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Network patterns and strength of orbital currents in layered cuprates

M. V. Eremin,1 I. Eremin,1,2 and A. Terzi1
1Physics Department, Kazan State University, 420008 Kazan, Russia

2Institut für Theoretische Physik, Freie Universita¨t Berlin, D-14195 Berlin, Germany
~Received 18 July 2002; published 30 September 2002!

In the frame of thet-J-G model we derive a microscopical expression for circulating orbital currents in
layered cuprates using the anomalous correlation functions. In agreement with muon spin relaxation, nuclear
quadrupolar resonance and neutron scattering~NS! experiments in YBa2Cu3O61x we successfully explain the
order of magnitude and the monotonous increase of theinternal magnetic fields resulting from these currents
upon cooling. However, the marked enhancement of NS intensity atTc , reported recently, seems to indicate a
non-mean-field feature of coexistence between the current and superconducting states. A relation of this
enhancement to the appearance of a small admixture ofs-wave symmetry component of the conventional
charge-density wave state and also the dependence of the sliding charge-current condensation energy on the
phase of the order parameter are discussed.
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A possibility for a staggered orbital current phase form
tion in layered cuprates has attracted much inte
recently.1–11 Remarkably, it was shown that most of the o
served properties referred to as a so-called pseudogap
nomenon can be naturally explained in an extended cha
density wave ~CDW! scenario with a complex orde
parameter~shortly s1 id-CDW) in underdoped cuprates
The real s-wave symmetry component corresponds to
formation of conventional charge-~or spin! density waves
whereas the imaginary part of the order parameter ha
dx22y2-wave symmetry and corresponds to a staggered
rent phase. A different kind of experiments can be interpre
in favor of the staggered orbital current phase such as
observation of orbital antiferromagnetism in YBa2Cu3O61y
by means of neutron scattering~NS! experiments reported in
Refs. 5, 6 and zero-field muon spin relaxation (mSR)
experiments.8 Moreover, recent investigations using nucle
magnetic resonance~NMR! indicate the presence of intern
fluctuating magnetic fields in the superconducting state
layered cuprates.9–11 Most importantly, the observed en
hancement of the magnetic moment’s intensity atTc ~Refs. 5,
6! seems to indicate an intrinsic and nontrivial relation b
tween the superconducting and the pseudogap phases. I
context a microscopical analysis of the network patterns
the strength of orbital currents becomes very actual.

In general, the possibility ofs1 id-CDW phase formation
is related to a divergence of the dynamical charge susce
bility at the wave vectorQi'(p,p) in the first Brillouin
zone and it was demonstrated recently for cuprates.12 In this
report we derive the analytical expression for the curr
flow and show how its orbital network pattern can be rec
structed. Most importantly, we calculate the intensity of t
resulting internal magnetic fields and the corresponding
bital magnetic moments. We find that its enhancement aTc
may result from the presence of a relatively smalls-wave
component in the extended CDW. The latter agrees well w
the observation of the increase of the nuclear quadrup
resonance~NQR! linewidth at the Cu~2! site ~see, Ref. 11!.
In addition, the non-mean-field character of the coexiste
of superconductivity ands1 id-CDW phases has to be take
into account.
0163-1829/2002/66~10!/104524~6!/$20.00 66 1045
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Hamiltonian and general expression for the current flo
In our analysis we start from the followingt-J-G model
Hamiltonian:

H5(
i j

t i j C i
pd,sC j

s,pd1(
i . j

Ji j F ~SiSj !2
ninj

4 G
1(

i . j
Gi j d id j , ~1!

whereC i
a,b5u i ,a&^ i ,bu are projecting Hubbard-like opera

tors. The indexpd corresponds to a Zhang-Rice singlet fo
mation with one hole placed on the copper site, whereas
second hole is distributed on the neighboring oxygen site13

Here, t i j is a hopping integral,Ji j is a superexchange cou
pling parameter of the copper spins, ands561/2. d i5
C i

pd,dp is a hole doping operator. The anticommutator re
tions are given by Ppd5@C i

↑,pdC i
pd,↑#5(21d i)/41si

z ,
wheresi

z is a spin operator. As in Ref. 12 we also use t
parameter of a screened Coulomb repulsion of the do
holes at different sites,Gi j . The quasiparticle energy dispe
sion and the correlation functions were calculated in a Ro
type decoupling scheme for the Green’s functions.14,15

Let us first consider the equation of motion for the Four
transform of the ‘‘spin-up’’ operator

~v2ek
↑!Ck

↑,pd5hk,Q
↑ Ck1Q

↑,pd1DkC2k
pd,↓1Uk,Q

↑ C2k2Q
pd,↓ ,

~2!

