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Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise
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The carrier-spin and impurity-spin densities in diluted magnetic semiconductors are considered using a
semiclassical approach. Equations of motions for the spin densities and the carrier-spin current density in the
paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibili-
ties are obtained from these equations. The theory holdp-fgpe andn-type semiconductors doped with
magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to
anisotropic spin diffusion and to a suppression of the Curie temperatyréyjre materials. As an application
we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the
Curie temperature due to the contribution from the anomalous Hall effect.
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[. INTRODUCTION able. In this approximation, a scattered carrier tends to lose
all its momentum information. This allows for a relatively
In recent years, a lot of progress has been made in theimple description of the scattering in the semiclassical
physics of diluted magnetic semiconduct¢BVS), in par-  Boltzmann approactf The spin-exchange scattering, though
ticular in 111-V materials doped with manganese. In the besttypically weaker than the Coulomb scattering, is expected to
studied materialGa,MnAs, ferromagnetic transition tem- become important close to the Curie temperaflye where
peratures around 160 K have been achiévédn the the-  spin fluctuations are enhanced. A systematic study of the
oretical side, a Zener model based on valence-band holesfect of both types of scattering on the linear response of
exchange coupled to local impurity spins is very successfubms and in particular on transport would be desirable. For
in describing this material, at least in the metallic regftn@. example, the resistivity of (Ga,MnAs shows a maximum
In (Ga,MnAs manganese acts as an acceptor and introducgs at least a shoulder af, [919-22 \whereas the standard

localized spinsS=5/2 due to its half-filledd shell. The ma-  righer.| anger theoR for fluctuation corrections to the re-
terial is p type but partly compensated, probably due to ar-

. 2 ) e sistivity in ferromagnetic metals predicts an infinderiva-
senic antisite¥'® and manganese interstitidfsin group-IVv y g P

miconducto’@ manganese ol a similar role. On th tive of p at T.. The origin of this weak critical behavior is
sémiconaducto anganese piays a simiiar rote. ©that the resistivity is dominated by scattering events with
other hand, in II-VI materials manganese introduces a sp|r|1ar e momentum transfers~ 2k-  whereke is the Eermi
but is isovalent with the host cations. 9 G ke, F

It has also been realized that disorder is crucial for thé'nomentum. By contrast, the magnetic susceptibjiy)) of

understanding of the properties of DMS, even in the metalliderromagnetic metals, of Ornstein-Zernicke foftf> di-
regime'~1" There are two main scattering mechanisms: disverges only ag=0.
order scattering due to the Coulomb potential of charged As a step towards a comprehensive theory of disorder
donors and acceptors and spin-exchange scattering off raeffects on linear response and transport in DMS, we present
domly distributed impurity spins. The Coulomb interaction is a semiclassical theory for the paramagnetic phase of DMS in
the dominant contribution to disorder. This is due to compenthe metallic regime. Starting from the Zener mddéland
sation, which leads to a lower hole concentration and thus osemiclassical Boltzmann equations, hydrodynamic equations
the one hand to the presence of charged defects of either sigii motion for the carrier- and impurity-spin magnetizations
and on the other to less effective electronic screening. Due tare derived in Sec. Il, including Coulomb scattering and
the large Coulomb interactions, the defects are probably inspin-exchange scattering off magnetic impurities. Because of
corporated during growth in partially correlated positions—the semiclassical approach, these equations hold for small
oppositely charged donors and acceptors prefer to sit omomentaq and frequencies. The theory is rather general
nearby sites—and these correlations may increase withn that it applies to both the conduction and the valence band,
annealing>® In Ref. 15 it was shown that equilibration of 11I-V, II-VI, and group-IV host semiconductors, and impuri-
defects during growth or annealing leads to an enormouties with general spits. From the equations of motion, the
reduction of the typical width{(v?)—(V)?)¥2 of the disor-  dynamical spin susceptibilities of carriers and impurities are
der potentiaV and to a very short correlation length\éfof ~ derived for smallg and w. The resulting semiclassical sus-
the order of the lattice constannic screening is thus very ceptibility is not of Ornstein-Zernicke form. However, this
effective, whereas electronic screening is not. However, théorm is presumably restored by quantum effectsdaf the
width of the disorder potential is still roughly of the same order of kz. The semiclassical results exhibit the detailed
order as the Fermi energy so that it cannot be neglected. dependence on the various sources of scattering. We find
Since the correlation length is so short, a description irsignificant differences between the conduction-bamdye)
terms of ad-function correlateddisorder potential is reason- and valence-bandoftype) cases due to the pronounced spin-

0163-1829/2004/691)/11520217)/$22.50 69 115202-1 ©2004 The American Physical Society



C. TIMM, F. VON OPPEN, AND F. HBLING PHYSICAL REVIEW B 69, 115202 (2004

orbit coupling in the latter. For example, spin diffusion in the can be neglected here since the conduction band has mainly
valence band is anisotropic. On the other hand, we show thatorbital character. This description is appropriate rietype
semiclassically Berry-phase effetté’ are absent from the DMS. Ferromagnetism in-type DMS is hard to achieve due
linear susceptibility even in the valence-band case. to the small exchange interaction between electron and im-
It would be interesting to study the effect of spin fluctua- purity spins and is restricted to very low temperatutedle
tions on the electrical conductivity close T in DMS*  assume a spherically symmetric bangto avoid inessential
This requires the inclusion of quantum effects at the scale o€omplications.
ke and thus goes beyond the Boltzmann approach. The We first briefly motivate the Boltzmann equations for the
present theory should be a good starting point for this genelectron density,,(r), whereo= = 1/2 is the spin orienta-
eralization. tion, and for the occupation fractiofy, of impurity spins
We briefly comment on related work. Sinoeaal?® con-  with quantum numbem of S%. The Hamiltonian reads
sider the damping of spin waves in tferromagneticphase
in the limit =0 within a Green-function approach. Disorder
scattering is incorporated by assuming a constant nonzero H=Hkin+JJ dr m(r)~M(r)+geMBf d3r m(r)-B'gXt
quasiparticle lifetime. Galitsket al?® derive the local dy-
namical spin susceptibility close . for the strongly local-
ized regime, opposite to the case of weak disorder scattering +giMBf d3r M(r)- B, (1)
considered here. In the strongly localized case the system can

be mapped onto a disordered ferromagnetic Heisenbergnarem andM are the electron- and impurity-spin densities
model and Griffiths-McCoy singularities are important above qgriented oppositely to the magnetizatipnspectively, and
T..** Qi and Zhand consider spin diffusion in nonmagnetic e coupling is described by the exchange integral50
materials within the Boltzmann approach. The present work, ¢ mev nn$ 20 3>0 (J<0) corresponds to antiferromag-
goes beyond Ref. 30 in that we derive the coupled dynamicgggic (ferromagnetit coupling. We have introduced two dis-
of carrier and impurity spins in DMS, consider both conduc- inct external magnetic field®8%* andB® acting on electron

. . ) ; o i

tion and valence bands explicitly, and derive the dynamlcaLnd impurity spins, respectively, in order to obtain the linear

susceptibility. ) . )
S . . response of each species separately, which will prove useful
As an application we derive the fluctuations of the anomas Spec m P P y P

!c?]lejzsa:::e”n\éce)lt;‘gaenIgégﬁzrlanTaagnneetﬂ:C?ig?jfhg]a?/:)z?é Ig'alrr:o _The exchange term is decoupled at the mean-field level.
9 9 e can restrict ourselves to collinear spin configurations

Iousf Hall voltage is zero since the average magnetizatio;, .o yhe paramagnetic susceptibility is proportional to the
vanishes. However, fluctuations of the magnetization lead tQ .. .o+ "in our spherical model. We choose the magneti-

n(r)]nf:rlo HaH”'\I/IOIt]:?g;:ﬁE? ;rhzﬁe mec(;]?r?ltimsiit c;f ttrr‘e_ zation direction as the axis. The mean-field Hamiltonian of
anomalous Ha; efe are discusse € erature: 1he electrons and the impurities is then

skew scattering andside-jump scattering rely on the im-
balance of scattering to the right and to the left due to spin-

orbit coupling. On the other hanBerry-phase effectélead CHo+ f 3

to an AHE in the presence of spin-orbit coupling even with- He=Hin+ Gertg | drm(r) Be, )

out scattering. Since Jungwirtst al?® show that the latter

contribution can explain the experimental results for DMS in

the ferromagnetic phase, we also assume this mechanism. Hi:giMBJ dr M(r) B;, (3)
Il. SEMICLASSICAL THEORY respectively. In terms of the spin magnetizations,

