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Quantum Monte Carlo simulation of thin magnetic films
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The stochastic series expansion quantum Monte Carlo method is used to study thin ferromagnetic films,
described by a Heisenberg model including local anisotropies. The magnetization curve is calculated, and the
results compared to Schwinger boson and many-body Green’s function calculations. A transverse field is
introduced in order to study the reorientation effect, in which the magnetization changes from out of plane to
in plane. Since the approximate theoretical approaches above differ significantly from each other, and the
Monte Carlo method is free of systematic errors, the calculation provides an unbiased check of the approximate
treatments. By studying quantum spin models with local anisotropies, varying spin size, and a transverse field,
we also demonstrate the general applicability of the recent cluster-loop formulation of the stochastic series
expansion quantum Monte Carlo method.
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I. INTRODUCTION

The driving force behind much of the research on th
magnetic films is their application in data storage devic
Magnetic thin films also display many remarkable physi
phenomena, such as the reorientation effect,1 in which the
axis of magnetization changes as a function of film thic
ness, temperature, and applied fields. Many theoretical m
ods, such as ab-initio calculations,2 mean-field theories,3,4

classical Monte Carlo simulations,5,6 Green’s function
methods7–12 and Schwinger bosons13 have been applied to
thin-film systems. Much of this work has focused on usi
the Heisenberg model to study the reorientation effect. T
ground state and the lowest~one-magnon! excitations are
known for the two-dimensional ferromagnetic Heisenbe
model, but there is no closed form analytic solution at fin
temperatures. Since results obtained using different appr
mate methods differ a great deal from each other, there
need for an unbiased check of the various methods used
is achieved by quantum Monte Carlo~QMC! calculations. In
Ref. 8, for example, it has been shown by comparing w
QMC results14,15 that the Tyablicov16 decoupling@random
phase approximation~RPA!# is a very good approximation
for the magnetization of a spinS51/2 monolayer in an ex-
ternal magnetic field~perpendicular to the film plane!. The
main purpose of the present paper is to show the feasib
of large-scale QMC calculations, free of systematic errors
the study of thin magnetic films. In order to achieve this g
we have included higher spins, local anisotropies, an
transverse magnetic field in the operator-loop formulation
the stochastic series expansion~SSE! QMC method.17

Two often-cited trends in quantum Monte Carlo develo
ment are the emergence of methods free of system
errors,15,18–21and the development of highly efficient loop
cluster algorithms.17,19,20,22–24In this work we particularly
want to emphasize thegeneral applicability of the SSE
operator-loop method, which makes it possible to use
same algorithm to study a wide variety of Hamiltonian
0163-1829/2002/66~9!/094407~9!/$20.00 66 0944
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Whereas previously it was necessary to rewrite large sect
of the computer code when changing the model, one can
use the same code~compiled only once! to simulate a wide
range of different systems. The user of the program no lon
necessarily needs detailed knowledge of the algorithm
code to be able to conduct a thorough study of many qu
tum spin models in any dimension with, for example, no
zero magnetic fields, anisotropies, and varying spin size.

A brief description of the QMC method is given in Sec.
Thereafter we discuss the applicability of the method and
introduction of general spin size and a transverse field in
SSE operator-loop algorithm. In Sec. III we compare so
examples of the QMC simulations to approximate theoret
approaches. Finally, we comment on possible future appl
tions of QMC simulations in the context of thin magnet
films.

II. SSE CLUSTER-LOOP ALGORITHM

There are excellent descriptions of the SSE lo
algorithm,17,24so we only give a brief summary here in ord
to introduce the general framework of the method. We w
however, try to describe the main features of the meth
pictorially. The focus is on the new aspects that arise wh
introducing arbitrary spin size and a transverse field.

We consider a lattice spin model described by a Ham
tonian H. The SSE method relies on a Taylor expansion
the partition functionZ,

Z5(
a

(
n50

`
~2b!n

n!
^auHnua&, ~1!

whereua& are basis states in which the matrix element abo
can be evaluated, andb is the inverse temperature.

To describe the updating procedure, we write the Ham
tonian as a sum over allM bonds representing interactin
spins in the system
©2002 The American Physical Society07-1
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H52 (
b51

M

Hb . ~2!

