba case in the non-perturbative scenario
of sec. VI where homogenity in λ was not an issue. The correction would then enter as an imaginary element of order
λ2E replacing the zero in the bottom of the vector with F and G in (35). However, since τ−2

cos − τ−2
sin = 0 for N = 1,

the inverse matrix has a zero zz-element. Therefore, the correction cannot contribute to fz1 in the Rashba case. In
this aspect the contributions discussed in the beginning of this section, on the other hand, could contribute, but we
have not investigated them in a systematic way. The real space spin current jz would in any case remain zero due to
the arguments in sec. VII.

XI. CONCLUSIONS

This paper studied the intrinsic contribution to the spin Hall current in a spin-orbit coupled 2DEG by deriving
a Boltzmann equation in the Keldysh formalism and solving it in the uniform steady state case. The vector b

determining the spin-orbit coupling was assumed to be of the form b = b(k)b̂(θ) with b = λk and b̂x + ib̂y ∝ eiθ0+iNθ.
We reproduced the common result that spin Hall effect vanishes for N = ±1 (e.g. for a Rashba coupling) but not for
other N . We were able to give a new perspective on this vanishing by pointing out that a nonzero result leads the
in-plane components of the polarization to diverge when λ→ 0.

The mentioned treatment does not assume the response to be perturbative in λ. We therefore found it interesting
to study the implications of assuming the response to be perturbative not only in the electric field but also in λ.
The precession term—previously the prerequisite for the spin Hall current—must then be left out to first order in
spin-orbit splitting. The out-of-plane polarization fz becomes trivially zero and there seems to be zero SHE for any
winding. We saw also that all other real space densities have zero electric field induced contributions.

Leaving out the spin-precession term gives a Boltzmann equation for in-plane polarization (fx, fy) that is unsolvable
for N = ±1. The unsolvability might be related to the left out principal parts, the inclusion of which would have
been beyond the scope of the present study. As an ad hoc remedy the precession term got replaced by a small spin
relaxation term. This could suggest that if the response is perturbative in λ, then non-magnetic impurities are not
enough for the existence of a steady state solution for the polarization.

To cover all contributions to first order in electric field, in spin-orbit splitting and in impurity strength and con-
centration, we considered corrections to the collision integral that come from going to first order in electric field in
the gradient expansion of the self-energy side of the Dyson equation. One of the corrections, to our knowledge not
discussed before, actually involves the fz component. However, this contribution is of order λ2. Thus, the vanishing
of the spin Hall current to lowest order in λ in the perturbative case is not changed by these corrections.

Aknowledgements. The author wishes to aknowledge discussions with M. Lüffe, D. Culcer, F. Gethmann,
A. G. Mal’shukov, T. Nunner, P. Schwab, G. Vignale, F. von Oppen and R. Winkler. This work was supported
by the Swedish Research Council.

APPENDIX A: LEFT HAND SIDE OF EQ. (29)

For b = λk and b̂x + ib̂y = eiθ0+iNθ and f = γb∂afFD one has
fL

E · ∂kf = (E
k̂
∂k +

1

k
E

θ̂
∂θ)γλkb̂∂afFD = γλ(E

k̂
b̂ + NE

θ̂
ĉ) ∂afFD + γλk E

k̂
b̂ ∂k∂afFD . (A1)



12

The term
∫

k′ Wkk′δ′(∆a)∆b · σ∆f
(E)
0 is here for brevity only evaluated for a point-like impurity potential, i.e.

Wkk′ = W constant, and constant density of states D(a) = m/2π. Hence

τ−1
tr =

∫

k′

δ(∆a)Wkk′(1 − cos(∆θ)) = DW (A2)

With δ′(∆a) = ∂aδ(∆a) = −∂a′δ(∆a) a partial integration gives
fE∫

k′

Wδ′(∆a)∆b∆f
(E)
0 =

∫

da′ dθ′

2π
δ(∆a)∂a′ (DW∆b∆f

(E)
0 ) =

= λ

∫

da′δ(∆a)

[

k∂a∂kfFD

∫
dθ′

2π
E

k̂′∆b̂ + ∂a′(k′)∂kfFD

∫
dθ′

2π
b̂′∆E

k̂′

]

=

= −δ|N |,1
λ

2
(E

k̂
b̂ + NE

θ̂
ĉ)(k∂a∂kfFD + ∂afFD) =

= −δ|N |,1
λ

2
(E

k̂
b̂ + NE

θ̂
ĉ)(k∂k∂afFD + ζ∂afFD) (A3)

where it was used that b̂′ = b̂ cosN∆θ − ĉ sin N∆θ and k̂′ = k̂ cos∆θ − θ̂ sin ∆θ. In the last line it was used that
∂a∂k = ∂a(da

dk
∂a) = (∂av0)∂a + v0∂

2
a = ζ−1

k
∂a + ∂k∂a for v0 ∝ kζ−1. For a non-constant D (i.e. for ζ 6= 2) the result

in (A3) is modified. Note also that it is only for point-like impurities that the contribution (A3) vanishes for |N | 6= 1.
Adding up (A1) and (A3) one obtains for N = 1 that F = 1

2λ(ζ − 2)∂afFD + 1
2λγk∂k∂afFD and G = λ(γ −

1)(∂afFD + 1
2k∂k∂afFD). For |N | 6= 1 the contribution (A3) vanishes and one gets for example G− F = Nλγ∂afFD,

needed for the result (37).
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