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Quantum Monte Carlo simulation of thin magnetic films
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The stochastic series expansion quantum Monte Carlo method is used to study thin ferromagnetic films,
described by a Heisenberg model including local anisotropies. The magnetization curve is calculated, and the
results compared to Schwinger boson and many-body Green’s function calculations. A transverse field is
introduced in order to study the reorientation effect, in which the magnetization changes from out of plane to
in plane. Since the approximate theoretical approaches above differ significantly from each other, and the
Monte Carlo method is free of systematic errors, the calculation provides an unbiased check of the approximate
treatments. By studying quantum spin models with local anisotropies, varying spin size, and a transverse field,
we also demonstrate the general applicability of the recent cluster-loop formulation of the stochastic series
expansion quantum Monte Carlo method.
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[. INTRODUCTION Whereas previously it was necessary to rewrite large sections
of the computer code when changing the model, one can now
The driving force behind much of the research on thinuse the same codeompiled only oncgto simulate a wide
magnetic films is their application in data storage devicestange of different systems. The user of the program no longer
Magnetic thin films also display many remarkable physicalnecessarily needs detailed knowledge of the algorithm and
phenomena, such as the reorientation effdéot,which the ~ code to be able to conduct a thorough study of many quan-
axis of magnetization changes as a function of film thick-tum spin models in any dimension with, for example, non-
ness, temperature, and applied fields. Many theoretical meti#zero magnetic fields, anisotropies, and varying spin size.
ods, such as ab-initio calculatiohsnean-field theorie$? A brief description of the QMC method is given in Sec. II.
classical Monte Carlo simulatiold, Green's function Thereafter we discuss the applicability of the method and the
method$™? and Schwinger bosofshave been applied to introduction of general spin size and a transverse field in the
thin-film systems. Much of this work has focused on usingSSE operator-loop algorithm. In Sec. Il we compare some
the Heisenberg model to study the reorientation effect. Th@xamples of the QMC simulations to approximate theoretical
ground state and the lowegbne-magnoh excitations are approaches. Finally, we comment on possible future applica-
known for the two-dimensional ferromagnetic Heisenbergtions of QMC simulations in the context of thin magnetic
model, but there is no closed form analytic solution at finitefilms.
temperatures. Since results obtained using different approxi-

mate methods differ a great deal from each other, there is a Il SSE CLUSTER-LOOP ALGORITHM
need for an unbiased check of the various methods used; this
is achieved by quantum Monte Cafl@MC) calculations. In There are excellent descriptions of the SSE loop

Ref. 8, for example, it has been shown by comparing withalgorithm’?#so we only give a brief summary here in order

QMC resultd*!® that the Tyablicol? decoupling[random to introduce the general framework of the method. We will,

phase approximatio(RPA)] is a very good approximation however, try to describe the main features of the method

for the magnetization of a spiB=1/2 monolayer in an ex- pictorially. The focus is on the new aspects that arise when

ternal magnetic fieldperpendicular to the film planeThe introducing arbitrary spin size and a transverse field.

main purpose of the present paper is to show the feasibility We consider a lattice spin model described by a Hamil-

of large-scale QMC calculations, free of systematic errors, ifonianH. The SSE method relies on a Taylor expansion of

the study of thin magnetic films. In order to achieve this goalthe partition functionz,

we have included higher spins, local anisotropies, and a

transverse magnetic field in the operator-loop formulation of ©

the stochastic series expansi@sB QMC method!’ z=>> (=A) (a|H"a), 1)
Two often-cited trends in quantum Monte Carlo develop- « n=o n!

ment are the emergence of methods free of systematic

errors®®-21and the development of highly efficient loop- where|«) are basis states in which the matrix element above

cluster algorithmd/192022-24n this work we particularly can be evaluated, an@l is the inverse temperature.

want to emphasize thgeneral applicability of the SSE To describe the updating procedure, we write the Hamil-

operator-loop method, which makes it possible to use théonian as a sum over aM bonds representing interacting

same algorithm to study a wide variety of Hamiltonians.spins in the system
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. 0> O @ @ O

