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Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise
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The carrier-spin and impurity-spin densities in diluted magnetic semiconductors are considered using a
semiclassical approach. Equations of motions for the spin densities and the carrier-spin current density in the
paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibili-
ties are obtained from these equations. The theory holds forp-type andn-type semiconductors doped with
magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to
anisotropic spin diffusion and to a suppression of the Curie temperature inp-type materials. As an application
we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the
Curie temperature due to the contribution from the anomalous Hall effect.
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I. INTRODUCTION

In recent years, a lot of progress has been made in
physics of diluted magnetic semiconductors~DMS!, in par-
ticular in III-V materials doped with manganese. In the b
studied material~Ga,Mn!As, ferromagnetic transition tem
peratures around 160 K have been achieved.1–3 On the the-
oretical side, a Zener model based on valence-band h
exchange coupled to local impurity spins is very succes
in describing this material, at least in the metallic regime.4–8

In ~Ga,Mn!As manganese acts as an acceptor and introd
localized spinsS55/2 due to its half-filledd shell. The ma-
terial is p type but partly compensated, probably due to
senic antisites9,10 and manganese interstitials.11 In group-IV
semiconductors12 manganese plays a similar role. On t
other hand, in II-VI materials manganese introduces a s
but is isovalent with the host cations.

It has also been realized that disorder is crucial for
understanding of the properties of DMS, even in the meta
regime.13–17There are two main scattering mechanisms: d
order scattering due to the Coulomb potential of charg
donors and acceptors and spin-exchange scattering off
domly distributed impurity spins. The Coulomb interaction
the dominant contribution to disorder. This is due to comp
sation, which leads to a lower hole concentration and thus
the one hand to the presence of charged defects of either
and on the other to less effective electronic screening. Du
the large Coulomb interactions, the defects are probably
corporated during growth in partially correlated positions
oppositely charged donors and acceptors prefer to sit
nearby sites—and these correlations may increase
annealing.15,16 In Ref. 15 it was shown that equilibration o
defects during growth or annealing leads to an enorm
reduction of the typical width (̂V2&2^V&2)1/2 of the disor-
der potentialV and to a very short correlation length ofV, of
the order of the lattice constant.Ionic screening is thus very
effective, whereas electronic screening is not. However,
width of the disorder potential is still roughly of the sam
order as the Fermi energy so that it cannot be neglected

Since the correlation length is so short, a description
terms of ad-function correlateddisorder potential is reason
0163-1829/2004/69~11!/115202~17!/$22.50 69 1152
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able. In this approximation, a scattered carrier tends to l
all its momentum information. This allows for a relative
simple description of the scattering in the semiclassi
Boltzmann approach.18 The spin-exchange scattering, thoug
typically weaker than the Coulomb scattering, is expected
become important close to the Curie temperatureTc , where
spin fluctuations are enhanced. A systematic study of
effect of both types of scattering on the linear response
DMS and in particular on transport would be desirable. F
example, the resistivityr of ~Ga,Mn!As shows a maximum
or at least a shoulder atTc ,9,19–22 whereas the standar
Fisher-Langer theory23 for fluctuation corrections to the re
sistivity in ferromagnetic metals predicts an infinitederiva-
tive of r at Tc . The origin of this weak critical behavior is
that the resistivity is dominated by scattering events w
large momentum transfersq;2kF , wherekF is the Fermi
momentum. By contrast, the magnetic susceptibilityx(q) of

ferromagnetic metals, of Ornstein-Zernicke form,24,25 di-
verges only atq50.

As a step towards a comprehensive theory of disor
effects on linear response and transport in DMS, we pres
a semiclassical theory for the paramagnetic phase of DM
the metallic regime. Starting from the Zener model4–7 and
semiclassical Boltzmann equations, hydrodynamic equat
of motion for the carrier- and impurity-spin magnetizatio
are derived in Sec. II, including Coulomb scattering a
spin-exchange scattering off magnetic impurities. Becaus
the semiclassical approach, these equations hold for s
momentaq and frequenciesv. The theory is rather genera
in that it applies to both the conduction and the valence ba
III-V, II-VI, and group-IV host semiconductors, and impur
ties with general spinS. From the equations of motion, th
dynamical spin susceptibilities of carriers and impurities
derived for smallq andv. The resulting semiclassical sus
ceptibility is not of Ornstein-Zernicke form. However, th
form is presumably restored by quantum effects forq of the
order of kF . The semiclassical results exhibit the detail
dependence on the various sources of scattering. We
significant differences between the conduction-band (n-type!
and valence-band (p-type! cases due to the pronounced sp
©2004 The American Physical Society02-1
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orbit coupling in the latter. For example, spin diffusion in t
valence band is anisotropic. On the other hand, we show
semiclassically Berry-phase effects26,27 are absent from the
linear susceptibility even in the valence-band case.

It would be interesting to study the effect of spin fluctu
tions on the electrical conductivity close toTc in DMS.23

This requires the inclusion of quantum effects at the scal
kF and thus goes beyond the Boltzmann approach.
present theory should be a good starting point for this g
eralization.

We briefly comment on related work. Sinovaet al.28 con-
sider the damping of spin waves in theferromagneticphase
in the limit q50 within a Green-function approach. Disord
scattering is incorporated by assuming a constant non
quasiparticle lifetime. Galitskiet al.29 derive the local dy-
namical spin susceptibility close toTc for the strongly local-
ized regime, opposite to the case of weak disorder scatte
considered here. In the strongly localized case the system
be mapped onto a disordered ferromagnetic Heisenb
model and Griffiths-McCoy singularities are important abo
Tc .29 Qi and Zhang30 consider spin diffusion in nonmagnet
materials within the Boltzmann approach. The present w
goes beyond Ref. 30 in that we derive the coupled dynam
of carrier and impurity spins in DMS, consider both condu
tion and valence bands explicitly, and derive the dynam
susceptibility.

As an application we derive the fluctuations of the anom
lous Hall voltage in theparamagneticphase in Sec. III. In
the absence of an external magnetic field the average an
lous Hall voltage is zero since the average magnetiza
vanishes. However, fluctuations of the magnetization lea
nonzero Hall-voltagenoise. Three mechanisms of th
anomalous Hall effect~AHE! are discussed in the literature
skew scattering31 andside-jump scattering32 rely on the im-
balance of scattering to the right and to the left due to sp
orbit coupling. On the other hand,Berry-phase effects27 lead
to an AHE in the presence of spin-orbit coupling even wi
out scattering. Since Jungwirthet al.26 show that the latter
contribution can explain the experimental results for DMS
the ferromagnetic phase, we also assume this mechanis

II. SEMICLASSICAL THEORY

In this section we present the semiclassical theory for
linear response of the carrier- and impurity-spin magnet
tions in DMS in the paramagnetic phase. We first der
hydrodynamic equations of motion for these magnetizati
and for the carrier magnetization current.~Some details are
given in Appendixes A and B. In Appendix C we show th
Berry-phase corrections are absent from the equations of
tion.! We solve these equations to obtain the spin susce
bility. The derivation is carried through for both the condu
tion and the valence band, and for arbitrary impurity spinS.
We use\5kB51.

A. Hydrodynamic equations, conduction band

We start with the simpler case of conduction-band el
trons exchange coupled to impurity spins. Spin-orbit effe
11520
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can be neglected here since the conduction band has m
s-orbital character. This description is appropriate forn-type
DMS. Ferromagnetism inn-type DMS is hard to achieve du
to the small exchange interaction between electron and
purity spins and is restricted to very low temperatures.33 We
assume a spherically symmetric bandep to avoid inessential
complications.

We first briefly motivate the Boltzmann equations for t
electron densitynps(r ), wheres561/2 is the spin orienta-
tion, and for the occupation fractionf m of impurity spins
with quantum numberm of Sz. The Hamiltonian reads

H5Hkin1JE d3r m~r !•M ~r !1gemBE d3r m~r !•Be
ext

1gimBE d3r M ~r !•Bi
ext, ~1!

wherem andM are the electron- and impurity-spin densiti
~oriented oppositely to the magnetizations!, respectively, and
their coupling is described by the exchange integralJ550
65 meV nm3.19 J.0 (J,0) corresponds to antiferromag
netic ~ferromagnetic! coupling. We have introduced two dis
tinct external magnetic fieldsBe

ext andBi
ext acting on electron

and impurity spins, respectively, in order to obtain the line
response of each species separately, which will prove us
in Sec. III.