The bond operatorHb can be decomposed into its diagon
and off-diagonal parts,

Hb5HD,b1HO,b , ~3!

where subscriptD denotes a diagonal operator andO an
off-diagonal operator. For a ferromagnetic Heisenberg mo
these two operators are of the forms

2HD,b5Si (b)
z Sj (b)

z ~4!

and

2HO,b5 1
2 ~Si (b)

1 Sj (b)
2 1Si (b)

2 Sj (b)
1 !, ~5!

wherei (b) and j (b) denote the two spins connected by bo
b. If we introduce a cutoff orderL in the Taylor expansion
~which, when done properly, does not cause any system
errors24!, and include additional unit operatorsI, the expan-
sion can be rewritten in the form

H5(
a

(
SL

bn~L2n!!

L!
^auSLua&, ~6!

whereSL is an operator string,

SL5 )
p51

L

Hp , ~7!

with HpP$HD,b ,HO,b ,I %. The Monte Carlo procedure mus
sample the space of all statesua& and all operator sequence
SL .

We next consider the SSE space in more detail. Deno
a propagated state by

ua~p!&5)
i 51

p

Hi ua&, ~8!

the matrix element in Eq.~6! can be written as a product o
elements of the form̂a(p)uHbua(p21)&, where the bond
operatorHb only acts on two spins. For the spin-1/2 Heise
berg model the only elements that can appear
^↑,↑uHbu↑,↑&, ^↑,↓uHbu↑,↓&, ^↑,↓uHbu↓,↑&, and the spin-
reversed versions of the same set. From now on we refe
these matrix elements, consisting of four spin states an
bond operator, as ‘‘vertices.’’ The matrix element in Eq.~6!
can thus be viewed as a list of vertices of the above kind
Fig. 1 we depict such a list graphically.

In the operator-loop algorithm, two basic updates ens
that the complete SSE space is sampled. The diagonal up
attempts to exchange diagonal operatorsHD,b and unit op-
eratorsI. The probability for inserting a diagonal operat
~exchanging it for a unit operator! at positionp in the opera-
tor sequence is
09440
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Pinsert5
Mb^a~p!uHD,bua~p!&

L2n
, ~9!

while the probability for removing a diagonal operator is

Premove5
L2n11

Mb^a~p!uHD,bua~p!&
. ~10!

In a diagonal update, one exchange attempt is made for e
diagonal and unit operator. A typical outcome of a diago
update is shown in Fig. 2.

The second type of update is a global operator-loop
date, which leaves unit operators unaffected. The idea of
loop move is to form and flip a closed loop of spins in t
vertex list. In the process both the affected vertices and st
are changed. The operator-loop update together with
above diagonal update ensure that the complete SSE
figuration space is sampled.

The loop move is easy to formulate. In Fig. 3 we illustra
a loop move graphically. We have removed all the unit o
eratorsI from the operator sequence in Fig. 2. Furthermo
we only show the spins that are members of a vertex, and
turn the configuration into a linked list by connecting th

FIG. 1. A SSE configuration for a four-site spin-1/2 model.
filled ~empty! circle denotes a state with spin up~down!. A horizon-
tal bar indicates a vertex, corresponding to a bond operatorHb ,
labeled on the right. The propagated statesua(p)& are labeled on
the left side.

FIG. 2. A possible outcome of performing a diagonal update
the configuration in Fig. 1.
7-2
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QUANTUM MONTE CARLO SIMULATION OF THIN . . . PHYSICAL REVIEW B66, 094407 ~2002!
same spin at different vertices by vertical lines, which
refer to as ‘‘links.’’ Next we describe the loop move in mo
detail.

First a random spin, belonging to a vertex, is selected
flipped; see Fig. 3~a!. We refer to this spin as the ‘‘entrance
spin to the first vertex. For the loop to proceed, we selec
‘‘exit’’ spin, also belonging to the same vertex; see Fig. 3~b!.
The probability of choosing a given exit spin is proportion
to the vertex matrix element, that results from flipping t
entrance and exit legs. This choice of exit spin ensures
tailed balance.24 The exit spin is linked to another spin in th
linked vertex list, and this spin is chosen as the entrance
to the next vertex; see Fig. 3~c!. In this manner a loop of
spins on the space-time lattice is formed and flipped. N
that when the first spin is flipped a discontinuity is intr
duced into the vertex list. A link discontinuity appears wh
two spins linked together are not in the same state. When
example, the initial entrance and exit spins~assuming they
are different! are flipped, two discontinuities are introduce
in the linked list,@see Fig. 3~b!#, where a link-discontinuity is
marked by a short horizontal bar. One of the discontinuit
is propagated by the loop until the loop passes through
initial spin a second time, when the discontinuities ‘‘annih
late’’ each other and the loop closes; see Fig. 3~d!. A practical
and sufficient criterion for closing the loop is that the e
spin ~after having been flipped! is in the same state as th
next entrance spin~before flipping it!. When this is the case
all discontinuities have been removed and the loop can
closed.