. . . . =— m), ui=—0; M), the effective fields read
In this section we present the semiclassical theory for the Dot (M), 4 Gins (M)

linear response of the carrier- and impurity-spin magnetiza-

tions in DMS in the paramagnetic phase. We first derive oxt J

hydrodynamic equations of motion for these magnetizations Be=Be — —— mi, )
and for the carrier magnetization curreffome details are 9edirs

given in Appendixes A and B. In Appendix C we show that

Berry-phase corrections are absent from the equations of mo- J

tion.) We solve these equations to obtain the spin suscepti- Bi=B*~ 5 Me- 6)
bility. The derivation is carried through for both the conduc- 9edits

tion and the valence band, and for arbitrary impurity sRin

We usefi=kg=1. The single-particle energy of an electron with momenjum

and spino=*1/2 is ESG: €1+ JetgoBe. The energy of an
impurity spin with magnetic quantum numben is E,,
=g;ugmB;. In the absence of scattering, the semiclassical

We start with the simpler case of conduction-band elecequation of motion for the electron density,(r) is given
trons exchange coupled to impurity spins. Spin-orbit effectdy the Poisson bracket

A. Hydrodynamic equations, conduction band

115202-2



MAGNETIC SUSCEPTIBILITIES OF DILUTED. .. PHYSICAL REVIEW B59, 115202 (2004

&tnpa.:_{npa.,ESO_}:_Fo--vpnpg—_vernpo- (6) f J' d3p E Sspin 11
with the spin-dependent forcE,=—geugoV,B. and the %Ml (2m)3 5 P @)
velocity v,=p/m,, wherem, is the effective mass. Includ-
ing scattering, we obtain the Boltzmann equation The left-hand side only contains the explicit time derivative
since the impurities are assumed to be immobile and purely
(&t+vp-Vr+Fo'Vp)npg(r)=SS'§+Sg'§+% S;% :?ncsvll.ri:i':: is the only scattering term we consider for the
@) The scattering processes expressedsB§ and SP™ are
not sufficient for a reasonable thermodynamic description,
however. The reason is that both processes conserve the total
, : X spin. Thus the homogeneous spin susceptibility would be
of spins with magnetic quantum number as f,,, where ;614 To avoid this problem we include relaxation of the total
Zpfm=1. The corresponding density i f, with the den- gy by an additional “spin-flip” scattering term for the elec-
sity n; of magnetically active impurities. We neglect the con-yons, “This can be due to the hyperfine interaction with
tribution of interstitial magnetic impuritied! . nuclear spin or electron-electron interaction in conjunction
We now discuss the collision integrals. The simplest ongyith spin-orbit coupling in other band&.This process is

with collision integralsS discussed below.
For the impurity spins we define the occupation fraction

describes disorder scattering of the electrhs, expressed by
: d®p’ 1 3
sd'szf — _ S(ey—ey) (M=), (8) ; f d%p’
po 3 P P pro po p— . _ ,
(2m)® N(O)7 Spe (23 NO) 7y O(€ptgettgoBe—€p

Here,N(0) is the density of states per spin component and _

1/7 is the transport scattering rate. ~JettgoBe) (Npz—Npy), (12
The next contribution is spin-exchange scattering between

electron and impurity spins. For this we need the transitiowhereo=—o.

probabilities between spin states. We write the spin operator From Eq.(7) one easily derives the continuity equation

of the electron(impurity) ass (S). The joint spin state is for the electron density. Our main goal is to derive corre-

denoted by om). The matrix elements of the exchange cou-sponding equations for the magnetizations

pling are

d3p

(om|s-So'm’) Me:_geMBf S oy, (13
(2m)° "o
1
=5 85112857 —1/20m+ 1w VS(S+1) —m(m+1)
mi= _giMBni% m fy, (14

1
+ Eaa,—1/25a',1/25m—1,m'\/S(S+ 1)=m(m-1) o
and the electron magnetization current

+ 84 Oy M. 9)
3
Note that only thep’ =p contributions to thes*S* term are i= _geMBf d_p 2 OV Ny - (15)
taken care of by the mean-field decoupling. o p this (2m)3 s

term expresses that carriers can also scatter off impurities

due to the exchange interaction without flipping the spinsWVe start with the impurity spins. Multiplying Eq11) by m
The transition probabilities between the states are given b§nd summing ovem we obtain

Pomorm =|{om|s-Sa’m’)|2. The collision integral for

electron-impurity spin scattering can then be written as O pi f d®p 2 gspin
- = m
3p/ Qins (27)% om pom
spin _
| (213 o2 N(O) 7ogy 0T GettBTBe _SISHD) e NOT i NO)S(St1)
37y, 27 ni 67
+gi/~LBmBi_6p'_ge,U«BOJBe Tspin - JeMB Tspin JettBN; Tspin
X (gesBe—gingBi), (16)

_giMBm,Bi)P(rm,(r’m’ [np’(r’ (1_np(r) fm’
gy (1= Ng) fo] (10) to Iinear_ order in the effective fi_elds and mggne_tizations, cf_.

Po pro’/m Appendix A. In the last expression we can identify the Pauli
with the spin-exchange scattering rates%.% Due to con-  susceptibility of free electrons with density of stafeé0)
servation of the total spin by the process expressed by Eger spin component and the Curie susceptibility of noninter-
(10), the same collision integral also appears in the Boltz-acting impurity spins with spin quantum numk&and den-
mann equation fof ,, sity n;:3’

115202-3



C. TIMM, F. VON OPPEN, AND F. HFLING

N(o)ge/"B

XPauli™ 2 (17

S(S+1) g2udn;

XCurie™ 3T (18)

Using these susceptibilities we write
S(S+1) g
37'spln Je

1 NO)T
27'spin n;

p = — (e XpauBe)

i~ XcuridBi) - (19

The rate of change of the impurity magnetizatipn thus
depends linearly on the deviations @f and u; from their

respective equilibrium values, which is quite reasonable.
Note that this and the following equations of motion do not
contain a precession term since this term would be of second Tt T 7'ﬂlp

order in the magnetizatiot{
Multiplying the Boltzmann equatioii7) by o and sum-
ming overp, o we obtain

_ Irfre _ Vr'j,u
Jets  JeMB
dp

g

2 <8d|s+ Sfl|p+2 S,S)E)Ti%),

(20

(2m)%7
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The first term—d;j,/geup is neglected since it only be-
comes relevant for frequencies of the order of the largest
scattering rate. In the second term we have replagecﬁ

the usual way b)éaﬁv F/3 wherev is the Fermi velocity.
This is valid sincen,, has significantr dependence only
close to the Fermi energy. The third term has been expanded
to linear order in the perturbation and in the final step the
equilibrium electron density has been written @&
=2N(0)mgw2/3 for a parabolic band. Evaluating the inte-
grals, we obtain

j,u: —D V (e= XpauBe) (23

with the diffusion constarﬁ):vﬁnoﬁ and the total scatter-
ing rate

1 1 S+1
=y S( ) (24
4'7'sp|n

Inserting this result into Eq(21) we find the equation of
motion of the electron-spin magnetization,

2 S(S+1) 9
Oypre= — ?Ilp 3Tspin _DVr (= XpauBe)
1 NOTg
_e(,ul XcuridBi) - (25

2'7'spin ni g

We observe that also the rate of changeugfs linear in the
deviations of the hole and impurity magnetization from their

where the force term on the left-hand side vanishes since thequilibrium values. The result thatu, vanishes in equilib-
integrand is a totap gradient. The right-hand side can be rium must hold in general, not just for the parabolic band
evaluated similarly to the calculation in Appendix A and ex- assumed above, as expressed by the Einstein relation.

pressed usingpaui and x curie:

. 2 S(S+1)
ﬁtﬂe""vr'J,u_ - (?“p"' 37'spin

) (Me= XpauBe)
1 N(O)T ge
27'spin ni g
To eliminate the magnetization currep)f, we derive its
equation of motion by multiplying Ed(7) by ov, and sum-
ming overp and o,

o
_ tJ,u +f
JettB

d®p
_f (2m)? 2 E oVpGettgo(VBe) - Vny,

—(mi— XcuriBi)- (21)

dp
253 it T

__VF Vine ge,usp(o)v 5
3 Qs amg, TF
o
3 gy | He XpaulBe)
dp

dis flip spin
2y 2 avp(sp0+3p(,+% sl

(22

The two equationg19) and (25) are coupled explicitly
and through the effective fields. They are formally solved by
Fourier transformation in space and time,

. B 2 S(S+1) D2 5
Tlope=— ?”p_F 3Tspin +D0g° | (e— XpauBe)
1 NOT ge
ZTspin n E(MI XcuidBi), (26)
. S(S+1) g
—lopi=—3— — (ke XpauBe
Tspin e
1 N(O)T )
- 2Tspin n; — XcuidBi) - (27)

In the absence of external fields, the static, homogeneous
magnetizations have nonzero solutions at the mean-field Cu-
rie temperaturk®38-40

S(S+1)
¢ 6

N(0) J%n;. (28)

B. Hydrodynamic equations, valence band

We now derive hydrodynamic equations for valence-band
holes exchange coupled to impurity spins, relevanpforpe
DMS. The case of spin qguantum numi&et 5/2 corresponds
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to substitutional Mn in GaAs. The main complication here iswheremy,=m/(y,—2v,) is the heavy-hole effective mass.
the presence dodpin-orbit coupling We employ a four-band This suggests to define the velocity as
Kohn-Luttinger Hamiltoniaf***?in the spherical approxi-

mation, which is the simplest one incorporating the relevant

physics. In the absence of magnetic impurities the Hamil-

p i 0
tonian read®* Vp:m—hh_ghﬂsgsme Bha- (33

1 Note that the second term is explicitly of first order. We
H= ﬁ[(yl-i- 5v,12) k>—2y,(k-j)?] (299  should use this velocity in the semiclassical equations. How-
ever, we find the contribution from the second term to vanish
with Kohn-Luttinger parameters;, y, and the angular mo- 0 first order. The reason is essentially that we have to evalu-
mentum operatof of the holes, which in this subspace can ate all other factors in equilibrium due to the expli€.
be written as a &4 matrix and has the Casimir operator This result is proved together with the absence of Berry-
j-j=3/2(3/2+1). Since the split-off band is neglected, this Phase contributions in Appendix C. We thus drop the second
description only applies to semiconductors with sufficientlyt€rm in Eq.(33). o _
strong spin-orbit coupling. The eigenstates Hfat k are We now turn to the derivation of the Boltzmann equation
characterized by the quantum numbgs +1/2,+3/2 of  for the holes,

k-j, wherek=k/k. We restrict ourselves to the heavy-hole
band, which is justified for energies close to the band edge . '
because of the much smaller density of states of the light- (G Vp Vot Foj VoI (1 =S5+ >, S (34)
hole band. "
We introduce the eigenstatgg, of I2-j with eigenvalues
j. We denote the spin eigenstates with respectfioealquan-

tization axisz by |j). The former can be expressed in terms

with the forceF; = —gnug (j/3) coséV, B, for the holes and

of the latter by means of a rotation in spin sp&t&, d°p _

an; fo= f s> S (35)
oy (27)° 7]
li=e"1"%e 170]j), (30
v ) for the impurities. The disorder scattering integral
where Y, j* are spin operators and and ¢ are the polar  -gntains the matrix elements  {j|j
angles ofk. iy 0niiZha—ijZd a—ijYe | .
The states$j ), can be expressed in terms of eigenstates of (j|e" e’ Te © [i"). The spin operators are

. ) B . : 4X 4 matrices in the projected subspace. For heavy holes,
orbital angular momentur(with |:1=2) and spirs with the explicit evaluation gives the transition probabilities

help of Clebsch-Gordon coefficients. One then easily finds
thatall 4x 4 matrix elements o§* equal the corresponding

matrix elements ofj?/3. The same holds for the andy 0 s s
components because of symmetry so #aj/3 holds as an I, 2 2
operator identity in the four-band subspdte&onsequently LCilier*= . . : (36)
the heavy-hole stateg € +3/2) are eigenstates fo s with Sir16§ COSSE
eigenvaluest 1/2. However, the heavy holes dmt form a iy’
[ let since th trix el tssof=j /3 all van-
spin doublet since the matrix elementssof=) /3 all van herej,j’=*=3/2. Here,« is the angle between the vectors

ish in the heavy-hole subspace—single spin flips cannof/ , S . .
change the total angular momentum fran®/2 to T 3/2. E andI;] .I The ccti)lhsmn integral for disorder scattering of
The total energy of a heavy hole is eavy holes reads

hh p? j Sdi-szf &’ — 5l e,+g 1'cos¢9B — €y
Epj= (71~ 272)5 - + 9nup 5C0S0Bs, (31) Pi (2m)3 57 N(O)7 | P htB3 hotp

where 6 is the polar angle op with respect to the field _ j’ /
A . _ _ Onhup o COSO' By,
directionz. Without scattering the equation of motion for the 3

hole density reads

|p<j|j,>p’|2(np’j’_npj)- (37)

Note that for forward scatteringe{~0) we get predomi-
nantly j’=j, whereas for backscatteringr{-7) we find
predominantlyj’= —j. Due to thek-dependent quantization
axis| is not conserved even by pure disorder scattering due
. to the Elliott-Yafet mechanistf*’

For the hole-impurity spin scattering we need matrix ele-
ments ofs- S. The transition probabilities are

j
diNpy = —{np; EpTt= Onttp 5 COSOV By VN,

p Jooon @
. V N+ Qg 3Sin thE-Vrnp,- , (32
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ijm'prj!mr

:|p<jm|5'slj/m,>p’|2
11
=g 2!l *Ome 1

X[S(S+1)—m(m+1)]+ — !

PHYSICAL REVIEW B 69, 115202 (2004

j
Mo =g €= 1)+ N (€, 1) Irup 5COSEBY,  (44)

where n)(E) =ng(E) [ne(E)—1] is the derivative of the
Fermi function. To linear order we then find

d*p
=i ~253

—) cog 6B, (e,— )

2 111 p 2 6m- 1 (2m) 5
- 1 N(0)giug 1
- - p{H ) 2pr 1™ Omny ) h™ 23 XPaulPh-
X[S(S+1)—m(m=1)]+|(jli%i" ) |2Smmm? 35  Br=3Xeab (45)
(38)  The extra factor stems from the direction-dependent quanti-
. L zation axis and thus spin-orbit coupling.
and the resulting collision integral reads We also obtain the equation of motion for the hole mag-
dp’ 1 j netization,
SSpin— J 8| €pt gnhup5C0SHBy, . .
pim (277) ™ N(O)Tspm 3 B s B Vr-JM:f d3p E ]—COSH Sd|s+2 Sspln)
i’ Onite  Onie (2m)® T 3 pm)
+9iﬂBmBi_Ep'_ghMBECOSH'Bh_giMBm'Bi (46)

Similarly to the calculation in Appendix B, we find

X ijm’prjrmr[nprjr (1_npj)fmr_npj (1_nprjr) fm]

39 ) 1 7S(S+1) 1

(39 3ch+Vr'JM=—(5—T+W Mh— §Xpau|5h
Since the two collision integrals already include spin relax- spin
ation we do not introduce an additional spin-flip term. 1 N@OT gy

— (= XcuidBi).  (47)

We now derive hydrodynamic equations for the hole- and

AT
- .
impurity-spin magnetizations spn M G

To eliminate the magnetization curref)t we consider its

d3p j equation of motion with the left-hand side
Mp= _ghMBf W ; 3C0SONy; , (40)
Oy +J d°p > lcos¢9v (Vy- V,Npi)
Onits (2m3 T 3 PR
MI:_giMBni% m f, (41)

d°p j
and the hole magnetization current _f (2m)3 4 2 Cosﬁvpgh,uB3COS(9(V Bn)- Volp;