H= —bgl Hp. 2 — Ho.
o> @ O @ O :
The bond operatoH, can be decomposed into its diagonal
and off-diagonal parts, 2> @ O @ O .
Hb:HD,b+ HO,b1 (3) Ia(3)> . O . Q
_ _ — Ho.:
where subscripD denotes a diagonal operator afdan lod)> O @ @ O
off-diagonal operator. For a ferromagnetic Heisenberg model —— Hbps
these two operators are of the forms 0> O @ @ O

FIG. 1. A SSE configuration for a four-site spin-1/2 model. A
—Hpp= Si(b) i (b) (4) filled (empty circle denotes a state with spin (gown). A horizon-
tal bar indicates a vertex, corresponding to a bond opetdtar

and labeled on the right. The propagated stdieép)) are labeled on
the left side.
—Hop=3(S (b)S i) T Sin)S; (b)) 5
wherei (b) andj(b) denote the two spins connected by bond ~ MB(a(p)|Hp,pla(p))
b. If we introduce a cutoff ordekL in the Taylor expansion Pinser™ L—n ' ©

(which, when done properly, does not cause any systematic

e.rror§4), and inclyde gdditional unit operatorsthe expan-  \hjle the probability for removing a diagonal operator is
sion can be rewritten in the form

L—-n+1
H-3 5 F P alsla), © Premers M Bla(p) [Ho o a(p) 1o
whereS, is an operator string, In a diagonal update, one exchange attempt is made for each

diagonal and unit operator. A typical outcome of a diagonal
L update is shown in Fig. 2.
_ H H ) The second type of update is a global operator-loop up-
p=1 P date, which leaves unit operators unaffected. The idea of the
loop move is to form and flip a closed loop of spins in the
with Hye{Hp »,Hop,1}. The Monte Carlo procedure must vertex list. In the process both the affected vertices and states
sample the space of all states) and all operator sequences are changed. The operator-loop update together with the

S . above diagonal update ensure that the complete SSE con-
We next consider the SSE space in more detail. Denotindiguration space is sampled.
a propagated state by The loop move is easy to formulate. In Fig. 3 we illustrate

a loop move graphically. We have removed all the unit op-

eratorsl from the operator sequence in Fig. 2. Furthermore
la(p))= H Hila) (8) we only show_ the spins_ that are meml_)ers of a verte>§, and we

i= turn the configuration into a linked list by connecting the

the matrix element in Eq6) can be written as a product of
elements of the forn{a(p)|Hp|a(p—1)), where the bond O . ‘ O
operatorH, only acts on two spins. For the spin-1/2 Heisen-

berg model the only elements that can appear are . O . O
<T!T|Hb|T1T>’ <Tll|Hb|T!l>1 <T!l|Hb|l.T>, and the Spin- —_— HD3
reversed versions of the same set. From now on we refer to ‘ O ‘ O ’
these matrix elements, consisting of four spin states and a

bond operator, as “vertices.” The matrix element in E6).

can thus be viewed as a list of vertices of the above kind. In . O ‘ O

Fig. 1 we depict such a list graphically.

In the operator-loop algorithm, two basic updates ensure O ‘ . O
that the complete SSE space is sampled. The diagonal update
attempts to exchange diagonal operatdrs, and unit op-
eratorsl. The probability for inserting a diagonal operator Q . . O
(exchanging it for a unit operatpat positionp in the opera- FIG. 2. A possible outcome of performing a diagonal update on
tor sequence is the configuration in Fig. 1.

094407-2



QUANTUM MONTE CARLO SIMULATION OF THIN . .. PHYSICAL REVIEW B 66, 094407 (2002

be

A. Applicability of the algorithm
The SSE loop algorithm is extremely general and can be

O O efficiently applied to any model with a positive definite par-
tition function (if this is not the case, one encounters the
" YO ® O usual difficulties due to the sign probléP This means that

the algorithm can be applied to ferromagnetic and antiferro-
magnetic (on bipartite lattices Heisenberg models of any
quantum spin size in any dimension, including magnetic
fields and local as well as exchange anisotropies. The inter-
actions need not be short ranged, as long as they do not cause

(b) frustration(which leads to the sign problem

ho e O
ool 0
b8 || o

From a programming point of view, one need only calcu-
late the energies of all possible vertiqeghich typically is a
simple task and generate a table of exit probabilities as a

‘ Q Q function of four variables: the initial vertex type, the en-
trance spin, the entrance spin state, and the exit spin.
. O . O As an illustration we have written a code that works for a

generald-dimensional Heisenberg model of the form

O
|

H= —; [J5S/Si+35(STS +S 7S]