FIG. 3. A loop update. Unit operators have been removed fr
the configuration in Fig. 2. Vertical lines~links! show how the spins
at different vertices are connected. Short horizontal bars denote
discontinuities.
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A. Applicability of the algorithm

The SSE loop algorithm is extremely general and can
efficiently applied to any model with a positive definite pa
tition function ~if this is not the case, one encounters t
usual difficulties due to the sign problem25!. This means that
the algorithm can be applied to ferromagnetic and antifer
magnetic~on bipartite lattices! Heisenberg models of an
quantum spin size in any dimension, including magne
fields and local as well as exchange anisotropies. The in
actions need not be short ranged, as long as they do not c
frustration~which leads to the sign problem!.

From a programming point of view, one need only calc
late the energies of all possible vertices~which typically is a
simple task! and generate a table of exit probabilities as
function of four variables: the initial vertex type, the e
trance spin, the entrance spin state, and the exit spin.

As an illustration we have written a code that works fo
generald-dimensional Heisenberg model of the form

H52(
i j

@Ji j
z Si

zSj
z1Ji j

t ~Si
1Sj

21Si
2Sj

1!#

2(
i

@K2~Si
z!21K4~Si

z!4#2(
i

@BzSi
z1BxSi

x#,

~11!

where the exchange interaction is given byJi j ~negative for
antiferromagnets and positive for ferromagnets!. S denotes
the quantum spin, andK2 andK4 are the second- and fourth
order local uniaxial anisotropies.B is an external magnetic
field. In this study we limit ourselves to a nearest neighb
interaction, but in principle one can include long-range int
actions. In the following we describe the modifications to t
loop algorithm that allow the introduction of general sp
size and a transverse field.

B. Inclusion of arbitrary spin

For the sake of simplicity, the SSE loop-operator alg
rithm was originally described17 for a spin-1/2 system, bu
the generalization to a spin-S system is straightforward. Fo
an arbitrary spin system there are more allowed vertices,
the probability for inserting and extracting diagonal ope
tors is still given by Eqs.~9! and~10! respectively. The only
necessary change in the loop-update is the choice of the
tial spin state. For the spin-1/2 model the initial entrance s
was simply flipped, but for the spin-S model one can ran-
domly choose among the 2S spin states that differ from the
initial spin state. All other aspects of the algorithm rema
the same.

C. Inclusion of a transverse field

Previously a transverse field has been included in the S
algorithm using local updates.15 In the present work we in-
clude the transverse field directly in the global loop upda
There are very likely many different ways to formulate
loop update which includes a transverse magnetic field. H
we will not make an exhaustive study, but rather present

nk
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HENELIUS, FRÖBRICH, KUNTZ, TIMM, AND JENSEN PHYSICAL REVIEW B66, 094407 ~2002!
possible algorithm, which we found particularly simple
implement. It is probably not the most efficient update, a
we are currently making a more detailed study of more e
cient algorithms for including the transverse field.

Including a transverse magnetic field is more involv
because the totalz component of the magnetization is n
longer a conserved quantity,@H,( iSi

z#Þ0, due to the pres-
ence of single lowering and raising operators (2Sx5S1

1S2) in the Hamiltonian. As a consequence additional ‘‘fl
vertices,’’ with different magnetizations in the initial and fi
nal states~such aŝ ↑,↑uHbu↑,↓&), are also allowed in the
vertex list. The presence of flip vertices implies that, in ge
eral, one can exit the same exit spin with several differ
spin states. The increase in the number of exit states m
that the exit probability is a function of five variables inste
of four: original vertex, entrance spin, entrance state, e
spin, and exit state. For a model that conserves the totz
component of the magnetization the exit state is a function
the other four variables.