Ju= _gh'“Bf (2m)° E COS‘QVP Mpj - (42 The first term is again neglected. In the second we have to be
more careful because of the explicit angle dependence. For
Some details of the calculations are shown in Appendix Bthe conductionband the factor2/3 is obtained by assuming
We start with the impurity spins. In analogy to the Ny, to be the equilibrium distribution in a constant Zeeman
conduction-band case we obtain field. The integral over the direction @fis then easily per-
formed. Since we obtain a term linear Y 1, corrections

o S(S+1) gi ( 1 B ) would be of higher order. For thealenceband we also as-
= 187epin On| ™" 3 XPauli>h sume a constant Zeeman field, leading tp=n{"
+(j/3)cosfAn(p). Thus the second term in E@¢48) be-
— 5 M( - eB) (43 comes
367'spin n, Mi— XcuriePi)

where we have again identified the Pauli susceptibility sz
XPaul= N(O)gh,uB/Z and the Curie susceptibility. Note, how-

ever, the factor of 1/3 multiplying the Pauli susceptibility,

which is absent for the conduction band. This factor is easily i 15 o 0
understood by calculating the static, homogeneous spin sus- =N(0) uﬁf dé >, (—) 0 115 0
ceptibility of heavy holes in the absence of impurities. For T3 0 0o 15
the static susceptibility we can assume the holes to follow a
Fermi distribution, which we expand i,

j j
=Co0sé V,5cosfAn
(277)3 23 p(p (p))

XV An[p(§)]. (49
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In the same approximation we find—un/gpug  This equation is of the same general form as for the conduc-

=N(0)fd¢ E,—(j/3)2An[p(§)]/3 so that this term is tion band, the main differences being the reduced Pauli sus-
ceptibility and the anisotropic spin diffusion. Fourier trans-
/5 0 O formation yields
—p2 _Hn
Vg 0 1/5 0 Vrgh/»lvB. (50) . - i+7s(5+1)+D3q)2(+3q§+9q§
0 0 3/5 WUp= 57_ 1807—5pin 5
The third term in Eq(48) is straightforward to evaluate to 1
first order, X| mh— §XPaulBh>
1/5 0 0 1 NOTg
N(O = A v B
%vé 0O 15 0 V,By. (51) + 367'spin n_ o (mi— XcuridBi), (55
0 0 35
. S(S+1) g; 1
Again, the result holds in general due to the Einstein relation. T T 3 XPauPn
Altogether the equation of motion for the magnetization cur- P
rent is 5 NOT (56)
o (mi= XcuridBi)-
Vs 00 1 0 0 find f I
For =0, g=0 we find finite solutions at
vg| 0 U5 O Vr(#h_ §XPau|iBh)
0 0 35 S(S+1) 5
T=T.= 18 N(0) J°n;. (57)
d3p j i .
:f (2m)° 2 3C0SOVp Sp}SJ“% Sﬁ?ﬁﬂ)- (520 The Curie temperature of holesriducedby an extra factor
of 1/3 compared to the conduction-band case. This factor
Evaluating the integrals we finally obtain stems from the same factor in the Pauli susceptibility and is
thus due to spin-orbit coupling. On the other hand, for typi-
35 0 0 cal host materials the density of states is mhidherfor the

_ 1 heavy holes than for conduction-band electrons and the ex-
j,=—D| 0 35 0 Vr(l’«h_gXPaulBh)! (53 change integral is also much larger, enhancify in p-type
0 0 95 materials.

We have so far ignored the possible effect of Berry-phase
where we have introduced the diffusion constabt contributions?® In Appendix C we show that they vanish to
=v,2:7't0t/3 with the total relaxation rate #/,=1/(27) linear order in the effective field. Berry-phase contributions
+58(S+1)/(72rg,). The spin diffusion in the valence are expected in higher orders, though.
band is thusanisotropic Compared with the resu(23) for
the conduction band, diffusion along the direction of the ef- C. Susceptibilities
fective field is enhanced and diffusion in the transverse di- , , )
rections is suppressed. The origin of this interesting effect With the help of the hydrodynamic equations we now
again lies in the momentum dependence of the quantizatiofi€rive the linear response of the carrier-spin and impurity-
axis: Consider, for example, heavy holes traveling exactly>Pin magnetizations to external fields coupled to these mag-
along thex direction. In the Hilbert subspace of these holesnetizations. It is useful to solve the general problem of the
all matrix elements of? and jZ vanish so that these holes Fourier-transformed hydrodynamic equations
cannot carry any spin magnetization pointing in theirec-

tion. For holes with momentump pointing partly in a trans- ~lope= ~Rq (e axpauBe)
verse direction the contribution to spin transport is still sup- N(O)T g,
pressed. TR E(Mi_XCurieBi): (58)
Inserting our result for the current into E@7) we obtain : :
the equation of motion for the hole magnetization,
. 9i N(O)T
—lopi=Rig— (e axpauBe — Ri T(Mi — XcuridBi),
1 7S(S+1) 37 33 9 & e '
opp=—|=—+—=—"-D|lz—+=-—+=-— (59
57 180rgn  |59x% 5y 5 gz
where
1 1 NO)T g,
X| up— = +— —
lu’h 3 XPauIBh) 36Tspin ni gi ext J
Be=B¢ — 7 Mis (60)
X (= XcuridBi) - (54 9elits
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B;=B™-

J
2 Mev (61)
glimB
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while the susceptibility of the impurity spins jg.+ xii - The
total susceptibility describing the response of the total mag-
netization iSyoi= Xeet Xeit Xiet Xii - NOte that this physical

which contain the special cases of the conduction band, Eqgusceptibility is always paramagnetic since the components

(26) and (27), and the valence band, Eq85) and (56) (re-
placing “e” by “ h”). The solution reads
(Me/ge,us eutsBE
wilgins giueB
with the determinant of the coefficient matrix

. N(O) Aee Aei
_detM Aie Aii

) (62

detM=6n;(iw)’+iw[2aN(0)INR—6NR,
+2N(0)INRyS(S+1)—6N(0)TR; ]
+N(0) (ReRie— RiRy) [@N(0)J?n;S(S+1)—6T]
(63
and

Aee=—3a[ionRy+N(0)T (ReRie—RiRy) ],  (64)

Aei= ani[3iwRie+N(0)J (ReRie— RjRg)S(S+1)],
(65)

Aie=Ni[2i Rgi+ @N(0)J (ReRie— RjRy) 1S(S+1),
(66)

Aii=—2ni[ReiRie+ Rii (iw_Rq)] S(S+ 1) (67)

The magnetization becomes singularTat T,=(«/6) S(S
+1)N(0) J?n;, in agreement with our earlier resuffswe

of the matrix factor in Eq(69 combine to[ g.aN(0)J/2
—gi]? In the static casev=0 all four components are of
Curie form. We already see that the dimensionless parameter
—aN(0)J/2 has a special meaning: It is the ratio between
the average electron spin and the average impurity spin in an
applied field, regardless of whether the field acts on the elec-
trons or on the impurities.

We now consider the special case afnduction-band
electrons Inserting the appropriate factors from Eq&6)
and(27), we obtain the susceptibility matrix

x=N(0) S(S+1) u3

+ZS(S+1)(

[1—N(0)J/2)?

6ot 2S(S+1)
spin 2/7'f|ip+ qu

N(O)J)zT—TC -t
2 T,

N(0)J
Je T _gegiT

N(0)J
—9Gi— 9

2<N(O)J)2

(70)

This susceptibility describes the linear response ofi-type
DMS. The same result would be obtained for a simple model

now assume» andT—T to be small compared to the rates ot gpin-1/2holes which is sometimes employed in the litera-
Ry, Rei, Rie, Rji but do not make any assumption abouty e

T—T. VS w. Then we find

I

with the susceptibility matrix

(Xee Xei)
X:
Xie  Xii

=2N(0) S(S+1) (ReRie— RiRy) 13

(68)

B ext

e

B ext)
I

X | i@ [6Ry—3aN(0)IRe—2N(0)IR,S(S+1)

+ aN?(0)J?S(S+1)R; ]+ aN?(0)J2S(S+1)

T-T.\ ¢!
X (ReRie— Riqu)T—

c

L[ @N(0)J\? aN(0)J
Je 2 _gegiT
X «N(0)J , ) (69)
99T 0i

Note that the onlyy dependence appears in the coefficient
of w. This is quite different from the standard Ornstein-
Zernicke fornt*#° of the susceptibility. We discuss this point
further below. The only typical length scale ip is &
= VD yip/2. This is the relaxation length of thetal spin. In
the semiclassical approximatiaiy does not show any criti-
cal behavior afl ...