The exchange term is decoupled at the mean-field le
We can restrict ourselves to collinear spin configuratio
since the paramagnetic susceptibility is proportional to
unit matrix in our spherical model. We choose the magn
zation direction as thez axis. The mean-field Hamiltonian o
the electrons and the impurities is then

He5Hkin1gemBE d3r m~r ! Be, ~2!

H i5gimBE d3r M ~r ! Bi , ~3!

respectively. In terms of the spin magnetizationsme
52gemB ^m&, m i52gimB ^M &, the effective fields read

Be5Be
ext2

J

gegimB
2

m i , ~4!

Bi5Bi
ext2

J

gegimB
2

me. ~5!

The single-particle energy of an electron with momentump
and spins561/2 isEps

e 5ep1gemBsBe. The energy of an
impurity spin with magnetic quantum numberm is Em

i

5gimBmBi . In the absence of scattering, the semiclass
equation of motion for the electron densitynps(r ) is given
by the Poisson bracket
2-2
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MAGNETIC SUSCEPTIBILITIES OF DILUTED . . . PHYSICAL REVIEW B69, 115202 ~2004!
] tnps52$nps ,Eps
e %52Fs•“pnps2vp “ rnps ~6!

with the spin-dependent forceFs52gemBs“ rBe and the
velocity vp>p/mcb, wheremcb is the effective mass. Includ
ing scattering, we obtain the Boltzmann equation

~] t1vp•“ r1Fs•“p!nps~r !5S ps
dis1S ps

flip1(
m

S psm
spin

~7!

with collision integralsS discussed below.
For the impurity spins we define the occupation fracti

of spins with magnetic quantum numberm as f m , where
(mf m51. The corresponding density isni f m with the den-
sity ni of magnetically active impurities. We neglect the co
tribution of interstitial magnetic impurities.3,11,34

We now discuss the collision integrals. The simplest o
describes disorder scattering of the electrons,18

S ps
dis5E d3p8

~2p!3

1

N~0!t
d~ep2ep8!~np8s2nps!. ~8!

Here,N(0) is the density of states per spin component a
1/t is the transport scattering rate.

The next contribution is spin-exchange scattering betw
electron and impurity spins. For this we need the transit
probabilities between spin states. We write the spin oper
of the electron~impurity! as s (S). The joint spin state is
denoted byusm&. The matrix elements of the exchange co
pling are

^smus•Sus8m8&

5
1

2
ds,1/2ds8,21/2dm11,m8AS~S11!2m~m11!

1
1

2
ds,21/2ds8,1/2dm21,m8AS~S11!2m~m21!

1dss8dmm8sm. ~9!

Note that only thep85p contributions to theszSz term are
taken care of by the mean-field decoupling. Forp8Þp this
term expresses that carriers can also scatter off impur
due to the exchange interaction without flipping the spi
The transition probabilities between the states are given
Psm,s8m85u^smus•Sus8m8&u2. The collision integral for
electron-impurity spin scattering can then be written as

S psm
spin 5E d3p8

~2p!3 (
s8m8

1

N~0!tspin
d~ep1gemBsBe

1gimBmBi2ep82gemBs8Be

2gimBm8Bi!Psm,s8m8 @np8s8 ~12nps! f m8

2nps ~12np8s8! f m# ~10!

with the spin-exchange scattering rate 1/tspin.35 Due to con-
servation of the total spin by the process expressed by
~10!, the same collision integral also appears in the Bo
mann equation forf m ,
11520
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] tni f m5E d3p

~2p!3 (
s

S psm
spin . ~11!

The left-hand side only contains the explicit time derivati
since the impurities are assumed to be immobile and pu
local. This is the only scattering term we consider for t
impurities.

The scattering processes expressed byS dis and S spin are
not sufficient for a reasonable thermodynamic descripti
however. The reason is that both processes conserve the
spin. Thus the homogeneous spin susceptibility would
zero. To avoid this problem we include relaxation of the to
spin by an additional ‘‘spin-flip’’ scattering term for the elec
trons. This can be due to the hyperfine interaction w
nuclear spins36 or electron-electron interaction in conjunctio
with spin-orbit coupling in other bands.28 This process is
expressed by

S ps
flip5E d3p8

~2p!3

1

N~0!tflip
d~ep1gemBsBe2ep8

2gemBs̄Be! ~np8s̄2nps!, ~12!

wheres̄52s.
From Eq. ~7! one easily derives the continuity equatio

for the electron density. Our main goal is to derive cor
sponding equations for the magnetizations

me52gemBE d3p

~2p!3 (
s

s nps , ~13!

m i52gimBni(
m

m fm ~14!

and the electron magnetization current

jm52gemBE d3p

~2p!3 (
s

svp nps . ~15!

We start with the impurity spins. Multiplying Eq.~11! by m
and summing overm we obtain

2
] tm i

gimB
5E d3p

~2p!3 (
sm

mS psm
spin

52
S~S11!

3tspin

me

gemB
1

N~0!T

2tspin

m i

gemBni

N~0! S~S11!

6tspin

3~gemBBe2gimBBi!, ~16!

to linear order in the effective fields and magnetizations,
Appendix A. In the last expression we can identify the Pa
susceptibility of free electrons with density of statesN(0)
per spin component and the Curie susceptibility of nonint
acting impurity spins with spin quantum numberS and den-
sity ni :

37
2-3
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xPauli5
N~0!ge

2mB
2

2
, ~17!

xCurie5
S~S11! gi

2mB
2ni

3T
. ~18!

Using these susceptibilities we write

] tm i5
S~S11!

3tspin

gi

ge
~me2xPauliBe!

2
1

2tspin

N~0!T

ni
~m i2xCurieBi!. ~19!

The rate of change of the impurity magnetizationm i thus
depends linearly on the deviations ofme and m i from their
respective equilibrium values, which is quite reasonab
Note that this and the following equations of motion do n
contain a precession term since this term would be of sec
order in the magnetization.37

Multiplying the Boltzmann equation~7! by s and sum-
ming overp, s we obtain

2
] tme

gemB
2

“ r• jm

gemB

5E d3p

~2p!3(s sS S ps
dis1S ps

flip1(
m

S psm
spin D ,

~20!

where the force term on the left-hand side vanishes since
integrand is a totalp gradient. The right-hand side can b
evaluated similarly to the calculation in Appendix A and e
pressed usingxPauli andxCurie,

] tme1“ r• jm52S 2

tflip
1

S~S11!

3tspin
D ~me2xPauliBe!

1
1

2tspin

N~0!T

ni

ge

gi
~m i2xCurieBi!. ~21!

To eliminate the magnetization currentjm , we derive its
equation of motion by multiplying Eq.~7! by svp and sum-
ming overp ands,

2
] tjm

gemB
1E d3p

~2p!3 (
s

svp ~vp•“ rnps!

2E d3p

~2p!3 (
s

svpgemBs~“ rBe!•“pnps

>2
vF

2

3

“ rme

gemB
1

gemBr (0)

4mcb
“ rBe

52
vF

2

3

1

gemB
“ r~me2xPauliBe!

5E d3p

~2p!3 (
s

svpS S ps
dis1S ps

flip1(
m

S psm
spin D .

~22!
11520
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The first term2] tjm /gemB is neglected since it only be
comes relevant for frequencies of the order of the larg
scattering rate. In the second term we have replacedvp

avp
b in

the usual way bydabvF
2/3, wherevF is the Fermi velocity.

This is valid sincenps has significantr dependence only
close to the Fermi energy. The third term has been expan
to linear order in the perturbation and in the final step
equilibrium electron density has been written asr (0)

52N(0)mcbvF
2/3 for a parabolic band. Evaluating the inte

grals, we obtain

jm52D “ r~me2xPauliBe! ~23!

with the diffusion constantD5vF
2t tot/3 and the total scatter

ing rate

1

t tot
5

1

t
1

1

tflip
1

S~S11!

4tspin
. ~24!

Inserting this result into Eq.~21! we find the equation of
motion of the electron-spin magnetization,

] tme52S 2

tflip
1

S~S11!

3tspin
2D¹ r

2D ~me2xPauliBe!

1
1

2tspin

N~0!T

ni

ge

gi
~m i2xCurieBi!. ~25!

We observe that also the rate of change ofme is linear in the
deviations of the hole and impurity magnetization from th
equilibrium values. The result that] tme vanishes in equilib-
rium must hold in general, not just for the parabolic ba
assumed above, as expressed by the Einstein relation.