To include a magnetic field, we also have to reconsi
how to start, and end, the operator loop. With no magn
field we introduce an initial link discontinuity by flipping th
first entrance spin. A second link discontinuity appears wh
the first exit spin is flipped~unless the entrance and exit spi
coincide, in which case the loop closes immediately!. The
second discontinuity is propagated as the loop progre
until the two discontinuities annihilate each other and
loop closes. With flip vertices allowed, the number of lin
discontinuities can change by the introduction or remova
single flip vertices. If one therefore chooses to start, and e
the loop in the same way as previously described, the l
can close without having corrected for the initial discontin
ity. In such a case it would be necessary to return to
starting point of the loop and continue execution until t
last discontinuity is removed.

Here we chose a slightly different approach, which can
implemented by a very minor change in the original form
lation. Instead of picking an initial entrance spin and cha
ing its state, we leave its stateunchanged. Without a mag-
netic field the loop would close immediately. With
magnetic field this possibility still exists, but the loop ma
also start with a flip vertex and thereafter proceed in a ‘‘n
mal’’ fashion until another flip vertex is inserted, or remove
when the loop is closed according to the usual criterion~the
exit spin and the following entrance spin are in the sa
state!. We have compared high-precision QMC data for sm
systems with exact diagonalization, to ensure that deta
balance is indeed satisfied.

A general proof that the detailed balance principle is s
isfied for a loop move was given in Ref. 24. The probabil
for a given loop update can be written as the product of
probabilities of the local vertex updates that form the loop
is shown that detailed balance can be ensured by sele
the exit spin of each vertex according to the heat-bath a
rithm described at the beginning of this section. For a spiS
model the probability of the loop should be multiplied wi
the probability of choosing the state of the initial starti
spin, while there is only one possibility for the spin-1/2 ca
For the case of a transverse field described here the heat
09440
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algorithm is also used to select the exit spin state of e
vertex. The state of the initial entrance spin is unchang
and there is no probability factor associated with it~like in
the spin-1/2 case without a transverse field!. In fact, the state
of the entrance spin ofeveryvertex is set equal to the state o
the spin to which it is linked. The first vertex is not treate
differently, and the proof given in Ref. 24 holds when inclu
ing a transverse field in this manner.

Figure 4 depicts an example of a loop move for the c
of a non zero transverse field. In Fig. 4~a! an initial entrance
spin is selected and left in its original state. An exit spin
selected and flipped@Fig. 4~b!#, resulting in a flip vertex. The
next entrance spin can be seen in Fig. 4~c!, with a corre-
sponding exit spin in Fig. 4~d!. Note that the exit state in Fig
4~d! is unchanged, resulting in a second flip vertex, lead
to termination of the loop. The loop does not close on its
in this case, but starts and ends at two different spins.

The transverse magnetization is particularly easy to c
culate within the SSE formulation, since it simply is equal
the average number of flip verticesNflip in the operator
sequence15:

Mx5
1

b
^Nflip&. ~12!

To conclude this section we note that only two chang
need to be made to add a transverse field. First of all
initial entrance spin state should be left unchanged. Sec
the exit probability is now also a function of exit state, sin

FIG. 4. A loop update in the presence of a transverse field. N
that there is no initial link discontinuity, since the state of the init
spin in~a! is left unchanged. With a transverse field the first and l
spins in the loop do not necessarily coincide.
7-4
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QUANTUM MONTE CARLO SIMULATION OF THIN . . . PHYSICAL REVIEW B66, 094407 ~2002!
there are, in general, several possible exit states for a g
exit spin. Next we apply this algorithm to a two-dimension
ferromagnetic system.