The susceptibility also describes the magnetic excitations.
Their dispersion is obtained by equating the denominator to
zero and solving fow. We see that these modes are diffusive
with relaxation rates

2S(S+1 N(©O)J)*
, (St1|—3 T-T,
A=lw=
[1-N(0)J/2]? Te
6 7pint 2S(S+1) ———————
2/Tf|ip+Dq2

(71)

The rate\ is smallest forg=0. Theq dependence is con-
trolled by the total-spin relaxation lengéa. In the semiclas-
sical approximation\ goes to zero folT—T,. for all q si-
multaneously, but see the discussion below.

We now consider the case wélence-band holednsert-

Since the same field acts on the carrier and impurity spindng the appropriate parameter values from E§5) and(56)

the physical susceptibility of the carrier spins xsst xei

we obtain
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T ! I
80000 - — real part, t =0.1
--- imaginary part, = 0.1
60000 — real part, t = 0.05
z — — imaginary part, £ = 0.05
B
a ~
g 400001~ X\ N
3 ! N
1 S
1 =g
20000H T NIt~
L “‘\-‘_:‘:__‘_ _
s e e
1/
i 1 |
00 1 2 3

frequency ® T_. (X 10'5)

spin

FIG. 1. Real and imaginary parts of the dimensionless impurity-
impurity susceptibilityy; /[N(O)g ,uB] at zero momentum for two
values of the reduced temperature(T—T.)/T.. We have used

S=5/2, N(0)J/6=0.0061, andrey,/ 7= 10.

5

S(S+1) [1—5N(0)J/6]?

X[—Iw 6 7spint 15 ~Rq
N(O) 271, 7t
+ = S(S+1)
Te
,(N(0)J)\? N(0)J
e T —09i——F
~ N(0)J ,
“90i T 9i
with
R S(S+1) D3q§+3q§+9q§

5_7 3670 5

2 +D3q§+3q§+9q§
_5Tt0'[ 5 ’

This susceptibility applies tp-type DMS. Compared to the
conduction band the only differences except for simple re-
scaling are that not the parameterN(0)J/6 itself but
—5N(0)J/6 appears in the-dependent term and that the

diffusion is anisotropic.

PHYSICAL REVIEW B59, 115202 (2004

For both the conduction band and the valence band the
susceptibilities depend og only through the coefficient of
the frequencyw. The static susceptibility @=0) is thus
independent ofg in our approximation. This would mean
that the instability appears simultaneously atcallThe ten-
dency of the system to become ferromagnetic is not found
within the semiclassical Boltzmann approach since the
Boltzmann equation does not incorporate physics at large
momentag~kg. We expect the most important effect for
q~kg to be theq dependence of the Pauli susceptibifify.
Inserting this dependence by hand, we obtain an additional
term of the order of+q?kZ in the denominator, which
makes the instability first appear q&=0, leading to ferro-
magnetism. A rigorous evaluation of the susceptibility at all
momenta requires a fully quantum-mechanical calculation,
which we leave as work for the future.

One could think that a ferromagnetic interaction between
the carriers themselves introduces a new length scale and
might therefore introduce g2 term into the denominator of
x- In our approach such a ferromagnetic coupling between
the carriers, say holes, leads to an additional term in the
effective field,

ext__ J K
Bh B 9:0i Mz mit gZMZ Mh (74)
hYi~B h®B

with K>0. The derivation can be carried through. The re-
sulting susceptibility for the valence band reads

5
— 2
X=7gS(STN(0) 3

><|—iw
q

5 N(0)J,\2 T-T5 7
+§S(S+1)( . ) (1-x)

S(S+1) [1—5N(0)J,/6]?
15 R

6Tspin+

L
2(N(O)JK)2 N(0)J,
P —00i—F% —
N(0)J, 2 (79
—0e0i 6 i
with k=N(0)K/6, J,=J/(1— ), and"*°
2
S(S+1) N(0)J n 78

¢ 18 1-«

The Curie temperature is enhanced by 8tener factor(1

To exhibit the frequency dependence, Fig. 1 shows—«) .%° The same result is obtained by introducing an ap-
the  dimensionless  impurity-impurity  susceptibility propriate Landau parameteF§=—« into Fermi-liquid
Xii/[N(O)g ,uB] for g=0. The other components of the ma- theory*'® We see that a carrier-carrier ferromagnetic ex-

trix y only differ by constant factors. Ab=0 we obtain the
Curie law y;<1it, wheret=(T—T.)/T., andy; is purely
real. As a function of frequency, Rg decreases while Ig;

change interaction does not change the functional form of the
susceptibility. In particular, it does not introduce an Ornstein-
Zernicke-typeg? term.

initially increases and there is a crossover to a predominantly Let us estimate the paramets(0)J/6: For a parabolic

imaginary susceptibility at a characteristic frequengy \

«t given below.

band N(0)=my,/(27?) (37°n)Y3, wheren is the carrier
density. For Ga_,Mn,As with x=0.05 andpo= 0.3 holes per
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manganese atom we gBl0)~7.26x10 4 meV ‘nm 3. :& 2
On the other han®® J~(50+=5)meVnm so that !
N(0)J/6=~0.0061. The parameter is thesrall However, we
emphasize that the derivation is valid for genéié0)J. The

small value explains why the hole contribution to the mag- 9x107°
netization is small compared to the manganese'drkAlso,

for antiferromagnetic coupling is positive so that the hole-

and impurity-spin magnetizations are opposite in sign, in
agreement with experiment$>0-52 85 x107¢

The above estimate dfl(0) relies on the spherical ap-  Atspin
proximation and on the omission of the light-hole band,
which are not well justified at the hole concentration used gx10-6
here. A realistic Slater-Koster tight-binding description of the
unperturbed valence batidjives a density of states per spin
direction of 1.18<10°% eV *A~3. The dimensionless pa- 5 . 1o-6
rameterN(0)J/6~0.0099 is thus somewhat increased by as-
suming a realistic band structure.

Equation(73) shows that the typical length scale pfis
&,= 5D 1/2, which corresponds tg, in the conduction- 4x&n .
band case. The time appearinggf should thus be the re- 2
laX'I&}Egnr‘r:Ianéi(;)'[];(:thee)((t:(i)t;a'tliorlr’l]ggar:z“;ggionnaiﬁusive modes. The FIG. 2. Relaxation ratex of diffusive collective spin-wave

relaxation rates of diffusive spin-wave modes with polariza modes with polarization along, in natural units of the spin-
. P P scattering rate ¥i,,, as a function ofg,é, and q,&,, whereé,
tion alongz are

= /5D 71,/2 is the typical length scale of the susceptibilityis the
5 N(0)J)\ 2 typical rate in the magnetic susceptibility pftype DMS. The three
Zs(s+ 1)( 0) ) sheets are fotg,,/7=1,2,10(from bottom to top. We have used
3 6 T-T, S=5/2, N(0)J/6=0.0061, and=(T—T,.)/T.=0.1(noterct).

_ 2 T
SS+1) [ 5'\_{(0)‘]/6] ¢ we derive in the following. Following Ref. 26, we consider
15 Rq the Berry-phase contribution to the anomalous Hall effect for
(77)  ap-type DMS.