@

© @ -3 Ko+ K]~ 2 [B'S+ B,
FIG. 3. Aloop update. Unit operators have been removed from

the configuration in Fig. 2. Vertical lineinks) show how the spins (13)

at different vertices are connected. Short horizontal bars denote link . L. .
discontinuities where the exchange interaction is given hy (negative for

antiferromagnets and positive for ferromagnet denotes
the quantum spin, and, andK, are the second- and fourth-
same spin at different vertices by vertical lines, which wegrder local uniaxial anisotropie® is an external magnetic
refer to as “links.” Next we describe the loop move in more field. In this study we limit ourselves to a nearest neighbor
detail. interaction, but in principle one can include long-range inter-
First a random spin, belonging to a vertex, is selected anéctions. In the following we describe the modifications to the
flipped; see Fig. @&). We refer to this spin as the “entrance” loop algorithm that allow the introduction of general spin
spin to the first vertex. For the loop to proceed, we select asize and a transverse field.
“exit” spin, also belonging to the same vertex; see Fifh)3
The probability of choosing a given exit spin is proportional B. Inclusion of arbitrary spin
to the vertex matrix element, that results from flipping the L
entrance and exit legs. This choice of exit spin ensures de- For the se_xkg of S|mpl|c_|t3é/,athe SSE. loop-operator algo-
tailed balancé? The exit spin is linked to another spin in the fithm was qugl_nally described for a sp|n-:_L/2 system, but
linked vertex list, and this spin is chosen as the entrance s itr;]e ge_neral|zat_|on to a spi-system is stra|ghtforwaro_l. For
; p p
to the next vertex: see Fig(@. In this manner a loop of an arbltrary spin sy_stem_there are more_allovyed vertices, but
. . T . the probability for inserting and extracting diagonal opera-
spins on the space-time lattice is formed and flipped. Not

: - ; TR Sors is still given by Eqs(9) and(10) respectively. The only
that when the first spin is flipped a discontinuity is intro- hecessary change in the loop-update is the choice of the ini-
duced into the vertex list. A link discontinuity appears whenja| spin state. For the spin-1/2 model the initial entrance spin

two spins linked together are not in the same state. When, fgf 55 simply flipped, but for the spiS-model one can ran-

example, the initial entrance and exit spi@ssuming they  gomly choose among the2spin states that differ from the

are different are flipped, two discontinuities are introduced jyitial spin state. All other aspects of the algorithm remain
in the linked list[see Fig. 80)], where a link-discontinuity is  the same.

marked by a short horizontal bar. One of the discontinuities
is propagated by the loop until the loop passes through the
initial spin a second time, when the discontinuities “annihi-
late” each other and the loop closes; see Fig).3A practical Previously a transverse field has been included in the SSE
and sufficient criterion for closing the loop is that the exit algorithm using local updatés.In the present work we in-
spin (after having been flippeds in the same state as the clude the transverse field directly in the global loop update.
next entrance spitbefore flipping ij. When this is the case, There are very likely many different ways to formulate a
all discontinuities have been removed and the loop can blop update which includes a transverse magnetic field. Here
closed. we will not make an exhaustive study, but rather present one

C. Inclusion of a transverse field
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possible algorithm, which we found particularly simple to
implement. It is probably not the most efficient update, and
we are currently making a more detailed study of more effi-
cient algorithms for including the transverse field.

Including a transverse magnetic field is more involved
because the totat component of the magnetization is no
longer a conserved quantityH,>;S’]#0, due to the pres-
ence of single lowering and raising operatorsS{2S*
+S7) in the Hamiltonian. As a consequence additional “flip
vertices,” with different magnetizations in the initial and fi-
nal states(such as(1,T|Hy|T,l)), are also allowed in the
vertex list. The presence of flip vertices implies that, in gen-
eral, one can exit the same exit spin with several different
spin states. The increase in the number of exit states means
that the exit probability is a function of five variables instead
of four: original vertex, entrance spin, entrance state, exit
spin, and exit state. For a model that conserves the mtal
component of the magnetization the exit state is a function of . O ’
the other four variables.