III. APPLICATION TO THIN MAGNETIC FILMS

The simplest effective model for a thin magnetic film is
ferromagnetic Heisenberg monolayer. However, the Merm
Wagner theorem26 tells us that this model cannot have a
nite critical temperature in two dimensions. The continuo
symmetry can be explicitly broken by an anisotropy in ord
to induce a finite critical temperature. Typical experimenta
observed values of the local anisotropy in 3d transition metal
films are about two orders of magnitude smaller than
exchange coupling, and one might therefore expect a v
small critical temperature. However, it turns out that the cr
cal temperature contains a logarithmic dependence on
anisotropy,5,13,27 so that very small anisotropies induce
critical temperature of the order of the coupling constant
this section we concentrate on results for the magnetiza
as a function of temperature. The model is given by Eq.~11!,
where the double sum is over all nearest neighbors o
two-dimensional square lattice. Since the main purpose
the present paper is to show the feasibility of the quant
Monte Carlo method, and not to explore the whole param
range of the model as defined in Eq.~11!, we limit ourselves
to some illustrative examples. From now on we will assu
an isotropic exchange interaction (Ji j

t 5Ji j
z /2), a zero vertical

magnetic field (Bz50), and only second-order anisotrop
(K450). First we discuss how the finite-size effects we
treated. Thereafter we compare the QMC results with
proximate theoretical approaches. Finally, we also sho
case where a transverse field drives the magnetization in
plane.

A. Finite-size effects

The first problem one encounters in a finite-size syst
with spin-inversion symmetry is that the magnetizati
should vanish because opposite spin orientations o
equally likely. One can circumvent this problem by calcul
ing either the absolute value of the magnetization, or
magnetization squared~and take the root afterwards!. Both
approaches are equivalent in the thermodynamic limit, a
since the absolute value of the magnetization is found
converge faster, we show only the former. The magnetiza
curves for a particular value of the anisotropy,K2 /J50.01,
and different system sizes are shown in Fig. 5. The finite-s
effects increase closer to the Curie temperatureTc /J, as ex-
pected for a second-order phase transition. For low temp
tures, however, one can see that it is possible to extract
which have converged~within statistical error! with respect
to system size. In the next section we restrict ourselve
results for the magnetization that show no discernible fin
size effects.

The critical temperature can be determined directly.
have used the Binder ratio28 to extract the value ofTc /J. By
plotting the ratio of two moments of the magnetization,
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Q5
^Mz

4&1/4

^Mz
2&1/2

, ~13!

the finite-size effects aroundTc /J should largely cancel, and
curves for different system sizes are expected to interse
Tc /J. In Fig. 6 we show an example forK2 /J51.5, where
one can clearly see how data for different system sizes in
sect at one point (Tc /J).

In transition-metal thin films, the second-order anisotro
is believed to be of the orderK2 /J50.01. The relatively
small energy scale of the anisotropy induces large finite-s
effects. In order to see the effects of a small energy scale
needs to examine large systems at low temperatures. In
7 we show the Binder ratio as a function of temperature a
system size forK2 /J50.01. It seems that results for linea
system sizesN54, 8, and 16 have converged aroundTc /J
>1.05, but as the system size is increased strong correc
appear and pushTc /J down to aroundTc /J>0.9. This is a
clear case where it would be dangerous to draw conclus

FIG. 5. Magnetization as a function of linear system sizeN and
temperatureT/J for S51 andK2 /J50.01.

FIG. 6. The Binder ratioQ as a function of linear system sizeN
and temperatureT/J for S51, andK2 /J51.5.
7-5
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HENELIUS, FRÖBRICH, KUNTZ, TIMM, AND JENSEN PHYSICAL REVIEW B66, 094407 ~2002!
from a study of small system sizes. The results for sys
size N5256 have statistical errors which are slightly larg
than the symbol size, while all other statistical errors
much smaller. To determineTc /J very accurately for such a
small anisotropy one would need accurate data for e
larger system sizes. However, the current precision is eno
for the comparisons with results of approximate theoret
methods that we present in the next section.

B. Magnetization

We compare the QMC data with Schwinger Bos
mean-field13 and many-body Green’s function
calculations.10,11Both methods include spin wave excitatio
approximately, and represent significant improvements o
simple mean-field theories in which magnon excitations
neglected completely. Of these two methods the Schwin
boson theories are numerically less demanding and m
easier to extend to arbitrary spin than the RPA approach13

In the Schwinger boson theory the Heisenberg mode
mapped onto an equivalent bosonic system. This can be d
by using the SU~2! symmetry in spin space of the Heisenbe
model. The SU~2! model can then be generalized to
SU(N) model, containingN bosons per site. In the limitN
→` mean-field theory becomes exact, and in this section
label mean-field SU(N→`) results by ‘‘SU(N). ’’ Using the
local equivalence between the SU~2! and O~3! groups, this
can be repeated for an O~3! model, and we label mean-fiel
O(N→`) results by ‘‘O(N). ’’