A=lw=

6 TSpin+

To illustrate the momentum dependence, Fig. 2 shows thgO
rate\ as a function ofy, ¢, andq,é,,. The relaxation of the
collective modes is of course much slower than the micro
scopic time scaley;, of spin scattering, with which it is here
compared. The dispersion \is most pronounced for strong
spin scattering and vanishes fey,,/ 7— . The anisotropy

is also apparent from Fig. 2: rises faster in the longitudinal
(2) direction. ForT—T,. from above, all rates\. scale to-
wards zero a§ — T, in our semiclassical approach.

rrelation function of the effective magnetic field acting on
the impurity-impurity spin susceptibility; evaluated above.

relaxation lengthé,,. Hence, we can restrict ourselves to the
homogeneous componemit= 0. Fluctuations with nonzerg

other hand, the frequency dependence ofxthés important

X S sincew can become larger than— T, close to the transition.
We propose to measure the magnetic sgsceptlbll|ty in the We describe g-type DMS in the metallic regime by the
paramagnetic phase at smglland w for various DMS. In Hamiltonian

particular, such an experiment should look for the anisotropic

spin diffusion inp-type DMS. Studying samples with similar H=H. +Jns S—eE.r (79)
concentrations of magnetic impurities but different concen- kin T =0 '

trations ofnonmagneticscatterers introduced by codopifig wheres is the hole-spin operato§ is the averaged(q=0)

The fluctuations in the Hall voltage are governed by the
the hole spins. This correlation function is closely related to

Typical Hall-bar samples are much larger than the spin-

cancel out in the macroscopic voltage measurement. On the

would allow to change the scattering rate- While holding  impurity spin, andE is a homogeneous, static external elec-

17y, and the mean-field'; nearly fixed.

IIl. ANOMALOUS HALL-VOLTAGE NOISE

tric field. The external magnetic field vanishes. The kinetic
Hamiltonian is given in Eq(29).

The anomalous Hall conductivity has been derived by
Jungwirth et al?® The derivation is similar to the one in

In this section we apply the semiclassical theory to theappendix C. The exchange and electric-field terms are

derivation of the voltage noise in the transverse direction inreated as small perturbations. The equation of motion, of
the paramagnetic phase. The average anomalous Hall voltag. (C1), can be rewritten &8

vanishes fofT>T, due to the vanishing average magnetiza-

tion. However fluctuationsin the magnetization are present r=V,E,—eEXQ+2Im(Vu|du) (79
and are in fact critically enhanced &s is approached. This PPl P

leads to fluctuations in the anomalous Hall voltage, whichwith Q=Im(V u|X|Vu) and the heavy-hole energy
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p? . Van
Ey=o(11-272)+ 5 p-S—eE-r, (80

up to first order inE andS.
The charge response is derived from the Boltzmann equa-
tion (d+1-V,+p-Vp)n,=S5°. We restrict ourselves to E /
nonmagnetic disorder scattering, assuming the disorder scat- Ly
tering rate 1f to be large compared to the spin-scattering L v
rate lkg,,, since the latter would only complicate the Z’T‘
notation without introducing new physics. For the
anomalous Hall effect we are concerned with tierge -
density p=e[d®p/(27)%Z;n,; and current density] Ly
=efd3p/(2m) 32 vpiny; -
The leading contribution to the Hall current is found at
first order inS,

FIG. 3. Geometry of the relevant section of the Hall bar.

=LyjAv/ oD, whereop = e?n,r/my, is the Drude conductiv-
230 1 2 ity. If the electric field is applied in the direction, the
_Z'EX S(—Z_ 3—)m, (81)  anomalous Hall current density in thedirection isji,=
41K LR CIIRSL: —oES. Due to homogeneity we can average the current
whereke is the Fermi wave number in the heavy-hole band.0ver the sample volume. The voltage correlation function is
A homogeneous charge distribution has been assumed to oflen
tain this result. In the limit of large heavy-hole/light-hole -

Jan=

N

mass ratiomy,/my,>1 the Kohn-Luttinger parameters sat- _9 Ly - J’ 3, /cz 2
isfy y,—2y,<7y, and we obtain the simpler resujjy (Uan(0) Uan(0)) o2 LXLZE d*r(S(r.n$1(0.0).
=g EXSwith® (86)

Taking the Fourier transform, expressing the electric field by
) (82 the voltage applied to the relevant sample regid,
S 47K =U/L,, and inserting Eq(85) we obtain

2
~  Opp_ €Mppdn;
= AR _ =

Note that the first-order contribution is purely transverse. We .
see that in the paramagnetic phase the average anomalous (UAHUAH>w=J dte "YU au(t) Uan(0))
Hall current vanishes. However, its fluctuatidfgy - j an) do
not. We write _ E L, U2 21mx?(q=0,0) -
(ian-ian) =0 ((EXS)(EXS)) op Lile  Gimeni(1-e ")
_ Assuming 1f>1/7,, and N(0)J<1, Eq. (72) gives, to
=02 EXS S)—EB E.Ex(S*S?)|. (83  leading order inw,

In the paramagnetic phase this gives 3N(0)g7uf Tpi
paramagnetic p g Im x2(0,0)=w NI AT (88
. . ~ Cc
(ian(V)-jan(0))=20%E?(S(1) S%(0)). (84) 53(5+1)|—5 )( T, )
The time-dependent correlation function can be expressed this leads to
the impurity-impurity part x; of the susceptibility in the
p-typemcggse with the help of the fluctuation-dissipation<UAHUAH>w p L, 6N(0) 7epin
theorent; 5 =—— NONEAES AL
v oo Lilz 5gs41) n?(—) ( °)
Jd‘ (1) $(0,0) = ) g o e i
e @ rl L E
gfugnfe (89

so that the noise spectrum is independenbdbr small .
for o<T. _ _ Close to the Curie temperature the integrated néisg,,)
We now evaluate the correlation function of the anoma—:<UAHUAH>wAw with the detector bandwidth w=27Af
lous Hall voltageU 5 between the front and back sides of gatisfies
the relevant Hall-bar region shown in Fig. 3. Since Coulomb

interaction suppresses charge fluctuations the current density (UiH> o2 L 12A w Ty

is assumed to be homogeneous; deviations are only expected = 3y N0\ 2 'FI)'—T 5. (90
to occur at frequencies of the order of the plasma frequency. U op Lilz g (L) ( °>

We can then write the anomalous Hall voltage @g 6 Te
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The ratio of conductivities is understand, the susceptibility has a nonstandardepen-
dence, which only appears in the frequency-dependent term.
Thus the semiclassical diffusive dynamics does not lead to
any g dependence of thgtatic susceptibility. Such terms are
expected to be introduced by physics at the much larger mo-
with the Fermi energ¥g= k,2:/2mhh The factomi/nh liesin mentum scale of the Fermi momentlkp_
the range 1. . .,10, theubiquitous factoiN(0)J/6 drops out Spin-orbit coupling in the valence band leads to qualita-
of the final result, and 7 has to be reasonably small for tive differences in the susceptibility of holes compared to
our metallic picture to apply. The final dimensionless expreselectrons. The first difference is a suppression of the mean-
sion for the integrated noise is field Curie temperature g-type DMS compared to-type
DMS by a factor of 1/3, which can be traced back directly to
(UiH> 27(n; 1 \2 Ly 1/ T¢ 2 the momentum dependence of the spin quantization axis in
= n_h E E ﬁl T-T. Ao Tepin- the presence of spin-orbit coupling. On the other hand, the
xoz (92) Curie temperature ip-type DMS is enhanced by the typi-
cally larger density of states and exchange coupling. The
This contribution to the noise is critically enhanced as thesecond difference is the anisotropic spin diffusion in the va-
Curie temperature is approached. In a homogeneous systdance band, which is apparent in the equation of motion of
it should diverge afl; but real DMS are, by their very na- the hole magnetization and also makes ghéependence of
ture, disordered and the transition is broadened by macrahe susceptibilities anisotropic. The anisotropic diffusion is
scopic inhomogeneity ofT.. Furthermore, the effect due to the fact that holes moving in a direction perpendicular
strongly depends on the length of the relevant region of to the magnetization or effective field have vanishing expec-
the Hall bar in the electric-field direction, being large for tation value of the spin in the magnetization direction and
small L,. It is more weakly enhanced by a small samplethus do not contribute to its transport.
thicknessL, and by alarge sample widthL, across which The results have been applied to evaluatentbisein the
the voltage is measured. The effect is also increased bgnomalous Hall voltage in DMS, which is governed by the
strong compensationn<n;) and in samples showing bad impurity-spin susceptibility at small frequencies and momen-
metallic behaviorsmall E-7). tum g—0. Unlike theaverageanomalous Hall voltage this
The anomalous Hall-voltage noise is in competition with quantity does not vanish in the paramagnetic phase and is
the thermal (Johnson-Nyquist voltage nois€’ which  even critically enhanced close fB;. The noise gives an
in integrated form s (Ufh>=2TRAw/77=2T(Ly/ independent experimental approach to the impurity-spin sus-
opLyL,)Aw/7. The two contributions can be experimen- ceptibility. We have derived the detailed dependence of the
tally distinguished by their different temperature and voltagesignal on the impurity and hole concentrations and on the
dependences. The anomalous Hall-voltage ndlsg,,) is  sample geometry.
proportional to the applied voltage squared, whereas the ther-
mal voltage noise is independent of voltage. ACKNOWLEDGMENTS
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to study the anomalous Hall-voltage noise in conventional
itinerant ferromagnets such as iron.