whereDk and Uk,Q correspond to the uniform and nonun
form superconducting states, respectively. Three other e
tions can be obtained by simple substitution ofk→k1Q,
Q→2Q and also by complex conjugation. In addition, fo
similar equations for the ‘‘spin-down’’ operator are assume
The order parameterhk,Q

↑ , which is the most interesting fo
us, describes the formation of a superstructure pattern s
as charge-density and spin-density~SDW! waves. Starting
from Eq. ~1! one arrives to the following equation:
©2002 The American Physical Society24-1
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hk,Q
↑ 52

1

2NPpd
(
k8

@Jk82k^Ck81Q
pd,↓ Ck8

↓,pd&

12Gk82k^Ck81Q
pd,↑ Ck8

↑,pd&#, ~3!

where the correlation functions^Ck81Q
pd,↑ Ck8

↑,pd& and

^Ck81Q
pd,↓ Ck8

↓,pd& are expressed via the order parametershk,Q
↑ ,

Dk , andUk,Q
↑ . The latter order parameter that describes

formation of the nonuniform superconducting state will
discussed later. The Fourier transform of the intersite C
lomb repulsion on the square lattice reads

Gq52G1~cosqx1cosqy!14G2cosqxcosqy1•••, ~4!

where G1 and G2 refer to the nearest- and next-neare
neightbor sites on the lattice. The same holds for the su
exchange interaction. Substituting these Fourier transfor
tions into Eq. ~3! one gets that thek dependence of the
CDW/SDW-order parameter is

hk,Q
↑ 5dx

↑~Q!coskx1dy
↑~Q!cosky

1s↑~Q!coskxcosky1•••. ~5!

Taking into account that (hk1Q,2Q
↑ )* 5hk,Q

↑ one clearly sees
that thedx and dy components are imaginary (id-CDW or
so-called d-density wave in terms of Ref. 1!, while the
s-wave component remains real~conventional CDW-state!.
Since the symmetries of both states are different, the real
imaginary part of Eq.~3! decouple. In general, this yieldss
1 id-CDW state

1

2
~hk,Q

↑ 1hk,Q
↓ !5hk~T!5s~T!1 id~T!~coskx2cosky!,

~6!

where we assume thathk,Q
↑ 2hk,Q

↓ 50. Note, the deviation of
the momentum dependence of CDW order parameter f
the pure (coskx2cosky) behavior can be clearly seen fro
ARPES experiments.16 Moreover, from Fig. 2 of Ref. 16 one
estimatess(T)/d(T);0.05, which also follows from our Eq
~1! due toJ112G1.J212G2.

The network patterns and the strength of the orbital c
rents can be obtained using the charge conservation law

]

]tE rdV5E j dS. ~7!

The operator of the fluctuating charge per unit cell with nu
ber i is given by

eC i
pd,pd5ed i5 d̃ i . ~8!

It obeys the equation of motion

i\
]

]t
d̃ i5@ d̃ i , H#. ~9!

Calculating the commutator with our Hamiltonian~1! we
arrive to the following expression:
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]t
d̃ i5e( t i j C i

pd,sC j
s,pd2e( t j i C j

pd,sC i
s,pd ,

~10!

where the right-hand side of this equation is a current ope
tor. In order to calculate its thermodynamic value along
link ^ i j & we make the Fourier transform of Eq.~10!. Then,
the probability of hopping from sitei to j can be written as

^C i
pd,sC j

s,pd&5
1

N (
k,k8

^Ck
pd,sCk8

s,pd&exp~2 ikR i1 ik8Rj !,

~11!

whereas the reverse process~hopping from sitej to i ) is
given by

^C j
pd,sC i

s,pd&5
1

N (
k,k8

^Ck
pd,sCk8

s,pd&exp~2 ikR j1 ik8Ri !.

~12!

Since the hopping integral is a real quantity, the current fl
will be proportional to the difference of Eqs.~11! and ~12!:

^C i
pd,sC j

s,pd2C j
pd,sC i

s,pd&

5
1

N (
k,k8

^Ck
pd,sCk8

s,pd&

3$exp~2 ikR i1 ik8Rj !

2exp~2 ikR j1 ik8Ri !%. ~13!

At T,T* one have the following nonzero expectation va
ues: ^Ck

pd,sCk
s,pd&, ^Ck1Q

pd,sCk
s,pd&, and ^Ck

pd,sCk1Q
s,pd&.