The many-body Green’s function calculations for t
magnetization are done by a procedure where one work
the second level of the hierarchy of equations of motion
the Green’s functions.11 This allows an exact treatment of th
terms stemming from the single-ion anisotropy, whereas
exchange interaction terms are treated by the Tyablicov16 or
random-phase approximation, and from now on Gree
function results will be labeled by RPA. This procedure is
improvement over the Anderson-Callen decoupling,10 in
which the single-ion anisotropy terms are decoupled at
level of the lowest order equation of motion, which is a go

FIG. 7. The Binder ratioQ as a function of linear system sizeN
temperatureT/J for S51 andK2 /J50.01.
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approximation only for small anisotropies.11 The results in
this subsection are calculated using the exact treatment o
single-ion anisotropy. Owing to problems with numerical s
bility, the calculations for the reorientation of the magnetiz
tion discussed in the next subsection are done with
Anderson-Callen decoupling.

We compare magnetization curves for three values of
anisotropy covering three orders of magnitude,K2 /J
50.01,0.2 and 1.5. The smallest value is of greatest
evance for experiments, but it is of interest to see how w
the analytic methods work outside this region as well. In F
8 we see that, forK2 /J50.01 the RPA calculations give
rather accurate magnetization curve, while the O(N) and
SU(N) theories give low and high estimates, respectively.
the low-temperature limit both the SU(N) theory and the
RPA calculation recover the correct spin-wave result. N
also by how much a simple mean-field theory overestima
the magnetization (Tc /JMF.2.7Tc /JQMC). As is well
known, mean-field theory also totally fails at low temper
tures~exponential instead of power law behavior!, due to the
neglect of spin waves. In Fig. 9 we see that forK2 /J50.2
the RPA still gives very accurate values at low temperatu
while overestimating the magnetization at higher tempe
tures. The O(N) theory happens to give a good estimate
Tc /J, while the SU(N) again overestimates the magnetiz
tion. In Fig. 9 the QMC points are connected by straig
lines, except for the line betweenTc /J and the highest tem
perature belowTc /J. This line is a fit to the Ising-like criti-
cal behavior

Mz}~T2Tc!
1/8. ~14!

The good fit indicates that the QMC data have come cl
enough toTc /J for the critical behavior to set in. For th
largest anisotropy,K2 /J51.5 ~Fig. 10!, the RPA calculation
again gives the most accurate estimate, but all approxim
curves result in too high a magnetization. For high tempe
tures the SU(N) theory yields a larger magnetization tha
simple mean-field theory. In Fig. 10 we have also includ

FIG. 8. Magnetization as a function of temperatureT/J for S
51 andK2 /J50.01.
7-6
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the quantum Monte Carlo data raised to the eighth pow
The resulting straight line is further evidence of how close
the critical point the simulation has come.

The large deviations of the approximate theoretical tre
ments from QMC, in particular close toTc /J and for large
anisotropies, indicate that neither the Green’s function
proach nor the Schwinger boson method treats spin w
interactions in a satisfactory way. This is also true for t
approximate formula forTc /J of Ref. 5, which yieldsTc /J
50.88,1.71, and 4.59 for the anisotropies of Figs. 8, 9,
10. The increasing discrepancy ofTc /J for larger K2 /J as
compared to the QMC results is due to the fact that Ref. 5
well as Refs. 9 and 27, employ an expansion for smallK2 /J.
It is interesting to note that that RPA and SU(N) give a
~mean-field! exponent of 1/2, whereas O(N) gives 1/3.

In this subsection we have compared QMC data with
proximate theoretical results for the magnetization cur
Except for the value ofTc /J, the QMC data shown abov
have converged in system size within error bars that are
discernible in the figures. The largest system size use

FIG. 9. Magnetization as a function of temperatureT/J for S
51 andK2 /J50.20.

FIG. 10. Magnetization as a function of temperatureT/J for S
51 andK2 /J51.50.
09440
r.
o

t-

-
ve
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ot
is

2563256 spins. Error bars are shown for the Binder estim
of Tc /J. As can be seen, the error increases with decrea
anisotropy, which is to be expected.