o5 2 6 Eer (91

uz 5

In this appendix we collect a number of calculations per-
taining to the conduction-band case. The derivation of the
hydrodynamic equations in Sec. Il A requires the evaluation
IV. CONCLUSIONS of various integrals over the collision tern§g, S5, and

) pom?

A semiclassical approach based on Boltzmann equationgg'g- We do not show all evaluations but only present a few
for electrons or holes and impurity spins has been used ti clarify the method and approximations used here.
derive hydrodynamic equations of motion and spin suscepti- e first integral we need is
bilities of DMS in the paramagnetic phase. This theory gives
the leading frequency and wave-vector dependence at small dp E spin
o andg. Our results apply t-type andn-type DMS, to f (2m)% om pom’
[11-V, 11-VI, and group-IV host semiconductors, arbitrary im-
purity spin quantum numbe3, and ferromagnetic or antifer- which appears in the equation of motiofi6) of the
romagnetic exchange coupling of carrier and impurity  impurity-spin magnetization. We divide the collision integral
spins. While the form of the equations of motion is easy tointo three terms,

(A1)
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Sspin :Sspin,0+Sspin,+l+85pin,—l

pom pom pom pom

(A2)

corresponding tan’=m (no spin flip, m'=m+1, andm’
=m-—1, respectively. The first contribution is

> mf,

m f d®p d°p’
4N(0) Tspin

(2m)°

spin,0_
pom —

dp
f (2m)3 % ms
x}r‘,n 8(€p— €p)(Nprg—Nyy) =0,

(A3)

as can be seen by renamipg-p’ in the term withn,,,. The
other two contributions can be treated together as

>
(27)% om
d3p d3pr

1 f
—4N(0)Tspin (277)6

FOinsB)M[S(S+1)—m(m*1)]

spin,+=1
mS pom

% 8(€p— €+ GoteBe

X[np’I (1_np:)fmt1_npt (1_np/-T-) fnl.
(A4)

We write f,,=1/(25+ 1)+ Af,,, whereX,Af,=0, and di-
vide the integral into terms of zero and first orderAff,,

(A5)

om

d3p spin,x1 (0) (1)
f (2 )32”‘3:)‘3”{ =202
aa

In the zero-order term we expand tldunction inBg, B;,

and write all terms strictly in first order. This allows to per-

form the integrals,

dp

1 Fm?
3 (0= Np
(2m)°

C Argpn m 25+1

d3p/
f (2w)3np/:_f
+N(0)f dédé’ s (= E)Ne(E) —ne(é)]

X (*QgeupBe+ QiusBi)

N(0) S(S+1)
127'spin

SSHD)
67'spin Jeip

X (gempBe—QingBi).

(AB)
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In the sum we replacen by m¥ 1 in the term containing
fmeq. If we still sum overm from —S to S we expect
additional contributions at both ends, but these vanish due to
the factor S(S+1)—m(m=1). Thus we obtain3®
=N(0)T/A7gpin= o —M=3M?F S(S+1)] Afy,. This ex-
pression obviously simplifies when the contributions from
SSPINT1 andSSPN~ 1 are added. The contribution frog®Pn0
vanishes anyway. Consequently, the result for the full inte-
gral is

d®p .
m S SPin
| Gras msim
_ S(St1) pme  (NOT g
37'spin JeMB 27'spin et
N(0)S(S+1)
+ ————(GemBBe—giusBi). (A8)
67'spln

Note that we have expressed this result in termg;ohstead
of the occupation fraction§,,. This can be done in all our
results so that a closed set of equations for the two magne-
tizations u and u; is obtained.

The integrals required for the equation of motion of
are quite similar. In the equation for the magnetization cur-
rentj,, we need integrals such as

d3p i
J (277_)3 ; O-VDSPI;
1 d3p d3p/
= N(O)J 28 20_‘, oV S €p— €p) (Npry—Npy)
1 dp 1 i,
=— — _— Vo Ny =— y A9
rf (277)3;‘7” T Gt (A9)

where the term witm, , vanishes since it is odd ip. Simi-
lar evaluations are required f&" and SSP™"

APPENDIX B: HYDRODYNAMIC EQUATIONS,
VALENCE BAND

Even though we restrict ourselves to the heavy-hole band,
the angular integrals are much more complicated than in the
conduction-band case since the explicit expres$iih for
the hole magnetizatiop,, the transition probabilities, and
the Zeeman energies now all depend on the direction in mo-
mentum space. As noted above, the analytical expressions
for the transition probabilities are rather complicated. We use
MATHEMATICA to analytically perform the angular integrals

We have used partial integration in the last term. The ternof the form

> (™ is explicitly of first order inAf,, so that all other factors
are to be evaluated in field-free equilibrium,

s@=-UOT S g5+ 1) - m(me 1)1(Af e y— ATy,

Tspin - m
(A7)

dQ : cr 2
| Smcos ol ilali (B1)

with n=0,1,2 andA=1,j%j",j~, resulting in expressions
such as
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da o ) terms cancel in the final equations of motion so that again a
j ECO§0| o1 )l closed set of equations far, and u; is obtained.

!

L, APPENDIX C: ABSENCE OF BERRY-PHASE
(7—6 cosh’ +cos29") co§? for j'=%3/2

CONTRIBUTIONS

!

0 . In the present appendix we show that Berry-phase correc-
(7+6 cosH’+cosZt9’)sin27 for j'=*3/2. P bp yp

tions do not contribute to the hydrodynamic equations to
linear order. In the framework of semiclassical theory they
(B2) have been discussed in detail by Sundaram and?Niuone
Here, # and 6’ are polar angles gb andp’, respectively. considers a wave packet made up of electrons of a single
As an example, we here evaluate the integral band, with narrow spread in real and momentum space, and
with center-of-mass positionand mean momentump, then

dp <oin the semiclassical equations of motion for these quantities are,
J (2m)° jzm: mSyn, (B3) in the absence of scatterifg,
which corresponds to the one considered in Appendix A. The fZVpNEpa— i, (<VpU|VgU>_<VSU|VpU>)
collision integral is again divided intaSSP™04+ Sspin*1 . N N
+8°%Pn~1 The contribution fromSsP™%vanishes in analogy —ir,((VoulViu)—(ViulV,u))
mt;afgw(g?). The other terms are expandedAr,, up to —1((V ul ) — (3u] V pu1)) (C1)
d3p p_ _VrEp(r+ipa(<vru|vgu>_<vgu|vru>)
f > mSPrt=3@4+3®  (Bg) .
(2m?®im P HIr (VU VEu)=(V7ulV,u))
In 3 the 6 function is expanded iBy,, B; and the term is +i((V,uldu)—(du| V,u)). (€2
then divided mtoEnoﬂ,erEﬂ,p, where in the first(second , o , L
termj’=j (j'=—]). The first term is evaluated similarly to Summation over is implied.|u)= |upa> is the periodic part
the conduction-band case, taking the more complicated a®f the Bloch wave function and,, is the wave-packet
gular integralgB1) into account, energy with a Berry-phase correctiéh,
$0) __ S(S+1){3 pn N(O)g aB Epo=Epe—IM(V, Up,| - (Epy—Ho)|V,olp,),  (C3)
noflip 1087spin 2 Ohis 4 h#BPh

whereH_ is the local Hamiltonian for the wave-packet center
5 and momentum anH,,, is the corresponding eigenenergy. In
— 2N gi#BBi} (B5)  the hole case should be replaced by Note that the spatial
gradientV, acts on thecenter-of-massector, on which the