Since the first one does not contribute, we have

^C i
pd,sC j

s,pd2C j
pd,sC i

s,pd&

5
1

N (
k

^Ck1Q
pd,sCk

s,pd&$exp@2 i ~k¿Q!Ri1 ikR j #

2exp@2 i ~k¿Q!Rj1 ikR i #%1
1

N (
k

^Ck
pd,sCk1Q

s,pd&

3$exp@2 ikR i1 i ~k¿Q!Rj #2exp@2 ikR j

1 i ~k¿Q!Ri%. ~14!

The order parameter is complex and, thus, it is useful
separate the correlation functions into two par
Rê Ck1Q

pd,sCk
s,pd& and Im̂ Ck1Q

pd,sCk
s,pd&. It is straightforward

to write it further as
4-2
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^C i
pd,sC j

s,pd2C j
pd,sC i

s,pd&

5
2i

N (
k

Im^Ck1Q
pd,sCk

s,pd&$cos@kR j2~k1Q!Ri #

2cos@kR i2~k1Q!Rj #%1
2i

N (
k

Rê Ck1Q
pd,sCk

s,pd&

3$sin@kR j2~k1Q!Ri #2sin@kR i2~k1Q!Rj #%.

~15!

If the lattice has a mirror plane symmetry perpendicular
the x and y axis, the integrals over the first Brillouin zon
containing sinkR j i vanish. Thus, in the functions cos@kR j
2(k1Q)Ri #2cos@2kR i1(k1Q)Rj #, and sin@kR j2(k
1Q)Ri #2sin@2kR i1(k1Q)Rj # one may leave only the
parts @cosQRi2cosQRj #coskR j i and @sinQRj
2sinQRi #coskR j i , respectively. Then, the contribution t
the current flow along thex axis due to the nearest-neighb
hopping can be calculated to

j (1)5
e

\
t1

2

N (
k

@cosQRi2cosQRj #

3Im^Ck1Q
pd,sCk

s,pd&coskR i j

1
e

\
t1

2

N (
k

@sinQRj2sinQRi #

3Rê Ck1Q
pd,sCk

s,pd&coskR i j . ~16!

Note, the values ofQ in Eq. ~16! differ in the various quad-
rants of the first Brillouin zone. For example, forkx ,ky,0
and kx ,ky.0 one should takeQ15(p,p) and Q25(2p,
2p), respectively. Then one can show that the second t
of Eq. ~16! vanishes. Analyzing Eq.~16! we can draw the
network patterns for different symmetries of the order p
rameter (s wave,d wave etc.!. Most importantly, for a pure d
x22y2-wave symmetry of the order parameter one fin
Im^Ck1Q

pd,sCk
s,pd&;coskx2cosky and the current network

pattern is directly mapped to the well-known flux-pha
state17 that is shown in Fig. 1~b!. Note that the origin of the
coordinate system is arbitrary and the vectorRi may refer to
any point of the unit cell. Of course, the electronic netwo
will be connected to the underlying lattice due to pinni
effects. Most likely, two possibilities can be realized. Fir
whenRi50, the pinning coincides with the Cu~2! position in
the CuO2 plane and the maximum of the internal magne
field occurs at the Cu~2! site. Second, ifRi5(a/2,a/2), the
pinning center lies between the Copper sites. F
YBa2Cu3O72y this would correspond to the Ba ion acting
a pinning center. In this context, a comparative NMR/NQ
experimental study of the fluctuating magnetic fields
Cu~2! and at Ba ion positions are desirable. Furthermore,
pinning associated with one of the out-of-plane oxygen
brations such as those found in Ref. 18 would yield an in
esting example for a stripelike pattern shown in Fig. 1~a!.

However, there are other contributions to the network p
terns due to the next-nearest-(t2) and next-next-nearest-(t3)
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neighbor hopping. These parameters are needed for a re
tic description of the Fermi surface~see, for example, Ref
19!. Their contributions to the orbital currents are given b

j (2)5
e

\
t2A2

2

N (
k

@cosQRi2cosQRj #

3Im^Ck1Q
pd,sCk

s,pd&coskR i j 1•••, ~17!

for the next-nearest-neighbor hopping and

j (3)5
e

\
t3

2

N (
k

@cosQRi2cosQRj #

3Im^Ck1Q
pd,sCk

s,pd&coskR i j 1•••, ~18!

for the next-next-nearest-neighbor hopping. Note, in Eq.~17!
the indexesi and j refer to the next-nearest neighbo
whereas in Eq.~18! i and j refer to the next-next-neares
neighbors.