The two equations~19! and ~25! are coupled explicitly
and through the effective fields. They are formally solved
Fourier transformation in space and time,

2 ivme52S 2

tflip
1

S~S11!

3tspin
1Dq2D ~me2xPauliBe!

1
1

2tspin

N~0!T

ni

ge

gi
~m i2xCurieBi!, ~26!

2 ivm i5
S~S11!

3tspin

gi

ge
~me2xPauliBe!

2
1

2tspin

N~0!T

ni
~m i2xCurieBi!. ~27!

In the absence of external fields, the static, homogene
magnetizations have nonzero solutions at the mean-field
rie temperature4,6,38–40

Tc5
S~S11!

6
N~0! J2 ni . ~28!

B. Hydrodynamic equations, valence band

We now derive hydrodynamic equations for valence-ba
holes exchange coupled to impurity spins, relevant forp-type
DMS. The case of spin quantum numberS55/2 corresponds
2-4
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to substitutional Mn in GaAs. The main complication here
the presence ofspin-orbit coupling. We employ a four-band
Kohn-Luttinger Hamiltonian5,41,42 in the spherical approxi-
mation, which is the simplest one incorporating the relev
physics. In the absence of magnetic impurities the Ham
tonian reads26,43

H5
1

2m
@~g115g2/2! k222g2~k• j !2# ~29!

with Kohn-Luttinger parametersg1 , g2 and the angular mo
mentum operatorj of the holes, which in this subspace ca
be written as a 434 matrix and has the Casimir operat
j• j53/2(3/211). Since the split-off band is neglected, th
description only applies to semiconductors with sufficien
strong spin-orbit coupling. The eigenstates ofH at k are
characterized by the quantum numberj 561/2,63/2 of
k̂• j , wherek̂[k/k. We restrict ourselves to the heavy-ho
band, which is justified for energies close to the band e
because of the much smaller density of states of the lig
hole band.

We introduce the eigenstatesu j &k of k̂• j with eigenvalues
j. We denote the spin eigenstates with respect to afixedquan-
tization axisẑ by u j &. The former can be expressed in term
of the latter by means of a rotation in spin space,44,45

u j &k5e2 i j zfe2 i j yu u j &, ~30!

where j y, j z are spin operators andu and f are the polar
angles ofk.

The statesu j &k can be expressed in terms of eigenstates
orbital angular momentuml ~with l• l52) and spins with the
help of Clebsch-Gordon coefficients. One then easily fin
that all 434 matrix elements ofsz equal the correspondin
matrix elements ofj z/3. The same holds for thex and y
components because of symmetry so thats5 j /3 holds as an
operator identity in the four-band subspace.26 Consequently
the heavy-hole states (j 563/2) are eigenstates tok̂•s with
eigenvalues61/2. However, the heavy holes donot form a
spin doublet since the matrix elements ofs65 j 6/3 all van-
ish in the heavy-hole subspace—single spin flips can
change the total angular momentum from63/2 to 73/2.

The total energy of a heavy hole is

Epj
hh5~g122g2!

p2

2m
1ghmB

j

3
cosuBh , ~31!

where u is the polar angle ofp with respect to the field
directionẑ. Without scattering the equation of motion for th
hole density reads

] tnpj52$npj ,Epj
hh%5ghmB

j

3
cosu“ rBh•“pnpj

2
p

mhh
•“ rnpj1ghmB

j

3
sinuBh

û

p
"“rnpj , ~32!
11520
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wheremhh5m/(g122g2) is the heavy-hole effective mass
This suggests to define the velocity as

vp5
p

mhh
2ghmB

j

3
sinu Bh

û

p
. ~33!

Note that the second term is explicitly of first order. W
should use this velocity in the semiclassical equations. Ho
ever, we find the contribution from the second term to van
to first order. The reason is essentially that we have to ev
ate all other factors in equilibrium due to the explicitBh .
This result is proved together with the absence of Ber
phase contributions in Appendix C. We thus drop the sec
term in Eq.~33!.

We now turn to the derivation of the Boltzmann equati
for the holes,

~] t1vp•“ r1Fpj•“p!npj~r !5S pj
dis1(

m
S pjm

spin ~34!

with the forceFpj52ghmB ( j /3) cosu“rBh for the holes and

] tni f m5E d3p

~2p!3 (
j

S pjm
spin ~35!

for the impurities. The disorder scattering integr
contains the matrix elements k^ j u j 8&k8
5^ j uei j yuei j zfe2 i j zf8e2 i j yu8u j 8&. The spin operators are
434 matrices in the projected subspace. For heavy ho
explicit evaluation gives the transition probabilities

u k^ j u j 8&k8u
25S cos6

a

2
sin6

a

2

sin6
a

2
cos6

a

2

D
j j 8

, ~36!

where j , j 8563/2. Here,a is the angle between the vecto
k and k8. The collision integral for disorder scattering o
heavy holes reads

S pj
dis5E d3p8

~2p!3 (
j 8

1

N~0!t
dS ep1ghmB

j

3
cosu Bh2ep8

2ghmB

j 8

3
cosu8BhD u p^ j u j 8&p8u

2~np8 j 82npj !. ~37!

Note that for forward scattering (a;0) we get predomi-
nantly j 85 j , whereas for backscattering (a;p) we find
predominantlyj 852 j . Due to thek-dependent quantization
axis j is not conserved even by pure disorder scattering
to the Elliott-Yafet mechanism.46,47

For the hole-impurity spin scattering we need matrix e
ments ofs•S. The transition probabilities are
2-5
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Ppjm,p8 j 8m8

5u p^ jmus•Su j 8m8&p8u
2

5
1

9 S 1

4
u p^ j u j 1u j 8&p8u

2dm11,m8

3@S~S11!2m~m11!#1
1

4
up^ j u j 2u j 8&p8u

2dm21,m8

3@S~S11!2m~m21!#1up^ j u j zu j 8&p8u
2dmm8m

2D
~38!

and the resulting collision integral reads

S pjm
spin5E d3p8

~2p!3 (
j 8m8

1

N~0!tspin
dS ep1ghmB

j

3
cosuBh

1gimBmBi2ep82ghmB

j 8

3
cosu8Bh2gimBm8BiD

3Ppjm,p8 j 8m8@np8 j 8 ~12npj ! f m82npj ~12np8 j 8! f m#.

~39!

Since the two collision integrals already include spin rela
ation we do not introduce an additional spin-flip term.

We now derive hydrodynamic equations for the hole- a
impurity-spin magnetizations

mh52ghmBE d3p

~2p!3 (
j

j

3
cosunpj , ~40!

m i52gimBni(
m

m fm ~41!

and the hole magnetization current

jm52ghmBE d3p

~2p!3 (
j

j

3
cosuvp npj . ~42!

Some details of the calculations are shown in Appendix
We start with the impurity spins. In analogy to th
conduction-band case we obtain

] tm i5
S~S11!

18tspin

gi

gh
S mh2

1

3
xPauliBhD

2
5

36tspin

N~0!T

ni
~m i2xCurieBi!, ~43!

where we have again identified the Pauli susceptibi
xPauli5N(0)gh

2mB
2/2 and the Curie susceptibility. Note, how

ever, the factor of 1/3 multiplying the Pauli susceptibilit
which is absent for the conduction band. This factor is ea
understood by calculating the static, homogeneous spin
ceptibility of heavy holes in the absence of impurities. F
the static susceptibility we can assume the holes to follo
Fermi distribution, which we expand inBh ,
11520
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d
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a

npj>nF~ep2m!1nF
(1)~ep2m!ghmB

j

3
cosuBh , ~44!

where nF
(1)(E)5nF(E) @nF(E)21# is the derivative of the

Fermi function. To linear order we then find

mh52gh
2mB

2E d3p

~2p!3 (
j

S j

3D 2

cos2uBh nF
(1)~ep2m!

5
1

3

N~0!gh
2mB

2

2
Bh5

1

3
xPauliBh . ~45!

The extra factor stems from the direction-dependent qua
zation axis and thus spin-orbit coupling.

We also obtain the equation of motion for the hole ma
netization,

2
] tmh

ghmB
2

“ r• jm

ghmB
5E d3p

~2p!3 (
j

j

3
cosuS S pj

dis1(
m

S pjm
spinD .

~46!

Similarly to the calculation in Appendix B, we find

] tmh1“ r• jm52S 1

5t
1

7S~S11!