C. Reorientation

We consider two examples for the reorientation of t
magnetization in a transverse field. For an anisotropic sp
model we have calculated the vertical and transverse com
nents of the magnetization,Mz and Mx , as functions of a
transverse magnetic field at a fixed temperature.

The anisotropy favors an out-of-plane magnetizatio
while the transverse field wants the magnetization to be
the plane. This competition results in quite interesting ph
diagrams, where the order of the transition in general
pends on the order of the anisotropy.13 Here we concentrate
on two examples, to demonstrate the applicability of t
QMC approach.

In Fig. 11 we show the magnetization curves for a sm
anisotropy,K2 /J50.01, at a temperatureT/J51. Primarily
we show QMC results for system size 1283128, but in ad-
dition we show results for 64364 in the region where they
differ from each other. For small and intermediate fields
results have converged, while we again see increasing fin
size effects closer to the critical field. The trend is, howev
clear. The transverse magnetization does appear to incr
linearly with the transverse field, up to the highest fields
which the results have converged.

The SU(N) and O(N) calculations both show a linea
dependence on the transverse magnetization,Mx , similar to
the QMC calculation, whereas the vertical component
over- or underestimated, respectively. The SU(N) results for
Mz are good at weak field, though. The mean-field results
Mx are also linear, but mean-field theory consistently ov
estimatesMz . The RPA calculation with the approximat
decoupling of the anisotropy terms10 follows the QMC
curves at small values of the transverse field, but the re
entation occurs at a considerably smaller critical field than
the QMC calculation and other approximations. Also,

FIG. 11. In-plane and out-of-plane magnetization as a funct
of transverse field at temperatureT/J51 for S52, and K2 /J
50.01.
7-7
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the RPA the magnetization is not a unique function of fie
close to the transition. The same system has been studie
a larger anisotropy,K2 /J50.20, in Fig. 12. Here the SU(N)
and O(N) solutions are mean-field-like, and agree very w
with the QMC solution, except close to the transitio
whereas the RPA behaves as in Fig. 11. Close to the tra
tion the SU(N), O(N), and mean-field solutions overest
mate the vertical magnetization. The QMC results displa
small deviation from the linear increase in the in-plane m
netization, which is not reproduced by the Schwinger bo
or mean-field methods.

IV. CONCLUSION

This work shows the feasibility of using large-scale QM
calculations to examine microscopic thin film models. T
QMC approach can be used both as a sanity check on
proximate theoretical treatments and as a method in its o
right. Our results indicate that in the absence of a transv
field, the RPA, with an exact treatment of the anisotro
terms11 appears to be more accurate than the Schwinger

FIG. 12. In-plane and out-of-plane magnetization as
function of transverse field at temperatureT/J51 for S52, and
K2 /J50.2.
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son calculation. Both methods, however, represent an
provement over simple mean-field theory for small anisot
pies, but the QMC method reveals weaknesses in
approximate theories at large anisotropies and close to
Curie temperature. In the presence of a transverse field
results obtained from Schwinger boson methods are q
mean-field-like, which turns out to be appropriate for most
the field range. The reason that the RPA is worse in this c
is probably due to the Anderson-Callen decoupling of
anisotropy terms in the RPA.10 This was necessary becau
the more accurate treatment11 led to numerical difficulties
when applied to the reorientation problem. To make m
definite conclusions about the merits of different appro
mate methods, we would have to investigate a much la
parameter space, including higher anisotropies, general s
temperature, transverse field, and the extension to sev
layers. We leave such an investigation as work for the futu

It is possible to extend the QMC calculations to inclu
several layers with arbitrary interlayer coupling, as well
for example, anisotropies in the exchange coupling. Unfo
nately, the dipole interaction introduces frustration a
thereby the sign problem, and is therefore currently out
reach for QMC studies. On the other hand, long-range fe
magnetic couplings are not a problem. The implementa
of the dipole coupling also leads to problems in t
Schwinger boson theory, but is possible in a Green’s func
description.7,10 A very exciting recent development in th
QMC method is the introduction of directed loop moves24

which, according to our initial calculations, can reduce
autocorrelation time by one order of magnitude in spin
systems, and therefore make it possible to reach substan
larger system sizes. However, it is not clear that the direc
loops are as easy to implement for a general model as
method used in this work.
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