The required correlation function can be calculat
straightforwardly in a mean-field approximation

^Ck1Q
pd,sCk

s,pd&5
Ppdhk

4
A1~k,T!

1
Ppd

2~E1k
2 2E2k

2 !
Nh~k!A2~k,T!, ~19!

where

FIG. 1. Network current patterns for theid-CDW state. The
black circles correspond to the Copper positions in the CuO2 plane.
In ~a!, the pinning centers correspond to the oxygen positio
whereas in~b! the orbital moments~pinning centers! lie on the
Cu~2! position.
4-3
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A6~k,T!5
1

E1k
tanhS E1k

2kBTD6
1

E2k
tanhS E2k

2kBTD ~20!

and

Nh~k!5
~«k1«k1Q!2

2
hk1Dk

2~hk* 1hk!

1Dk~«k1QUk1Q* 2«kUk!

1
1

2
~UkUk* 1Uk1QUk1Q* 22UkUk1Q* !hk .

~21!

The energy dispersion is given by the following secu
equation:17

F «k2E hk Dk Uk

hk* «k1Q2E Uk1Q 2Dk

Dk Uk1Q* 2«k2E 2hk*

Uk* 2Dk 2hk 2«k1Q2E

G50.

~22!

Note, this secular equation is valid even if the starti
Hamiltonian is different from~1! ~for example if some addi-
tional terms such as interaction with bosonic modes20 or
Cooper-pair hopping are included!. Therefore, we will also
discuss the possible improvement of the mean-field solu
of the t-J-G Hamiltonian through the inclusion by includin
of these terms and making a comparison with available
perimental data.

Remarkably, Eq.~22! has a compact solution for the ca
uUku5uUk1Qu. This allows us to study two possibilities:~a!
Uk5Uk1Q and Uk is real or ~b! Uk* 5Uk1Q and Uk is
imaginary. As can be seen from Eq.~20! A6(k,T) is a real
quantity and one expects that case~b! will be more interest-
ing for studying the formation of orbital currents. In th
frame of thet-J-G Hamiltonian the equation for the orde
parameterUk is

Uk5
1

NPpd
( @Jk82k1Jk81k1Q22Gk82k#

3^Ck8
↓,pdC2k82Q

pd,↓ &, ~23!

wherePpd5@21d0#/4 with d0 being the uniform part of the
hole distribution per unit cell. At the wave vectorQ
5(p,p) the superexchange integralJ1 does not contribute
to the kernel of Eq.~23! and, thus, the absolute value of th
order parameterUk5 iU (T)coskxcosky1••• will be rela-
tively small.

In the extreme caseUk50, the secular equation leads
the following energy dispersions:

E1k,2k
2 5

1

2
~«k

21«k1Q
2 !1Dk

21hk* hk6
1

2
@~«k

22«k1Q
2 !2

14hk* hk~«k1«k1Q!214Dk
2~hk* 1hk!2#1/2.

~24!
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Here, Dk5D0(T)(coskxa2coskya) is a superconducting
d-wave gap. Combining Eq.~3! and Eq.~5! one deduces tha

1

N (
k

Im^Ck1Q
pd,sCk

s,pd&coskxa'
d~T!

J112G1
Ppd . ~25!

HereJ1, andG1 are parameters of the superexchange and
screened Coulomb repulsion of the holes at the near
neighbor copper sites taken to be 120 meV and 135 m
respectively. The order parameterd(T) is calculated self-
consistently. Using Eq.~25! one immediately sees the simp
relation between the current and thes1 id-CDW order pa-
rameter

j (1)~T!5
4e

\
t1

d~T!

J112G1
Ppd . ~26!

The present relation allows us to easily estimate the stren
of the orbital currents via the order parameterd(T) or T* .

For comparison with NS experiments, we show in Fig
the results of our calculations for the caseT* /Tc'5.1. The
temperature dependence of the orbital magnetic mom
agrees with the experimental curve in the regionTc,T
,T* . The calculated magnitude of the orbital magnetic m
mentsl c5@( j (1)1 j (2)1 j (3))/2c#a2 also agrees with the ex
perimental data5 and is of order 0.03mB at T5Tc . The cor-
responding value for the fluctuating magnetic fields produ
by the orbital currentsHint'@2( j (1)1 j (2)1 j (3))/cr# (r
52 Å) at T,Tc are about 180G. This is also in agreemen
with the values measured by NMR/NQR9 andmSR8 experi-
ments. On the other hand, the marked enhancem
~‘‘jump’’ ! of the neutron scattering intensity~see, the inset of
Fig. 2! belowTc cannot be reproduced by our calculations
a mean-field level.