180tspin
D S mh2

1

3
xPauliBhD

1
1

36tspin

N~0!T

ni

gh

gi
~m i2xCurieBi!. ~47!

To eliminate the magnetization currentjm we consider its
equation of motion with the left-hand side

2
] tjm

ghmB
1E d3p

~2p!3 (
j

j

3
cosuvp~vp•“ rnpj !

2E d3p

~2p!3 (
j

j

3
cosu vp ghmB

j

3
cosu~“ rBh!•“pnpj .

~48!

The first term is again neglected. In the second we have t
more careful because of the explicit angle dependence.
theconductionband the factorvF

2/3 is obtained by assuming
nps to be the equilibrium distribution in a constant Zeem
field. The integral over the direction ofp is then easily per-
formed. Since we obtain a term linear in“ rme, corrections
would be of higher order. For thevalenceband we also as-
sume a constant Zeeman field, leading tonpj>np

(0)

1( j /3)cosu Dn(p). Thus the second term in Eq.~48! be-
comes

vF
2E d3p

~2p!3 (
j

j

3
cosup̂S p̂•“ r

j

3
cosuDn~p! D

5N~0! vF
2E dj (

j
S j

3D 2S 1/15 0 0

0 1/15 0

0 0 1/5
D

3“ r Dn@p~j!#. ~49!
2-6
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In the same approximation we find2mh /ghmB
5N(0)*dj ( j ( j /3)2Dn@p(j)#/3 so that this term is

2vF
2 S 1/5 0 0

0 1/5 0

0 0 3/5
D “ r

mh

ghmB
. ~50!

The third term in Eq.~48! is straightforward to evaluate t
first order,

N~0!ghmB

6
vF

2 S 1/5 0 0

0 1/5 0

0 0 3/5
D “ rBh . ~51!

Again, the result holds in general due to the Einstein relat
Altogether the equation of motion for the magnetization c
rent is

vF
2S 1/5 0 0

0 1/5 0

0 0 3/5
D “ rS mh2

1

3
xPauliBhD

5E d3p

~2p!3 (
j

j

3
cosuvp S S pj

dis1(
m

S pjm
spinD . ~52!

Evaluating the integrals we finally obtain

jm52D S 3/5 0 0

0 3/5 0

0 0 9/5
D “ rS mh2

1

3
xPauliBhD , ~53!

where we have introduced the diffusion constantD
5vF

2t tot/3 with the total relaxation rate 1/t tot51/(2t)
15 S(S11)/(72tspin). The spin diffusion in the valence
band is thusanisotropic. Compared with the result~23! for
the conduction band, diffusion along the direction of the
fective field is enhanced and diffusion in the transverse
rections is suppressed. The origin of this interesting eff
again lies in the momentum dependence of the quantiza
axis: Consider, for example, heavy holes traveling exa
along thex direction. In the Hilbert subspace of these ho
all matrix elements ofsz and j z vanish so that these hole
cannot carry any spin magnetization pointing in thez direc-
tion. For holes with momentump pointing partly in a trans-
verse direction the contribution to spin transport is still su
pressed.

Inserting our result for the current into Eq.~47! we obtain
the equation of motion for the hole magnetization,

] tmh52F 1

5t
1

7S~S11!

180tspin
2DS 3

5

]2

]x2
1

3

5

]2

]y2
1

9

5

]2

]z2D G
3S mh2

1

3
xPauliBhD1

1

36tspin

N~0!T

ni

gh

gi

3~m i2xCurieBi!. ~54!
11520
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This equation is of the same general form as for the cond
tion band, the main differences being the reduced Pauli s
ceptibility and the anisotropic spin diffusion. Fourier tran
formation yields

2 ivmh52F 1

5t
1

7S~S11!

180tspin
1D

3qx
213qy

219qz
2

5 G
3S mh2

1

3
xPauliBhD

1
1

36tspin

N~0!T

ni

gh

gi
~m i2xCurieBi!, ~55!

2 ivm i5
S~S11!

18tspin

gi

gh
S mh2

1

3
xPauliBhD

2
5

36tspin

N~0!T

ni
~m i2xCurieBi!. ~56!

For v50, q50 we find finite solutions at

T5Tc5
S~S11!

18
N~0! J2 ni . ~57!

The Curie temperature of holes isreducedby an extra factor
of 1/3 compared to the conduction-band case. This fac
stems from the same factor in the Pauli susceptibility and
thus due to spin-orbit coupling. On the other hand, for ty
cal host materials the density of states is muchhigher for the
heavy holes than for conduction-band electrons and the
change integralJ is also much larger, enhancingTc in p-type
materials.

We have so far ignored the possible effect of Berry-ph
contributions.26 In Appendix C we show that they vanish t
linear order in the effective field. Berry-phase contributio
are expected in higher orders, though.

C. Susceptibilities

With the help of the hydrodynamic equations we no
derive the linear response of the carrier-spin and impur
spin magnetizations to external fields coupled to these m
netizations. It is useful to solve the general problem of
Fourier-transformed hydrodynamic equations

2 ivme52Rq ~me2axPauliBe!

1Rei

N~0!T

ni

ge

gi
~m i2xCurieBi!, ~58!

2 ivm i5Rie

gi

ge
~me2axPauliBe!2Rii

N~0!T

ni
~m i2xCurieBi!,

~59!

where

Be5Be
ext2

J

gegimB
2

m i , ~60!
2-7
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Bi5Bi
ext2

J

gegimB
2

me, ~61!

which contain the special cases of the conduction band,
~26! and ~27!, and the valence band, Eqs.~55! and ~56! ~re-
placing ‘‘e’’ by ‘‘ h’’ !. The solution reads

S me/gemB

m i /gimB
D 5

N~0!

detM S Aee Aei

Aie Aii
D S gemBBe

ext

gimBBi
extD ~62!

with the determinant of the coefficient matrix

det M56ni~ iv!21 iv @2aN~0!JniRie26niRq

12N~0!JniReiS~S11!26N~0!TRii#

1N~0! ~ReiRie2RiiRq! @aN~0!J2niS~S11!26T#

~63!

and

Aee523a @ ivniRq1N~0!T ~ReiRie2RiiRq!#, ~64!

Aei5ani @3ivRie1N~0!J ~ReiRie2RiiRq!S~S11!#,
~65!

Aie5ni @2ivRei1aN~0!J ~ReiRie2RiiRq!#S~S11!,
~66!

Aii522ni @ReiRie1Rii ~ iv2Rq!# S~S11!. ~67!

The magnetization becomes singular atT5Tc5(a/6) S(S
11)N(0) J2ni , in agreement with our earlier results.48 We
now assumev andT2Tc to be small compared to the rate
Rq , Rei , Rie , Rii but do not make any assumption abo
T2Tc vs v. Then we find

S me

m i
D 5S xee xei

x ie x ii
D S Be

ext

Bi
extD ~68!

with the susceptibility matrix

x5S xee xei

x ie x ii
D

52N~0! S~S11! ~ReiRie2RiiRq! mB
2

3S iv @6Rq23aN~0!JRie22N~0!JReiS~S11!

1aN2~0!J2S~S11!Rii#1aN2~0!J2S~S11!

3~ReiRie2RiiRq!
T2Tc

Tc
D 21

3S ge
2S aN~0!J

2 D 2

2gegi

aN~0!J

2

2gegi

aN~0!J

2
gi

2 D . ~69!

Since the same field acts on the carrier and impurity sp
the physical susceptibility of the carrier spins isxee1xei ,
11520
s.

t

s,

while the susceptibility of the impurity spins isx ie1x ii . The
total susceptibility describing the response of the total m
netization isx tot5xee1xei1x ie1x ii . Note that this physical
susceptibility is always paramagnetic since the compone
of the matrix factor in Eq.~69! combine to@geaN(0)J/2
2gi#

2. In the static casev50 all four components are o
Curie form. We already see that the dimensionless param
2aN(0)J/2 has a special meaning: It is the ratio betwe
the average electron spin and the average impurity spin in
applied field, regardless of whether the field acts on the e
trons or on the impurities.

We now consider the special case ofconduction-band
electrons. Inserting the appropriate factors from Eqs.~26!
and ~27!, we obtain the susceptibility matrix

x5N~0! S~S11! mB
2

3H 2 ivF6tspin12S~S11!
@12N~0!J/2#2

2/tflip1Dq2 G
12S~S11! S N~0!J

2 D 2 T2Tc

Tc
J 21

3S ge
2S N~0!J

2 D 2

2gegi

N~0!J

2

2gegi

N~0!J

2
gi

2 D . ~70!

This susceptibility describes the linear response of ann-type
DMS. The same result would be obtained for a simple mo
of spin-1/2holes, which is sometimes employed in the litera
ture.