To include a magnetic field, we also have to reconsider
how to start, and end, the operator loop. With no magnetic CP
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field we introduce an initial link discontinuity by flipping the

_@

first entrance spin. A second link discontinuity appears when (©) (d)
the first exit spin is flippedunless the entrance and exit spins
coincide, in which case the loop closes immedigtelhe FIG. 4. Aloop update in the presence of a transverse field. Note

second discontinuity is propagated as the loop progressesat there is no initial link discontinuity, since the state of the initial
until the two discontinuities annihilate each other and thespin in(a) is left unchanged. With a transverse field the first and last
loop closes. With flip vertices allowed, the number of link spins in the loop do not necessarily coincide.

discontinuities can change by the introduction or removal of

single flip vertices. If one therefore chooses to start, and endigorithm is also used to select the exit spin state of each
the loop in the same way as previously described, the loogertex. The state of the initial entrance spin is unchanged,
can close without having corrected for the initial discontinu-and there is no probability factor associated witftlike in
ity. In such a case it would be necessary to return to thehe spin-1/2 case without a transverse field fact, the state
starting point of the loop and continue execution until theof the entrance spin averyvertex is set equal to the state of
last discontinuity is removed. the spin to which it is linked. The first vertex is not treated
Here we chose a slightly different approach, which can bejifferently, and the proof given in Ref. 24 holds when includ-
implemented by a very minor change in the original formu-ing a transverse field in this manner.
lation. Instead of picking an initial entrance spin and chang- Figure 4 depicts an example of a loop move for the case
ing its state, we leave its statenchangedWithout a mag-  of a non zero transverse field. In Figaftan initial entrance
netic field the loop would close immediately. With a spin is selected and left in its original state. An exit spin is
magnetic field this pOSSIbIlIty still exists, but the |00p may selected and f||ppeEF|g 4(b)], resumng ina f||p vertex. The
also start with a flip vertex and thereafter proceed in a “nor-next entrance spin can be seen in Fi¢c)4with a corre-
mal” fashion until another flip vertex is inserted, or removed, sponding exit spin in Fig. @). Note that the exit state in Fig.
when the loop is closed according to the usual criteftbe  4(d) is unchanged, resulting in a second flip vertex, leading
exit spin and the following entrance spin are in the sameg termination of the loop. The loop does not close on itself
statg. We have compared high-precision QMC data for smallin this case, but starts and ends at two different spins.
systems with exact diagonalization, to ensure that detailed The transverse magnetization is particu|ar|y easy to cal-
balance is indeed satisfied. culate within the SSE formulation, since it simply is equal to

A general proof that the detailed balance principle is satthe average number of flip vertices;, in the operator
isfied for a loop move was given in Ref. 24. The probability sequenct:

for a given loop update can be written as the product of the

probabilities of the local vertex updates that form the loop. It 1

is shown that detailed balance can be ensured by selecting M == (Niip)- (12)

the exit spin of each vertex according to the heat-bath algo- B

rithm described at the beginning of this section. For a pin-

model the probability of the loop should be multiplied with  To conclude this section we note that only two changes
the probability of choosing the state of the initial startingneed to be made to add a transverse field. First of all the
spin, while there is only one possibility for the spin-1/2 case.nitial entrance spin state should be left unchanged. Second,
For the case of a transverse field described here the heat-batie exit probability is now also a function of exit state, since
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there are, in general, several possible exit states for a given 1

exit spin. Next we apply this algorithm to a two-dimensional

ferromagnetic system. 0s |
Ill. APPLICATION TO THIN MAGNETIC FILMS 06 |

The simplest effective model for a thin magnetic film is a gN
ferromagnetic Heisenberg monolayer. However, the Mermin- 0.4
Wagner theoreff tells us that this model cannot have a fi-
nite critical temperature in two dimensions. The continuous
symmetry can be explicitly broken by an anisotropy in order 0.2
to induce a finite critical temperature. Typical experimentally
observed values of the local anisotropy ith Bansition metal 0
films are about two orders of magnitude smaller than the 0
exchange coupling, and one might therefore expect a very
small critical temperature. However, it turns out that the criti- o . . !
cal temperature contains a logarithmic dependence on the FIG. 5. Magneuza_non as afunEtlon of linear system sizand
anisotropyy*®?” so that very small anisotropies induce g temperaturef/J for S=1 andK,/J=0.01.
critical temperature of the order of the coupling constant. In

