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Fermi-Liquid-Based Theory for the In-Plane Magnetic Anisotropy
in Untwinned High-Tc Superconductors
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Using a generalized RPA-type theory we calculate the in-plane anisotropy of the magnetic excitations
in hole-doped high-Tc superconductors. Extending our earlier Fermi-liquid-based studies on the resonance
peak by inclusion of orthorhombicity we still find two-dimensional spin excitations, however, being
strongly anisotropic. This reflects the underlying anisotropy of the hopping matrix elements and of the
resultant superconducting gap function. We compare our calculations with new experimental data on fully
untwinned YBa2Cu3O6:85 and find good agreement. Our results are in contrast to earlier interpretations on
the in-plane anisotropy in terms of stripes [H. Mook et al., Nature (London) 404, 729 (2000)], but reveal a
conventional solution to this important problem.
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Since the discovery of high-Tc superconductors, its
mechanism is still under debate. Perhaps one of the most
important question concerns the role played by spin ex-
citations in these materials. For example, one scenario of
superconductivity in layered cuprates suggests that
Cooper-pairing is due to an exchange of antiferromagnetic
spin fluctuations [1]. In this respect, an understanding of
the so-called resonance peak observed by inelastic neutron
scattering (INS) experiments [2,3] at the antiferromagnetic
(AFM) wave vector QAFM and energy ! � !res plays an
important role in the phenomenology of high-Tc super-
conductors. Among various explanations over last years
there are two most probable scenarios for the formation of
the resonance peak. The first one suggests that the two-
dimensional CuO2 layers are intrinsically unstable towards
a stripe formation with one-dimensional spin and charge
order [4]. In this picture, the resonance excitations can be
interpreted in terms of excitation spectra in a bond-
centered stripe state with long-range magnetic order
[5,6]. In the other approach that is a conventional Fermi-
liquid one, the resonance peak arises as a particle-hole
excitation (or spin density wave collective mode) in a
dx2�y2-wave superconductor and is a result of the strong
feedback of the superconductivity on the dynamical spin
susceptibility below Tc [7–12].

In order to distinguish between both pictures, a detailed
analysis of untwinned cuprates is necessary. Recently, an
INS study in the fully untwinned high-temperature super-
conductor YBa2Cu3O6:85 reveals two-dimensional charac-
ter of the magnetic fluctuations [13] in contrast to the
previous conclusions from measurements in the partially
untwinned samples [14]. In this Letter, motivated by recent
experiments, we analyze the in-plane anisotropy of the
magnetic excitations in hole-doped high-Tc superconduc-
tors within a conventional Fermi liquid and generalized
RPA-like approach. Extending our earlier studies on the
resonance peak by the inclusion of a small orthorhombicity
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we still find two-dimensional spin excitations, however
being strongly anisotropic, reflecting the underlying an-
isotropy of the hopping matrix elements and of the result-
ant superconducting gap function.

In order to describe the phenomenology of the super-
conducting cuprates we employ an effective one-band
Hubbard Hamiltonian for the CuO2 plane
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where cyi� is a creation operator of an electron with spin �
on site i, U denotes the on-site Coulomb repulsion[15], and
tij is a hopping matrix element in the CuO2 plane. Here, we
use the six parameter fit of the energy dispersion suggested
in Ref. [17] with the following chemical potential and
hopping amplitudes (�; t1; . . . ; t5) (the units are in eV):
(0.1197, �0:5881, 0.1461, 0.0095, �0:1298, 0.0069). The
lattice constants are set to unity. To describe the ortho-
rhombic distortions we introduce a parameter �0 which
leads to an anisotropy in the hopping integrals along and
perpendicular to the chains in YBa2Cu3O6:85 (YBCO).
This one-band approach seems to be justified at least in
the optimally-doped cuprates because upon hole doping
into the CuO2 plane antiferromagnetism disappears due to
Zhang-Rice singlet formation and quenching of Cu spins.
Further doping then increases the carrier mobility and a
system of strongly correlated quasiparticles occurs [18].

Normal state.—Before analyzing the superconducting
state it is instructive to understand how the normal state
properties and the electronic structure of a CuO2 plane are
affected by the presence of the orthorhombic distortions. In
Fig. 1 we show the calculated density of states (DOS) and
Fermi surface topology as a function of the orthorhombic
distortions. Without orthorhombicity the DOS reveals a
pronounced van Hove singularity (VHS) being approxi-
mately 19 meV below the Fermi level in good agreement
with early angle resolved photoemission spectroscopy
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(ARPES) experiments on YBCO [19]. Because of the
vicinity of the VHS to the Fermi level, the effect of the
orthorhombic distortions is quite strong. First, at �0 � 0:03
the singularity is suppressed and shifted slightly above the
Fermi level. With further increase of �0 it splits into two
peaks. Similar changes occur for the Fermi surface. As a
function of the orthorhombicity its topology changes and
the Fermi surface closes around the 
��; 0� and 
�; 0�
points which also leaves an impression that the system
turns towards a quasi-one-dimensional one. One of the
immediate consequence of these changes is that the VHS
will be present below the Fermi level only around 
0;���
points. This is also consistent with more recent ARPES
data on untwinned YBCO [20] where a suppression of the
ARPES intensity was observed around 
��; 0� due to
absence of the VHS. It is important to note that this
Fermi surface deformation breaks the point-group symme-
try and looks similar to what is expected for the case of a
dx2�y2-wave Pomeranchuk instability due to strong
electron-electron interactions [21].