Note that the onlyq dependence appears in the coefficie
of v. This is quite different from the standard Ornstei
Zernicke form24,25of the susceptibility. We discuss this poin
further below. The only typical length scale inx is je

5ADtflip/2. This is the relaxation length of thetotal spin. In
the semiclassical approximationje does not show any criti-
cal behavior atTc .

The susceptibility also describes the magnetic excitatio
Their dispersion is obtained by equating the denominato
zero and solving forv. We see that these modes are diffusi
with relaxation rates

l5 iv5

2S~S11!S N~0!J

2 D 2

6tspin12S~S11!
@12N~0!J/2#2

2/tflip1Dq2

T2Tc

Tc
.

~71!

The ratel is smallest forq50. Theq dependence is con
trolled by the total-spin relaxation lengthje. In the semiclas-
sical approximationl goes to zero forT→Tc for all q si-
multaneously, but see the discussion below.

We now consider the case ofvalence-band holes. Insert-
ing the appropriate parameter values from Eqs.~55! and~56!
we obtain
2-8
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‘ x5
5

18
S~S11! N~0! mB

2

3H 2 ivF6tspin1
S~S11!

15

@125N~0!J/6#2

R̃q
G

1
5

3
S~S11! S N~0!J

6 D 2 T2Tc

Tc
J 21

3S ge
2S N~0!J

6 D 2

2gegi

N~0!J

6

2gegi

N~0!J

6
gi

2 D ~72!

with

R̃q5
1

5t
1

S~S11!

36tspin
1D

3qx
213qy

219qz
2

5

5
2

5t tot
1D

3qx
213qy

219qz
2

5
. ~73!

This susceptibility applies top-type DMS. Compared to the
conduction band the only differences except for simple
scaling are that not the parameter2N(0)J/6 itself but
25N(0)J/6 appears in theq-dependent term and that th
diffusion is anisotropic.

To exhibit the frequency dependence, Fig. 1 sho
the dimensionless impurity-impurity susceptibili
x ii /@N(0)gi

2mB
2# for q50. The other components of the m

trix x only differ by constant factors. Atv50 we obtain the
Curie law x ii}1/t, wheret[(T2Tc)/Tc , andx ii is purely
real. As a function of frequency, Rex ii decreases while Imx ii
initially increases and there is a crossover to a predomina
imaginary susceptibility at a characteristic frequencyv;l
}t given below.

FIG. 1. Real and imaginary parts of the dimensionless impur
impurity susceptibilityx ii /@N(0)gi

2mB
2# at zero momentum for two

values of the reduced temperaturet[(T2Tc)/Tc . We have used
S55/2, N(0)J/650.0061, andtspin/t510.
11520
-

s

ly

For both the conduction band and the valence band
susceptibilities depend onq only through the coefficient of
the frequencyv. The static susceptibility (v50) is thus
independent ofq in our approximation. This would mea
that the instability appears simultaneously at allq. The ten-
dency of the system to become ferromagnetic is not fou
within the semiclassical Boltzmann approach since
Boltzmann equation does not incorporate physics at la
momentaq;kF . We expect the most important effect fo
q;kF to be theq dependence of the Pauli susceptibility.37

Inserting this dependence by hand, we obtain an additio
term of the order of1q2/kF

2 in the denominator, which
makes the instability first appear atq50, leading to ferro-
magnetism. A rigorous evaluation of the susceptibility at
momenta requires a fully quantum-mechanical calculati
which we leave as work for the future.

One could think that a ferromagnetic interaction betwe
the carriers themselves introduces a new length scale
might therefore introduce aq2 term into the denominator o
x. In our approach such a ferromagnetic coupling betwe
the carriers, say holes, leads to an additional term in
effective field,

Bh5Bh
ext2

J

ghgimB
2

m i1
K

gh
2mB

2
mh ~74!

with K.0. The derivation can be carried through. The
sulting susceptibility for the valence band reads

x5
5

18
S~S11! N~0! mB

2

3H 2 ivF6tspin1
S~S11!

15

@125N~0!Jk/6#2

R̃q
G

1
5

3
S~S11! S N~0!Jk

6 D 2

~12k!
T2Tc

k

Tc
k J 21

3S ge
2S N~0!Jk

6 D 2

2gegi

N~0!Jk

6

2gegi

N~0!Jk

6
gi

2 D ~75!

with k5N(0)K/6, Jk5J/(12k), and4,40

Tc
k5

S~S11!

18

N~0! J2ni

12k
. ~76!

The Curie temperature is enhanced by theStoner factor(1
2k)21.49 The same result is obtained by introducing an a
propriate Landau parameterF0

a52k into Fermi-liquid
theory.4,18 We see that a carrier-carrier ferromagnetic e
change interaction does not change the functional form of
susceptibility. In particular, it does not introduce an Ornste
Zernicke-typeq2 term.

Let us estimate the parameterN(0)J/6: For a parabolic
band N(0)5mhh/(2p2) (3p2n)1/3, where n is the carrier
density. For Ga12xMnxAs with x50.05 andp50.3 holes per

-

2-9
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C. TIMM, F. VON OPPEN, AND F. HO¨ FLING PHYSICAL REVIEW B 69, 115202 ~2004!
manganese atom we getN(0)'7.2631024 meV21 nm23.
On the other hand,19,50 J'(5065) meV nm3 so that
N(0)J/6'0.0061. The parameter is thussmall. However, we
emphasize that the derivation is valid for generalN(0)J. The
small value explains why the hole contribution to the ma
netization is small compared to the manganese one.19,51Also,
for antiferromagnetic couplingJ is positive so that the hole
and impurity-spin magnetizations are opposite in sign,
agreement with experiments.19,50–52

The above estimate ofN(0) relies on the spherical ap
proximation and on the omission of the light-hole ban
which are not well justified at the hole concentration us
here. A realistic Slater-Koster tight-binding description of t
unperturbed valence band53 gives a density of states per sp
direction of 1.1831023 eV21 Å23. The dimensionless pa
rameterN(0)J/6'0.0099 is thus somewhat increased by
suming a realistic band structure.

Equation~73! shows that the typical length scale ofx is
jh5A5Dt tot/2, which corresponds toje in the conduction-
band case. The time appearing injh should thus be the re
laxation time of the total magnetization.

The magnetic excitations are again diffusive modes. T
relaxation rates of diffusive spin-wave modes with polariz
tion alongz are

l5 iv5

5

3
S~S11!S N~0!J

6 D 2

6tspin1
S~S11!

15

@125N~0!J/6#2

R̃q

T2Tc

Tc
.

~77!

To illustrate the momentum dependence, Fig. 2 shows
ratel as a function ofqxjh andqzjh . The relaxation of the
collective modes is of course much slower than the mic
scopic time scaletspin of spin scattering, with which it is here
compared. The dispersion inl is most pronounced for stron
spin scattering and vanishes fortspin/t→`. The anisotropy
is also apparent from Fig. 2:l rises faster in the longitudina
~z! direction. ForT→Tc from above, all ratesl scale to-
wards zero asT2Tc in our semiclassical approach.

We propose to measure the magnetic susceptibility in
paramagnetic phase at smallq and v for various DMS. In
particular, such an experiment should look for the anisotro
spin diffusion inp-type DMS. Studying samples with simila
concentrations of magnetic impurities but different conc
trations ofnonmagneticscatterers introduced by codoping54

would allow to change the scattering rate 1/t while holding
1/tspin and the mean-fieldTc nearly fixed.

III. ANOMALOUS HALL-VOLTAGE NOISE

In this section we apply the semiclassical theory to
derivation of the voltage noise in the transverse direction
the paramagnetic phase. The average anomalous Hall vo
vanishes forT.Tc due to the vanishing average magnetiz
tion. However,fluctuationsin the magnetization are prese
and are in fact critically enhanced asTc is approached. This
leads to fluctuations in the anomalous Hall voltage, wh
11520
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we derive in the following. Following Ref. 26, we conside
the Berry-phase contribution to the anomalous Hall effect
a p-type DMS.