this section we concentrate on results for the magnetization (M‘Z‘>1/4
as a function of temperatyre. The model is giver) by &), Q= W (13
where the double sum is over all nearest neighbors on a z

two-dimensional square lattice. Since the main purpose of

the present paper is to show the feasibility of the quantume finjte-size effects arouriil,/J should largely cancel, and
Monte Carlo method, and not to explore the whole parametegyves for different system sizes are expected to intersect at
range of the model as defined in Ed1), we limit ourselves T./J. In Fig. 6 we show an example fdt,/J=1.5, where

to some illustrative examples. From now on we will assumene can clearly see how data for different system sizes inter-
an isotropic exchange interactiod(= J;;/2), a zero vertical ~ggct at one pointT./J).
magnetic field B*=0), and only second-order anisotropy |n transition-metal thin films, the second-order anisotropy
(K4=0). First we discuss how the finite-size effects werejs pelieved to be of the ordet,/J=0.01. The relatively
treated. Thereafter we compare the QMC results with apsmall energy scale of the anisotropy induces large finite-size
proximate theoretical approaches. Finally, we also show @ffects. In order to see the effects of a small energy scale one
case Where a transverse f|e|d driVeS the magnetization il’l th%eds to examine |arge Systems at IOW temperatures_ In F|g
plane. 7 we show the Binder ratio as a function of temperature and
system size foK,/J=0.01. It seems that results for linear
system sizedN=4, 8, and 16 have converged arouhgd/J
=1.05, but as the system size is increased strong corrections
The first problem one encounters in a finite-size systenappear and push./J down to aroundl,/J=0.9. This is a
with spin-inversion symmetry is that the magnetizationclear case where it would be dangerous to draw conclusions
should vanish because opposite spin orientations occur
equally likely. One can circumvent this problem by calculat- 1.15
ing either the absolute value of the magnetization, or the
magnetization square@nd take the root afterwardsBoth
approaches are equivalent in the thermodynamic limit, and,
since the absolute value of the magnetization is found to
converge faster, we show only the former. The magnetization
curves for a particular value of the anisotropy,/J=0.01,
and different system sizes are shown in Fig. 5. The finite-size
effects increase closer to the Curie temperafiyél, as ex-
pected for a second-order phase transition. For low tempera- 1.05 ¢
tures, however, one can see that it is possible to extract data
which have converged@within statistical error with respect
to system size. In the next section we restrict ourselves to
results for the magnetization that show no discernible finite-
size effects.
The critical temperature can be determined directly. We
have used the Binder raffoto extract the value of ./J. By FIG. 6. The Binder rati@ as a function of linear system sixe
plotting the ratio of two moments of the magnetization, and temperatur&/J for S=1, andK,/J=1.5.

A. Finite-size effects

1.1 ¢
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FIG. 7. The Binder rati®@Q as a function of linear system sije

FIG. 8. Magnetization as a function of temperatdid for S
temperaturel/J for S=1 andK,/J=0.01.

=1 andK,/J=0.01.

from a study of small system sizes. The results for systempproximation only for small anisotropiésThe results in
sizeN=256 have statistical errors which are slightly largerthis subsection are calculated using the exact treatment of the
than the symbol size, while all other statistical errors aresingle-ion anisotropy. Owing to problems with numerical sta-

much smaller. To determing,/J very accurately for such a pility, the calculations for the reorientation of the magnetiza-
small anisotropy one would need accurate data for evefon discussed in the next subsection are done with the

larger system sizes. However, the current precision is enougiinderson-Callen decoupling.
for the comparisons with results of approximate theoretical

_ J We compare magnetization curves for three values of the
methods that we present in the next section.

anisotropy covering three orders of magnitude,/J
=0.01,0.2 and 1.5. The smallest value is of greatest rel-
B. Magnetization evance for experiments, but it is of interest to see how well
) ) the analytic methods work outside this region as well. In Fig.
We compare the QMC data with Scfywmger Bosong e see that, foK,/J=0.01 the RPA calculations give a
mean-field® ~and  many-body ~ Green's  functions yather accurate magnetization curve, while theN{(@nd

calculations'>! Both methods include spin wave excitations SU(N) theories give low and high estimates, respectively. In
approximately, and represent significant improvements ovefj,o low-temperature limit both the SNj theory and the

simple mean-field theories in which magnon excitations argypa caculation recover the correct spin-wave result. Note
neglected completely. Of these two methods the Schwingey;qq by how much a simple mean-field theory overestimates
boson theories are numerically less demanding and mucf,, magnetization T/JMF=2.7T./J%MC). As is well