What happens to the spin response if the electronic
properties are changed due to orthorhombicity? We calcu-
late the real part of the bare spin susceptibility in the
normal state,
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where f
"k� is the Fermi function. In Fig. 2 we show the
calculated Re�0
q; ! � 0� as a function of the transferred
momentum q. Without orthorhombicity its peak structure
reflects two 2kF instabilities of the Fermi surface (see inset
of Fig. 1). The first peak corresponds to the quasi-one-
dimensional wave vector connecting the Fermi surface
(FS) around 
0;��� points and the other one refers to
the wave vector connecting the FS along the diagonal of
the first Brillouin zone. Note that due to strong nesting of
the Fermi surface the second structure has the form of a
FIG. 1 (color online). Calculated density of states with and
without orthorhombicity. For a comparison the corresponding
changes of the Fermi surface topology are shown in the inset.
The arrows refer to the two 2kF instabilities as described in the
text.
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plateau. If the orthorhombicity is present the first peak is
suppressed and shifted towards higher q values. This is due
to the fact that the Fermi surface closes around 
��; 0�
point removing this instability there and moving them to
higher q values around 
0;��� points. On the other hand,
the diagonal second 2kF instability remains mainly un-
changed and even became more pronounced, since the
plateau around QAFM � 
�;�� is suppressed due to the
changes of the Fermi surface topology at the parts con-
nected by this wave vector. We would like to stress that
despite the changes of the Fermi surface topology indicat-
ing the tendency towards quasi-one-dimensionality, the
static spin susceptibility remains mainly two-dimensional.

Superconducting state.—In our one-band model, we
further assume that the same quasiparticles are participat-
ing in the formation of antiferromagnetic fluctuations and
in Cooper-pairing due to these fluctuations. This leads to
the generalized Eliashberg equations which have been
derived and discussed in Refs. [22,23]. These equations
allow us to calculate all properties of the system self-
consistently such as the elementary excitations, the super-
conducting order parameter, and the dynamical spin sus-
ceptibility, for example.

In the pure tetragonal case the resulting superconducting
order parameter has dx2�y2-wave symmetry. However, in
presence of orthorhombicity the superconducting order
parameter changes, since s-wave and d-wave symmetries
belong now to the same irreducible representation of the
point-group symmetry. The total superconducting gap has
the form (weak-coupling limit)

�
k� � g
�0��s
k� � f
�0��d
k�; (3)

where, for simplicity, we employ g
�0� � �0, f
�0� � 1�
�0, and �d � �0
coskx � cosky�=2, �s � �0
coskx �
cosky�. For the set of parameters described above, we use
�0 � 26 meV. Note that the additional s-wave component
leads to an in-plane anisotropy of the gap function and thus
to different maximum gap values between 
��; 0� and

0;��� as observed in Ref. [24].
FIG. 2 (color online). Calculated Re�0
q; 0� along the path

0; 0� ! 
�; 0� ! 
�;�� ! 
0; 0� for various values of the or-
thorhombic distortions. The arrows indicate the peaks in
Re�0
q; 0� arising from 2kF instabilities as shown in Fig. 1.
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In the superconducting state, within generalized RPA,
the imaginary part of the dynamical spin susceptibility is
given by

Im�
q; !� �
Im�0
q; !�

�1�URe�0
q; !��2 �U2Im�2
0
q; !�

;

(4)

where �0 is the BCS Lindhard response function [17].
Without orthorhombicity, the dx2�y2 superconducting gap
opens rapidly due to a feedback effect on the elementary
excitations [25] yielding a jump at 2�0 in Im�0 and the
resonance condition [7–9]

1�URe�0
q � QAFM; ! � !res� � 0 (5)

is fulfilled. Since Im�0 is zero below 2�0, the resonance
condition (5) reveals a strong deltalike peak in Im�0 which
occurs only below Tc. Note that its position is mainly
determined by the maximum of the d-wave superconduct-
ing gap �0 and also by the proximity to an antiferromag-
netic instability described by the characteristic energy
scale !sf [roughly the peak in Im�
QAFM; !� in the nor-
mal state]. Then, the resonance peak scales with the maxi-
mum of the d-wave superconducting gap in optimally-
doped and overdoped compounds. On the other hand, in
the underdoped cuprates it rather scales with !sf [7–9] due
to stronger antiferromagnetic fluctuations. Thus, one finds
for the whole doping range !res=kBTc � const [7–9] in
good agreement with experiments [26].