The fluctuations in the Hall voltage are governed by t
correlation function of the effective magnetic field acting
the hole spins. This correlation function is closely related
the impurity-impurity spin susceptibilityx ii evaluated above
Typical Hall-bar samples are much larger than the sp
relaxation lengthjh . Hence, we can restrict ourselves to t
homogeneous componentq50. Fluctuations with nonzeroq
cancel out in the macroscopic voltage measurement. On
other hand, the frequency dependence of thex ii is important
sincev can become larger thanT2Tc close to the transition.

We describe ap-type DMS in the metallic regime by the
Hamiltonian

H5Hkin1Jnis•S2eE•r , ~78!

wheres is the hole-spin operator,S is theaveraged(q50)
impurity spin, andE is a homogeneous, static external ele
tric field. The external magnetic field vanishes. The kine
Hamiltonian is given in Eq.~29!.

The anomalous Hall conductivity has been derived
Jungwirth et al.26 The derivation is similar to the one in
Appendix C. The exchange and electric-field terms
treated as small perturbations. The equation of motion or ,
Eq. ~C1!, can be rewritten as26

ṙ5“pEpj2eE3V12 Im ^“puu] tu& ~79!

with V5Im ^“puu3u“pu& and the heavy-hole energy

FIG. 2. Relaxation ratel of diffusive collective spin-wave
modes with polarization alongz, in natural units of the spin-
scattering rate 1/tspin, as a function ofqxjh and qzjh , wherejh

5A5Dt tot/2 is the typical length scale of the susceptibility.l is the
typical rate in the magnetic susceptibility ofp-type DMS. The three
sheets are fortspin/t51,2,10~from bottom to top!. We have used
S55/2, N(0)J/650.0061, andt5(T2Tc)/Tc50.1 ~notel}t).
2-10
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Epj5
p2

2m
~g122g2!1

Jni

3
j p̂•S2eE•r , ~80!

up to first order inE andS.
The charge response is derived from the Boltzmann eq

tion (] t1 ṙ•“ r1ṗ•“p)npj5S pj
dis. We restrict ourselves to

nonmagnetic disorder scattering, assuming the disorder s
tering rate 1/t to be large compared to the spin-scatteri
rate 1/tspin, since the latter would only complicate th
notation without introducing new physics. For th
anomalous Hall effect we are concerned with thecharge
density r5e*d3p/(2p)3( jnpj and current density j
5e*d3p/(2p)3( jvpjnpj .

The leading contribution to the Hall current is found
first order inS,

jAH5
e2Jni

4p2kF

E3SS 1

g122g2
2

2

3g2
Dm, ~81!

wherekF is the Fermi wave number in the heavy-hole ban
A homogeneous charge distribution has been assumed to
tain this result. In the limit of large heavy-hole/light-ho
mass ratiomhh/mlh@1 the Kohn-Luttinger parameters sa
isfy g122g2!g2 and we obtain the simpler resultjAH

5s̃ E3S with26

s̃5
sAH

S
5

e2mhhJni

4p2kF

. ~82!

Note that the first-order contribution is purely transverse.
see that in the paramagnetic phase the average anom
Hall current vanishes. However, its fluctuations^ jAH• jAH& do
not. We write

^ jAH• jAH&5s̃2^~E3S!~E3S!&

5s̃2S E2^S•S&2(
ab

EaEb^SaSb& D . ~83!

In the paramagnetic phase this gives

^ jAH~ t !• jAH~0!&52s̃2E2 ^Sz~ t ! Sz~0!&. ~84!

The time-dependent correlation function can be expresse
the impurity-impurity part x ii of the susceptibility in the
p-type case with the help of the fluctuation-dissipati
theorem,37

E dt e2 ivt^Sz~r ,t ! Sz~0,0!&>
2T Im x ii

zz~r ,v!

gi
2mB

2ni
2v

~85!

for v!T.
We now evaluate the correlation function of the anom

lous Hall voltageUAH between the front and back sides
the relevant Hall-bar region shown in Fig. 3. Since Coulo
interaction suppresses charge fluctuations the current de
is assumed to be homogeneous; deviations are only expe
to occur at frequencies of the order of the plasma freque
We can then write the anomalous Hall voltage asUAH
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5Lyj AH
y /sD , wheresD5e2nht/mhh is the Drude conductiv-

ity. If the electric field is applied in thex direction, the
anomalous Hall current density in they direction is j AH

y 5

2s̃ESz. Due to homogeneity we can average the curr
over the sample volume. The voltage correlation function
then

^UAH~ t ! UAH~0!&5
s̃2

sD
2

Ly

LxLz
E2E d3r ^Sz~r ,t !Sz~0,0!&.

~86!

Taking the Fourier transform, expressing the electric field
the voltage applied to the relevant sample region,E
5U/Lx , and inserting Eq.~85! we obtain

^UAHUAH&v5E dt e2 ivt^UAH~ t ! UAH~0!&

5
s̃2

sD
2

Ly

Lx
3Lz

U2
2 Imx ii

zz~q50,v!

gi
2mB

2ni
2~12e2v/t!

. ~87!

Assuming 1/t@1/tspin and N(0)J!1, Eq. ~72! gives, to
leading order inv,

Im x ii
zz~0,v!>v

3N~0!gi
2mB

2 tspin

5 S~S11! S N~0!J

6 D 4S T2Tc

Tc
D 2 . ~88!

This leads to

^UAHUAH&v

U2
>

s̃2

sD
2

Ly

Lx
3Lz

T
6N~0! tspin

5 S~S11! ni
2 S N~0!J

6 D 4S T2Tc

Tc
D 2

~89!

so that the noise spectrum is independent ofv for small v.
Close to the Curie temperature the integrated noise^UAH

2 &
5^UAHUAH&vDv with the detector bandwidthDv52pD f
satisfies

^UAH
2 &

U2
>

s̃2

sD
2

Ly

Lx
3Lz

12Dv tspin

5niS N~0!J

6 D 2S T2Tc

Tc
D 2 . ~90!

FIG. 3. Geometry of the relevant section of the Hall bar.
2-11
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The ratio of conductivities is

s̃

sD
5

3

2

ni

nh

N~0!J

6

1

EFt
~91!

with the Fermi energyEF5kF
2/2mhh. The factorni /nh lies in

the range 1, . . . ,10, theubiquitous factorN(0)J/6 drops out
of the final result, and 1/EFt has to be reasonably small fo
our metallic picture to apply. The final dimensionless expr
sion for the integrated noise is

^UAH
2 &

U2
>

27

5 S ni

nh

1

EFt D 2 Ly

Lx
3Lz

1

ni
S Tc

T2Tc
D 2

Dv tspin.

~92!

This contribution to the noise is critically enhanced as
Curie temperature is approached. In a homogeneous sy
it should diverge atTc but real DMS are, by their very na
ture, disordered and the transition is broadened by ma
scopic inhomogeneity ofTc . Furthermore, the effec
strongly depends on the lengthLx of the relevant region of
the Hall bar in the electric-field direction, being large f
small Lx . It is more weakly enhanced by a small samp
thicknessLz and by alarge sample widthLy across which
the voltage is measured. The effect is also increased
strong compensation (nh!ni) and in samples showing ba
metallic behavior~small EFt).

The anomalous Hall-voltage noise is in competition w
the thermal ~Johnson-Nyquist! voltage noise,55 which
in integrated form is ^U th

2 &52TRDv/p52T(Ly /
sDLxLz)Dv/p. The two contributions can be experime
tally distinguished by their different temperature and volta
dependences. The anomalous Hall-voltage noise^UAH

2 & is
proportional to the applied voltage squared, whereas the t
mal voltage noise is independent of voltage.

Besides being an interesting physical effect, measurem
of the anomalous Hall-voltage noise would provide an in
pendent approach to the impurity-spin susceptibility and
important experimental parameters, such as the compe
tion fraction nh /ni with respect to the density of magnet
cally active impurities. The Hall-voltage noise would al
provide a new way to determine the Curie temperature. M
generally, such experiments would test the applicability
the semiclassical theory to DMS.26 It may also be interesting
to study the anomalous Hall-voltage noise in conventio
itinerant ferromagnets such as iron.