. . ) . TTe .
easier to extend to arbitrary spin than the RPA apprdach. o mean-field theory also totally fails at low tempera-

In the Schwinger boson theory the Heisenberg model ig, e5(exponential instead of power law behayiatue to the
mapped onto an equivalent bosonic system. This can be doﬁlﬁeglect of spin waves. In Fig. 9 we see that Fos/J=0.2
by lés'lng t::e S@) symrcr;eltry In s;;]m space of the Heisenberg o 'ppa still gives very accurate values at low temperatures,
model. The |Sl(12) model can then be generalized t0 an e oyerestimating the magnetization at higher tempera-
SU(N) model, containingN bosons per site. In the imN .05 The OK) theory happens to give a good estimate of

— oo mean-field theory becomes exact, and in this section W& /3 while the SUN) anain overestimates the maanetiza-
label mean-field SU{— ) results by “SUN).” Using the o ) ag 9

, ~  tion. In Fig. 9 the QMC points are connected by straight
local equivalence between the &) and 43) groups, th.'s lines, except for the line betwedn./J and the highest tem-
can be repeated for an(® model, and we label mean-field perature belowl ./J. This line is a fit to the Ising-like criti-
O(N— ) results by “ON).” cal behavior

The many-body Green’s function calculations for the
magnetization are done by a procedure where one works at
the second level of the hierarchy of equations of motion for Mo (T—To) M8 (14
the Green’s functions: This allows an exact treatment of the
terms stemming from the single-ion anisotropy, whereas thdhe good fit indicates that the QMC data have come close
exchange interaction terms are treated by the Tyablfcov  enough toT./J for the critical behavior to set in. For the
random-phase approximation, and from now on Green'dargest anisotropyK,/J=1.5 (Fig. 10, the RPA calculation
function results will be labeled by RPA. This procedure is anagain gives the most accurate estimate, but all approximate
improvement over the Anderson-Callen decoupfihgn  curves result in too high a magnetization. For high tempera-
which the single-ion anisotropy terms are decoupled at théures the SUY) theory yields a larger magnetization than
level of the lowest order equation of motion, which is a goodsimple mean-field theory. In Fig. 10 we have also included
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FIG. 9. Magnetization as a function of temperatdvd for S o )

=1 andK,/J=0.20. FIG. 11. In-plane and out-of-plane magnetization as a function

of transverse field at temperatui@J=1 for S=2, andK,/J

=0.01.
the quantum Monte Carlo data raised to the eighth power.

The resulting straight line is further evidence of how close t0256x 256 spins. Error bars are shown for the Binder estimate

the critical point the simulation has come. of T./J. As can be seen, the error increases with decreasing
The large deviations of the approximate theoretical treatanisotropy, which is to be expected.
ments from QMC, in particular close t6./J and for large
anisotropies, indicate that neither the Green’s function ap-
proach nor t_he Sch\_/vinger boson me_thpd treats spin wave We consider two examples for the reorientation of the
:;Eigﬁlr(r)]g?el?o?mi?gsfgaﬂ? t(/)\;yo\]fvz)ngg Iswlr?icils)?ietlgus'el' f/(); themagnetization in a transverse field.. For an anisotropic spin-2
—0.881.71 and 4.59 forc the aniS()'tr()’pies of Figs 8C 9 an model we have calcu_late_d the vertical and tranS\_/erse compo-
10 .Th,e .inc’reasing. discrepancy ©f/J for larger K ./J’ aé %ents of the magnetizatioM, and M, as functions of a
' ) 2 transverse magnetic field at a fixed temperature.
compared to the QMC results is due to the_ fact that Ref. 5, as The anisotropy favors an out-of-plane magnetization,
wgll as Refs..9 and 27, employ an expansion for Sm.@"”- while the transverse field wants the magnetization to be in
It is lnterestlng to note that that RPA and_ NY(give a the plane. This competition results in quite interesting phase
(mean-ﬁeld eXPO‘.‘e”t of 1/2, whereas B gives 1/3. . diagrams, where the order of the transition in general de-
In. this subsectpn we have compared QMC.dat.a with ap'pends on the order of the anisotrdpyHere we concentrate
proximate theoretical results for the magnetization curve L two examples, to demonstrate the applicability of the
Except for the value off ./J, the QMC data shown above MC approach ’
have converged in system size within error bars that are no? In Fig. 11 wé show the magnetization curves for a small
discernible in the figures. The largest system size used iﬁnisotrop;y,KZ/Jzo.Ol, at a temperatur/J=1. Primarily
we show QMC results for system size 22828, but in ad-
dition we show results for 6464 in the region where they
differ from each other. For small and intermediate fields the
N =—aamc’ results have converged, while we again see increasing finite-
) size effects closer to the critical field. The trend is, however,
clear. The transverse magnetization does appear to increase
linearly with the transverse field, up to the highest fields for
\ | which the results have converged.
\ \ The SUN) and O(N) calculations both show a linear
\ dependence on the transverse magnetizatbp, similar to
the QMC calculation, whereas the vertical component is
over- or underestimated, respectively. The BY¢esults for