Also, writing outE%?p) and renaming < —j in the first term  stategu) depend parametrically.

one can see tha‘iﬂ.p Eﬁ%%"p- () can also be evaluated  For the conduction band wg can immediately see that
similarly to the conduction-band case, Berry-phase effects are absent: In field-free equilibrium all

spatial and temporal derivatives vanish. Thgradients also
0 _NOT5 vanish since for the HamiltoniaH©)=p?/(2my,) the peri-
T ) % [—m=3m*FS(S+1)] Afy, odic part|u(®) of the Bloch wave function is constant and
P (B6) the spin par=1/2) is also independent gb. This is not
changed by the Zeeman term since it commutes with the
which simplifies under summation over the three contribukinetic energy in the absence of spin-orbit coupling. Thus all

tions, terms in Eqs(C1)—(C3) vanish.
s For the valence band in the spherical approximation, Eq.
J’ d°p E M. 5Pin (29), the spin part of the Bloch wave function is given by Eq.
(2m)3 fm pim (30). Thep gradient is then

S(S+1) wmn  N(0)S(S+1) L L0
+ B Vo iYe=—li| jm——e I"te 1’0+ g7l (/).y_e,”ye ).
18Tspin Onits 108'Tspin Siatad p|]>p J psinég J p |J>

5N(O)T 5N(0) S(S+1) (C‘_l)
36700 Oipah; 1087 giueBi.  (B7)  Furthermore, the Zeeman term does not commute with the
spin SiABT spin kinetic energy so that we expect contributions from the per-
In the integrals pertaining to the hole magnetization andurbation. We use a perturbation expansion in the effective
magnetization current we obtain some terms in which thdield to obtain the terms appearing in E4€1) and (C2).
occupation fractiond,, cannot be reduced tgp,,. These The hole Hamiltonian in the spherical approximation reads
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1 ~
H= ﬁ[(?’ﬁ‘S72/2)p2—272(p.j)2]+ghMBS‘th‘

Hy H,
(CH)
The unperturbed eigenenergies are
L0_ P p? [(y1—2y) for j==3/2 -
Plo2m | (y1+2y,) for j=*1/2

and the eigenstates dre.)), where only the spin part has a
nontrivial p dependence. Assuming an effective field in the

direction, the first-order perturbation is
L iiYe i 2 _iiZg iV
Eél)zghﬁts%<l|9” e’ jze e ) By, (CT)

Restricted to heavy holes(=gnug (j/3)cos¢By,. Degen-

erate perturbation theory yields the perturbations to the

states,

<UE)O£/2| j? |U(0)+3/2>
|U( -)*-3/2> ghMBB Bh( (0) (0) |u[(3(,)£/2
p, =32~ €pi2

<U(0) ik |U +3/2>

0 0
! )+3/2 '5( )1/2

|up” 1/z>> (C8)
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This correction evidently diverges for small The origin is
the breakdown of perturbation theory as the energy differ-
enceg, between heavy and light holes goes to zero. This
divergence is not crucial here since states deep inside the
Fermi sea do not contribute to the response.

The energy entering the semiclassical equations of motion
is, to first order, Ep;= e+ el)+ Ay, Thus Eq.(C2
reads, to first order

bz _VrEpo

OhttB

i
~Onhig5COSOV By — 4p == Vil(zXp)-V,By].

(C13

Thus we find an additional force which is proportional to a
second derivative of the field but independent of the spin
direction, i.e., anorbital contribution. Then Eq(C1) be-
comes, dropping subscripgs j,

r=V,E—ip, (Vou@Viu®) —(veu®|v u®))
—iV5e(Vu@Viuy—(Viul v u®))
—i((Vu@la,uy—(a,u| V,u®)). (C14

The term multiplyingba can be evaluated explicitly and is
found to vanish for the heavy holes. Thus

Introducing the difference between heavy- and light-hole en-

ergies,g,= —2y,p*/m, we obtain

Ohip SINO By

2439,

|U(l) 32 =~ |Ug,))il/2>- (C9

Simplifying the notation by writing only the spin part of the

wave function, this gives

OngSiNOB,
—— e

2\349,

120

(1) 1
|Up’t3/2>: - iz . (ClO)

The Berry-phase correction for the energy of heavy holes,

given in Eq.(C3), is, to first order,
Aepi=—Im(V,ulD|- (e —HO) |V ul®)

Onigsind Vv By (0)

=Im «(u ,/3| (O)_ Ho)lVp U(0>
2\/§gp P

(C1D)

Using that/u’)s) is an eigenstate dfi, we obtain

OnugSiN@ V By,

Aep= 23
» 3 ,a( ﬁ”
—sinf—i—| *xi—
psrne 2 2
ghMB
ap (z ><p) V.By. (C12

rzi—g lsin¢9B @
My hlu’BB hp
—ImV(V,ul- (e =H) |V ,u®)
—|—(<v uOVeuy—(Viul v u©))
—i((Vou@[guy—(au| V ,u®)), (C15

cf. Eq. (33). To first order, the Boltzmann equation reads

V My +p-V n(o)—Sd'S+2 S;ﬂﬂ

(C16)

since V,ny; andp are both linear in the perturbation. Thus
the correction terms in EqC15) drop out here and the only
new term on the left-hand side comes from the orbital force
in Eg. (C13. The equation of motion of.,, is obtained by
multiplying the Boltzmann equation with g,ug(j/3)cosé
and summing ovep, j. The orbital-force term drops out
since it contains;j =0

The right-hand side of EqC16) also has to be multiplied
with —gpug(j/3)cosd and summed ovep, j. The Berry-
phase correction €,; to the energy appears in thefunc-
tions implementing energy conservation. If we evaluate the
resulting integrals by expanding thésfunction as in Appen-
dix B, all terms multiplied withA e,; should be evaluated to
order zero. Then the only j’ dependence comes from the
explicit factorj/3 and from the transition probabilities. How-
ever, explicit evaluation in the ¥4 spin space shows
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that =5, (j/3) o(ili Vpr|?=0, =j;:(i/3)o(ili?li")pr[?=0,  replacer by p/my,. Then the first two terms in the parenthe-
SRl )P+ 16(ili 1) p|5)=0 so that all ses are identical to the ones calculated above and the third
these terms vanish. Thus there is no contribution to the equasanishes due t&;j=0. Thus the left-hand side of the equa-
tion of motion for the hole magnetization. tion of motion is not changed by Berry-phase contributions.
The equation of motion for the magnetizatioarrentj, ~ On the right-hand side we have to multiply the collision

contains an additional factor af in the integrand, which integrals by {/3)cosfr with r=p/mp,+Av from Eq.(C15).
should be calculated to linear order, see Egl5). For the AV contains the term from the dependence of the Zeeman
left-hand side we obtain energy as well as the Berry-phase corrections. The contribu-
tion from p/my, is what we have calculated in Sec. Il B
: 4 . except for the additional Berry-phase correctibg; in the
_ +f P > 1 ¢ functions. This correction is irrelevant, however, by the
OnhitB (2m)® T 3 argument of the previous paragraph.

In the second contributiorv is of first order so that the
collision integrals should be evaluated to order zero. But
these are of course zero since there is no net scattering in
equilibrium. Consequently, the linear contributions to the ve-

_ 9By o ) (0) locity r drop out of the equation of motion fgr,. In con-
4p Vilp: (VixB]-Vnp . (€17 clusion, we have shown that the hydrodynami% equations for
] the valence-band case are unaffected by Berry phases to lin-
Since all terms multiplied by are already of first order we ear order. The results of Sec. Il B are thus correct.

(P ] 0)
X —-V.n, — =5 ‘
cosﬁr( " Npj ghMB3c030V,Bh Vong
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