IV. CONCLUSIONS

A semiclassical approach based on Boltzmann equat
for electrons or holes and impurity spins has been use
derive hydrodynamic equations of motion and spin susce
bilities of DMS in the paramagnetic phase. This theory giv
the leading frequency and wave-vector dependence at s
v and q. Our results apply top-type andn-type DMS, to
III-V, II-VI, and group-IV host semiconductors, arbitrary im
purity spin quantum numberS, and ferromagnetic or antifer
romagnetic exchange couplingJ of carrier and impurity
spins. While the form of the equations of motion is easy
11520
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understand, the susceptibility has a nonstandardq depen-
dence, which only appears in the frequency-dependent te
Thus the semiclassical diffusive dynamics does not lead
anyq dependence of thestaticsusceptibility. Such terms ar
expected to be introduced by physics at the much larger
mentum scale of the Fermi momentumkF .

Spin-orbit coupling in the valence band leads to quali
tive differences in the susceptibility of holes compared
electrons. The first difference is a suppression of the me
field Curie temperature ofp-type DMS compared ton-type
DMS by a factor of 1/3, which can be traced back directly
the momentum dependence of the spin quantization axi
the presence of spin-orbit coupling. On the other hand,
Curie temperature inp-type DMS is enhanced by the typ
cally larger density of states and exchange coupling. T
second difference is the anisotropic spin diffusion in the
lence band, which is apparent in the equation of motion
the hole magnetization and also makes theq dependence of
the susceptibilities anisotropic. The anisotropic diffusion
due to the fact that holes moving in a direction perpendicu
to the magnetization or effective field have vanishing exp
tation value of the spin in the magnetization direction a
thus do not contribute to its transport.

The results have been applied to evaluate thenoisein the
anomalous Hall voltage in DMS, which is governed by t
impurity-spin susceptibility at small frequencies and mome
tum q→0. Unlike theaverageanomalous Hall voltage this
quantity does not vanish in the paramagnetic phase an
even critically enhanced close toTc . The noise gives an
independent experimental approach to the impurity-spin s
ceptibility. We have derived the detailed dependence of
signal on the impurity and hole concentrations and on
sample geometry.
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APPENDIX A: HYDRODYNAMIC EQUATIONS,
CONDUCTION BAND

In this appendix we collect a number of calculations p
taining to the conduction-band case. The derivation of
hydrodynamic equations in Sec. II A requires the evaluat
of various integrals over the collision termsS ps

dis , S psm
spin , and

S ps
flip . We do not show all evaluations but only present a f

to clarify the method and approximations used here.
The first integral we need is

E d3p

~2p!3 (
sm

mS psm
spin , ~A1!

which appears in the equation of motion~16! of the
impurity-spin magnetization. We divide the collision integr
into three terms,
2-12
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S psm
spin 5S psm

spin,01S psm
spin,111S psm

spin,21 , ~A2!

corresponding tom85m ~no spin flip!, m85m11, andm8
5m21, respectively. The first contribution is

E d3p

~2p!3 (
sm

mS psm
spin,05

(
m

m3f m

4N~0!tspin
E d3p d3p8

~2p!6

3(
sm

d~ep2ep8!~np8s2nps!50,

~A3!

as can be seen by renamingp↔p8 in the term withnps . The
other two contributions can be treated together as

E d3p

~2p!3 (
sm

mS psm
spin,61

5
1

4N~0!tspin
E d3p d3p8

~2p!6 (
m

d~ep2ep86gemBBe

7gimBBi!m @S~S11!2m~m61!#

3@np87 ~12np6! f m612np6 ~12np87! f m#.

~A4!

We write f m51/(2S11)1D f m , where(mD f m50, and di-
vide the integral into terms of zero and first order inD f m ,

E d3p

~2p!3 (
sm

mS psm
spin,615S (0)1S (1). ~A5!

In the zero-order term we expand thed function in Be, Bi ,
and write all terms strictly in first order. This allows to pe
form the integrals,

S (0)>
1

4tspin
(
m

7m2

2S11 F E d3p8

~2p!3
np872E d3p

~2p!3
np6

1N~0!E dj dj8d (1)~j2j8!@nF~j8!2nF~j!#

3~6gemBBe7gimBBi!G
52

S~S11!

6tspin

me

gemB
1

N~0! S~S11!

12tspin

3~gemBBe2gimBBi!. ~A6!

We have used partial integration in the last term. The te
S (1) is explicitly of first order inD f m so that all other factors
are to be evaluated in field-free equilibrium,

S (1)5
N~0!T

4tspin
(
m

m@S~S11!2m~m61!#~D f m612D f m!.

~A7!
11520
In the sum we replacem by m71 in the term containing
f m61. If we still sum overm from 2S to S, we expect
additional contributions at both ends, but these vanish du
the factor S(S11)2m(m61). Thus we obtain S (1)

5N(0)T/4tspin(m@2m63m27S(S11)# D f m . This ex-
pression obviously simplifies when the contributions fro
S spin,11 andS spin,21 are added. The contribution fromS spin,0

vanishes anyway. Consequently, the result for the full in
gral is

E d3p

~2p!3 (
sm

mS psm
spin

52
S~S11!

3tspin

me

gemB
1

N~0!T

2tspin

m i

gemBni

1
N~0!S~S11!

6tspin
~gemBBe2gimBBi!. ~A8!

Note that we have expressed this result in terms ofm i instead
of the occupation fractionsf m . This can be done in all ou
results so that a closed set of equations for the two mag
tizationsme andm i is obtained.

The integrals required for the equation of motion ofme
are quite similar. In the equation for the magnetization c
rent jm we need integrals such as

E d3p

~2p!3 (
s

svp S ps
dis

5
1

N~0!tE d3p d3p8

~2p!6 (
s

svp d~ep2ep8! ~np8s2nps!

52
1

tE d3p

~2p!3 (
s

svp nps5
1

t

jm

gemB
, ~A9!

where the term withnp8s vanishes since it is odd inp. Simi-
lar evaluations are required forS flip andS spin.

APPENDIX B: HYDRODYNAMIC EQUATIONS,
VALENCE BAND

Even though we restrict ourselves to the heavy-hole ba
the angular integrals are much more complicated than in
conduction-band case since the explicit expression~40! for
the hole magnetizationmh , the transition probabilities, and
the Zeeman energies now all depend on the direction in
mentum space. As noted above, the analytical express
for the transition probabilities are rather complicated. We u
MATHEMATICA to analytically perform the angular integra
of the form

E dV

4p
cosn u u p^ j uAu j 8&p8u

2 ~B1!

with n50,1,2 andA51,j z, j 1, j 2, resulting in expressions
such as
2-13
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E dV

4p
cos2uu p^ j u j 6u j 8&p8u

2

5
3

40H ~726 cosu81cos 2u8! cos2
u8

2
for j 8573/2

~716 cosu81cos 2u8! sin2
u8

2
for j 8563/2.

~B2!

Here,u andu8 are polar angles ofp andp8, respectively.
As an example, we here evaluate the integral

E d3p

~2p!3 (
jm

mS pjm
spin , ~B3!

which corresponds to the one considered in Appendix A. T
collision integral is again divided intoS spin,01S spin,11

1S spin,21. The contribution fromS spin,0vanishes in analogy
with Eq. ~A3!. The other terms are expanded inD f m up to
linear order,

E d3p

~2p!3 (
jm

mS pjm
spin,615S (0)1S (1). ~B4!

In S (0) the d function is expanded inBh , Bi and the term is
then divided intoSnoflip

(0) 1Sflip
(0) , where in the first~second!

term j 85 j ( j 852 j ). The first term is evaluated similarly t
the conduction-band case, taking the more complicated
gular integrals~B1! into account,

Snoflip
(0) 52

S~S11!

108tspin
F3

2

mh

ghmB
1

N~0!

4
ghmBBh

2
5

4
N~0! gimBBiG . ~B5!

Also, writing outSflip
(0) and renamingj↔2 j in the first term

one can see thatSflip
(0)5Snoflip

(0) . S (1) can also be evaluate
similarly to the conduction-band case,

S (1)5
N~0!T

36tspin

5

2 (
m

@2m63m27S~S11!# D f m ,

~B6!

which simplifies under summation over the three contrib
tions,

E d3p

~2p!3 (
jm

mS pjm
spin

52
S~S11!

18tspin

mh

ghmB
1

N~0! S~S11!

108tspin
ghmBBh

1
5N~0!T

36tspin

m i

gimBni
2

5N~0! S~S11!

108tspin
gimBBi . ~B7!

In the integrals pertaining to the hole magnetization a
magnetization current we obtain some terms in which
occupation fractionsf m cannot be reduced tomm . These
11520
e

n-

-

d
e

terms cancel in the final equations of motion so that aga
closed set of equations formh andm i is obtained.