C. Reorientation

1

0.75 r

0.5 r

IM,|

025 r

FIG. 10. Magnetization as a function of temperati¥d for S

=1 andK,/J=1.50.

1

TH2

T

i . M, are good at weak field, though. The mean-field results for

M, are also linear, but mean-field theory consistently over-
estimatesM,. The RPA calculation with the approximate
decoupling of the anisotropy terfisfollows the QMC
curves at small values of the transverse field, but the reori-
entation occurs at a considerably smaller critical field than in
the QMC calculation and other approximations. Also, in

094407-7



HENELIUS, FRGBRICH, KUNTZ, TIMM, AND JENSEN PHYSICAL REVIEW B66, 094407 (2002

son calculation. Both methods, however, represent an im-
provement over simple mean-field theory for small anisotro-
pies, but the QMC method reveals weaknesses in the
approximate theories at large anisotropies and close to the
Curie temperature. In the presence of a transverse field the
results obtained from Schwinger boson methods are quite
mean-field-like, which turns out to be appropriate for most of
the field range. The reason that the RPA is worse in this case
is probably due to the Anderson-Callen decoupling of the
anisotropy terms in the RPR.This was necessary because
the more accurate treatméhted to numerical difficulties
when applied to the reorientation problem. To make more
definite conclusions about the merits of different approxi-
mate methods, we would have to investigate a much larger
‘ ‘ parameter space, including higher anisotropies, general spin,
0 0.2 0.4 0.6 0.8 temperature, transverse field, and the extension to several
B/ layers. We leave such an investigation as work for the future.
It is possible to extend the QMC calculations to include
several layers with arbitrary interlayer coupling, as well as,
for example, anisotropies in the exchange coupling. Unfortu-
nately, the dipole interaction introduces frustration and
thereby the sign problem, and is therefore currently out of
reach for QMC studies. On the other hand, long-range ferro-
agnetic couplings are not a problem. The implementation
of the dipole coupling also leads to problems in the
Schwinger boson theory, but is possible in a Green’s function
' description’'° A very exciting recent development in the
SYMC method is the introduction of directed loop mo¥és,

FIG. 12. In-plane and out-of-plane magnetization as a
function of transverse field at temperaturé]J=1 for S=2, and

the RPA the magnetization is not a unique function of field
close to the transition. The same system has been studied f
a larger anisotropy,/J=0.20, in Fig. 12. Here the S1)

and O(N) solutions are mean-field-like, and agree very well
with the QMC solution, except close to the transition
whereas the RPA behaves as in Fig. 11. Close to the tran

tion the SUN_)' O(N), af?d r_nean-fleld solutions OV?rESt" which, according to our initial calculations, can reduce the
mate the vertical magnetization. The QMC results display &, i o-orrelation time by one order of magnitude in spin-1

smtgll (tj_ewatl(r)]n qu thte Imeacrj mcr(;a%set;]n tger:n'.'0lanebm""g'systems, and therefore make it possible to reach substantially
netiza IOI'},. VI\:j IC tlr? r('jo reproduced by the schwinger osorI‘arger system sizes. However, it is not clear that the directed
or mean-fieid methods. loops are as easy to implement for a general model as the

method used in this work.
IV. CONCLUSION
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