At present, one can only speculate about the follow
possible explanations for the observed jump.First, this jump
may be related to the dynamical nature of thes1 id-CDW
state and its pinning processes. Indeed, as it is seen from
last term of Eq.~24!, the energy condensation depends on

FIG. 2. Calculated intensity of the orbital currents in units of t
orbital magnetic moments18 m int5( j (1)1 j (2)1 j (3)/2c)a2 (a
'3.82 Å is a lattice constant! for two different instability wave
vector Q5(p,p) ~solid curve! and Qi5(611p/12,p) ~dashed
curve!. The inset shows experimental results from Ref. 5.
4-4
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s-wave component of the CDW state if the system enters
superconducting state. Furthermore, the presence of
s-wave component makes the condensation energy de
on the phase atT,Tc , as is clear from Eq.~24!. In our case
thes-wave component is weak but any additional interact
with the lattice potential will enhance it. Additionally, als
the electron-phonon interaction will pin the currents. Th
one expects a marked enhancement of the neutron scatt
intesnity belowTc . Second, the jump may be related to th
fluctuation of theid-CDW instability wave vector around
(p,p). This fluctuations can be seen from our calculatio
of the dynamical charge susceptibility.12 Indeed, the instabil-
ity wave vector is not related to (p,p) but rather to some se
of the wave vectors along some contour in the first Brillou
zone.12 For illustration we also have shown in Fig. 2 o
results for the temperature dependence of the orbital m
netic moments for the case of the wave vectorQi5(p,
611p/12) that lies in this contour.12Third, the jump of the
neutron scattering intensity might also result from the
pearance of the order parameterUk below Tc . However, in
the frame of a mean-field solution of thet-J-G Hamiltonian,
this order parameter was found to be small. Thus, calc
tions beyond the standard mean-field level and thet-J-G
model would be desirable.

Finally, we would like to discuss the influence of the com
petition betweenid-CDW andd-wave superconductivity on
the general phase diagram that is shown in Fig. 3 as a fu
tion of doping concentration. Note, our phase diagram lo
similar to the one proposed in Ref. 1 with some importa
differences. In particular, the boundary of theid-CDW state
~DDW in the terminology of Ref. 1! after crossing the super
conducting dome moves to the left, while in Ref. 1 it goes
the right ~see, Fig. 1 of Ref. 1!. In our case, the reason fo
this behavior is very clear: The orbital currents result fro
the id-CDW state that describes the ‘‘pairing’’ of the quas
particles with parallel spins while Cooper-pairing requir
them to be antiparallel. Therefore, in the regime of coex
ence of id-CDW and d-wave superconductivity the latte
will try to push the orbital currents out. This behavior w
found earlier in Ref. 20 and experimentally by tunneli
spectroscopy.21 Therefore, in order to understand the ro
played byid-CDW state in the cuprates the details of co
petition between pseudogap and superconductivity hav
be studied more in detail experimentally. For example, f
ther experimental studies are required in order to verify
orientation of the observed magnetic moments. According
Ref. 5 they are aligned along thec axis ~this agrees with the
ys

e

. B

, Z
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id-CDW scenario! whereas the polarization of the magne
moments reported by other group6 lies in the copper-oxygen
plane.

In summary, in the frame oft-J-G model we analyze the
regime of coexistence ofd-wave superconductivity and th
s1 id-CDW phase. We obtain a microscopic expression
the circulating orbital current via the anomalous correlat
function. The simple relation between the strength of
currents~or orbital magnetic moments! and theid-CDW or-
der parameter was established. The temperature depend
of the orbital magnetic moments~and the internal magnetic
fields they produce! and their order of magnitude are i
agreement with experimental data. However, some impor
details remain controversal and probably are missed in
one-bandt-J-G model. We emphasize the importance
NMR experiments that are able to analyze the actual te
perature and doping ranges of the competition betwees
1 id-CDW andd-wave superconductivity.

We are thankful for stimulating discussions with A
Dooglav, A. Rigamonti, J. Roos, D. Manske, C. Joas, and
K. Morr. This work was supported by the Swiss Nation
Foundation~Grant No. 7SUOJ062258!, Russian Scientific
Council on Superconductivity~Project No. 98014-3!, and
partially by the CRDF~Grant No. REC-007!. I.E. was sup-
ported by the Alexander von Humboldt Foundation.

FIG. 3. Calculated phase diagram for the competition betw
id-CDW state andd-wave superconductivity in thet-J-G model.
The doping axis is normalized with respect to optimal doping~i.e.,
the concentration that corresponds to the maximum of super
ducting transition temperature,Tc) and to dmin and dmax, where
one finds both superconducting order parameters to be zero.
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