APPENDIX C: ABSENCE OF BERRY-PHASE
CONTRIBUTIONS

In the present appendix we show that Berry-phase cor
tions do not contribute to the hydrodynamic equations
linear order. In the framework of semiclassical theory th
have been discussed in detail by Sundaram and Niu.27 If one
considers a wave packet made up of electrons of a sin
band, with narrow spread in real and momentum space,
with center-of-mass positionr and mean momentump, then
the semiclassical equations of motion for these quantities
in the absence of scattering,27

ṙ5“pẼps2 i ṗa ~^“puu¹p
au&2^¹p

auu“pu&!

2 i ṙ a~^“puu¹ r
au&2^¹ r

auu“pu&!

2 i ~^“puu] tu&2^] tuu“pu&!, ~C1!

ṗ52“ rẼps1 i ṗa~^“ ruu¹p
au&2^¹p

auu“ ru&!

1 i ṙ a~^“ ruu¹ r
au&2^¹ r

auu“ ru&!

1 i ~^“ ruu] tu&2^] tuu“ ru&!. ~C2!

Summation overa is implied.uu&5uups& is the periodic part
of the Bloch wave function andẼps is the wave-packet
energy with a Berry-phase correction,27

Ẽps5Eps2Im ^“ rupsu•~Eps2Hc!u“pups&, ~C3!

whereHc is the local Hamiltonian for the wave-packet cent
and momentum andEps is the corresponding eigenenergy.
the hole cases should be replaced byj. Note that the spatia
gradient“ r acts on thecenter-of-massvector, on which the
statesuu& depend parametrically.

For the conduction band we can immediately see t
Berry-phase effects are absent: In field-free equilibrium
spatial and temporal derivatives vanish. Thep gradients also
vanish since for the HamiltonianH (0)5p2/(2mcb) the peri-
odic part uu(0)& of the Bloch wave function is constant an
the spin partu61/2& is also independent ofp. This is not
changed by the Zeeman term since it commutes with
kinetic energy in the absence of spin-orbit coupling. Thus
terms in Eqs.~C1!–~C3! vanish.

For the valence band in the spherical approximation,
~29!, the spin part of the Bloch wave function is given by E
~30!. Thep gradient is then

“pu j &p52 i S j z
f̂

p sinu
e2 i j zfe2 i j yu1e2 i j zf j y

û

p
e2 i j yuD u j &.

~C4!

Furthermore, the Zeeman term does not commute with
kinetic energy so that we expect contributions from the p
turbation. We use a perturbation expansion in the effec
field to obtain the terms appearing in Eqs.~C1! and ~C2!.
The hole Hamiltonian in the spherical approximation read
2-14
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~C5!

The unperturbed eigenenergies are

epj
(0)5

p2

2m H ~g122g2! for j 563/2

~g112g2! for j 561/2
~C6!

and the eigenstates areuupj
(0)&, where only the spin part has

nontrivial p dependence. Assuming an effective field in thz
direction, the first-order perturbation is

epj
(1)5ghmB

1
3 ^ j uei j yuei j zf j z e2 i j zfe2 i j yuu j & Bh . ~C7!

Restricted to heavy holes,epj
(1)5ghmB ( j /3)cosu Bh . Degen-

erate perturbation theory yields the perturbations to
states,

uup,63/2
(1) &5ghmB

1

3
Bh S ^up,1/2

(0) u j z uup,63/2
(0) &

ep,63/2
(0) 2ep,1/2

(0)
uup,1/2

(0) &

1
^up,21/2

(0) u j z uup,63/2
(0) &

ep,63/2
(0) 2ep,21/2

(0)
uup,21/2

(0) & D . ~C8!

Introducing the difference between heavy- and light-hole
ergies,gp522g2p2/m, we obtain

uup,63/2
(1) &52

ghmB sinu Bh

2A3 gp

uup,61/2
(0) &. ~C9!

Simplifying the notation by writing only the spin part of th
wave function, this gives

uup,63/2
(1) &52

ghmB sinu Bh

2A3 gp

e2 i j zfe2 i j yu U61

2L . ~C10!

The Berry-phase correction for the energy of heavy ho
given in Eq.~C3!, is, to first order,

Depj52Im ^“ rupj
(1)u•~epj

(0)2Hc
(0)!u“pupj

(0)&

5Im
ghmB sinu “ rBh

2A3 gp

•^up, j /3
(0) u~epj

(0)2H0!u“pupj
(0)&.

~C11!

Using thatuup, j /3
(0) & is an eigenstate ofH0 we obtain

Depj5
ghmB sinu “ rBh

2A3

•Im F i
f̂

p sinu

A3

2
sinu2 i

û

p S 6 i
A3

2 D G
5

ghmB

4p
~ ẑ3p̂!•“ rBh . ~C12!
11520
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This correction evidently diverges for smallp. The origin is
the breakdown of perturbation theory as the energy diff
encegp between heavy and light holes goes to zero. T
divergence is not crucial here since states deep inside
Fermi sea do not contribute to the response.

The energy entering the semiclassical equations of mo
is, to first order, Ẽpj5epj

(0)1epj
(1)1Depj . Thus Eq. ~C2!

reads, to first order,

ṗ>2“ rẼps

>2ghmB

j

3
cosu“ rBh2

ghmB

4p
“ r@~ ẑ3p̂!•“ rBh#.

~C13!

Thus we find an additional force which is proportional to
second derivative of the field but independent of the s
direction, i.e., anorbital contribution. Then Eq.~C1! be-
comes, dropping subscriptsp, j,

ṙ>“pẼ2 i ṗa ~^“pu
(0)u¹p

au(0)&2^¹p
au(0)u“pu

(0)&!

2 i¹p
ae (0)~^“pu

(0)u¹ r
au&2^¹ r

auu“pu
(0)&!

2 i ~^“pu
(0)u] tu&2^] tuu“pu

(0)&!. ~C14!

The term multiplyingṗa can be evaluated explicitly and i
found to vanish for the heavy holes. Thus

ṙ>
p

mhh
2ghmB

j

3
sinuBh

û

p

2Im“p^“ ruu•~epj
(0)2Hc

(0)!u“pu
(0)&

2 i
pa

mhh
~^“pu

(0)u¹ r
au&2^¹ r

auu“pu
(0)&!

2 i ~^“pu
(0)u] tu&2^] tuu“pu

(0)&!, ~C15!

cf. Eq. ~33!. To first order, the Boltzmann equation reads

] tnpj1
p

mhh
•“ rnpj1ṗ•“pnp

(0)5S pj
dis1(

m
S pjm

spin

~C16!

since“ rnpj and ṗ are both linear in the perturbation. Thu
the correction terms in Eq.~C15! drop out here and the only
new term on the left-hand side comes from the orbital fo
in Eq. ~C13!. The equation of motion ofmh is obtained by
multiplying the Boltzmann equation with2ghmB( j /3)cosu
and summing overp, j. The orbital-force term drops ou
since it contains( j j 50.

The right-hand side of Eq.~C16! also has to be multiplied
with 2ghmB( j /3)cosu and summed overp, j. The Berry-
phase correctionDepj to the energy appears in thed func-
tions implementing energy conservation. If we evaluate
resulting integrals by expanding thisd function as in Appen-
dix B, all terms multiplied withDepj should be evaluated to
order zero. Then the onlyj, j 8 dependence comes from th
explicit factor j /3 and from the transition probabilities. How
ever, explicit evaluation in the 434 spin space shows
2-15
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that ( j j 8( j /3)u p^ j u j 8&p8u
250, ( j j 8( j /3)u p^ j u j zu j 8&p8u

250,
( j j 8( j /3)(u p^ j u j 1u j 8&p8u

21u p^ j u j 2u j 8&p8u
2)50 so that all

these terms vanish. Thus there is no contribution to the eq
tion of motion for the hole magnetization.

The equation of motion for the magnetizationcurrent jm

contains an additional factor ofṙ in the integrand, which
should be calculated to linear order, see Eq.~C15!. For the
left-hand side we obtain

2
] tjm

ghmB
1E d3p

~2p!3 (
j

j

3

3cosu ṙ S p

mhh
•“ rnpj2ghmB

j

3
cosu“ rBh•“pnp

(0)

2
ghmB

4p
“ r@ p̂•~“ r3Bh!#•“pnp

(0)D . ~C17!

Since all terms multiplied byṙ are already of first order we
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