In Fig. 3 we analyze the influence of the orthorhombic
distortions on the resonance peak. One clearly sees that the
orthorhombicity slightly shifts the resonance peak towards
higher energies and reduces its intensity for increasing �0.
As already mentioned, the position of the resonance peak is
determined by the strength of the antiferromagnetic fluc-
FIG. 3 (color online). Calculated influence of the orthorhom-
bic distortions (s-wave component of the superconducting gap
and changes in the electronic structure) on the resonance peak.
Inset: calculated dispersion of the resonance peak towards lower
energies for fixed qy � � without including the effect of the
orthorhombicity. Here, in order to fit the position of the reso-
nance at QAFM around 41 meV we use U � 0:155 eV. Note that
we further employ the damping � � 2:4 meV.
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tuations present in the normal state and by the d-wave
superconducting gap. Both are decreasing due to ortho-
rhombicity. Namely, as one sees from Fig. 2, the suscepti-
bility is decreasing around QAFM due to a change of the
Fermi surface topology. Thus, in the superconducting state
the resonance is shifted towards higher energies. On the
other hand, the maximum of the d-wave gap is decreasing
[as we see from Eq. (3)] which would shift the resonance
energy towards lower values. Most importantly, we see that
the deformation of the electronic structure and FS topology
due to orthorhombicity dominate the effect from consider-
ing solely the increase of the s-wave component of the
superconducting gap. Thus, we conclude that the observed
slight shift of the resonance peak position in untwinned
YBCO [13] occurs due to the strong changes in the elec-
tronic structure induced by the orthorhombic distortion
rather than due to additional s-wave component of the
superconducting gap.

Comparison with experiment.—Let us now turn to the
broader analysis of the dispersion of the resonance excita-
tions below !res. In the tetragonal case, going away from
the points of the Fermi surface connected by the antiferro-
magnetic wave vector QAFM, we are moving towards the
diagonal of the BZ where the dx2�y2-wave superconducting
gap is zero. As a result the resonance energy, !res shifts
towards smaller values. This results in the parabolic shape
of resonance energy dispersion as shown in the inset of
Fig. 3 calculated for fixed qy � �. This parabolic behavior
obtained in our calculations agrees well with the experi-
mental findings of Bourges et al. [26].

We also would like to stress that the simple parabolic
shape of the downward dispersion of the resonance can be
further influenced by a strong momentum dependence of
the effective interaction U. In principle, if U is decreasing
away from 
�;��, it would tend to shift the resonance to
the higher energies. Consequently, the downward disper-
sion will be more a complicated function of Uq and �q.
Based on the simple parabolic shape of the resonance peak
dispersion which is observed experimentally, we can con-
clude that at least in optimally and overdoped cuprates the
momentum dependence of U is relatively weak. This is
probably not the case for the underdoped compounds.

What is happening below the resonance threshold (!<
!res) in fully untwinned YBCO for constant energy scans
as a function of the momenta qx and qy? In Fig. 4 we show
the calculated projected momentum dependence of
Im�
q; ! � 35 meV� without (a) and with (b) orthorhom-
bicity. In accordance with ab initio calculations, we have
chosen �0 � 0:03 [27]. In the tetragonal case one sees that
the spin excitations form a ring around 
�;�� with four
pronounced peaks at 
�� q0; �� and 
�;�� q0�. The
origin of the peaks is clear: away from QAFM we are
connecting points at the Fermi surface which lie closer to
the diagonal of the BZ. The superconducting gap tends to
zero there and thus the position and the intensity of the
resonance peak are decreasing. However, for the diagonal
6-3



FIG. 4 (color). Calculated normalized two-dimensional inten-
sity plot for a constant energy of !h! � 35 meV, (a) without,
(b) with inclusion of orthorhombicity (�0 � 0:03).
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wave vectors 
�� q0; �� q0� it happens faster than for
the vector 
�� q0; �� or 
�;�� q0�. Therefore, effec-
tively the latter peaks are ‘‘closer’’ to the resonance con-
dition at QAFM � 
�;��; their intensities are higher than
those for the other wave vectors. This explains the ob-
served symmetry of the dominant spin excitations for !<
!res shown in Fig. 4(a). For the orthorhombic case the
situation is changing. The ring of the excitations becomes
distorted and, most importantly, there are only two well
pronounced peaks. The latter is a result of strongly
changed electronic properties, in particular, the topology
of the FS. Our main result is that, despite there are only two
pronounced peaks, the resonant spin excitations remains
basically two-dimensional. This is in good agreement with
recent experiments [13]. Furthermore, this result based on
a standard Fermi-liquid approach is in contrast to the stripe
scenario of the resonance peak [5]. Another interesting
observation is that the dispersion will have a different slope
along qx and qy direction, respectively. This can be further
tested experimentally.

In summary, we have analyzed the in-plane magnetic
anisotropy in high-Tc superconductors with orthorhombic
distortions employing a generalized RPA-type theory and
compared our results with INS data on fully untwinned
YBCO. We find that due to changes in the electronic
structure and the FS topology the resonance peak is slightly
shifted towards higher energies and that for !<!res the
dominant spin excitations form a 2D ringlike structure
around QAFM with four pronounced peaks (tetragonal
case). The orthorhombic distortions suppress two of these
peaks; however, the overall structure of the excitations in
Im� remains two-dimensional which agrees well with
recent experimental data by V. Hinkov et al. [13]. Our
results provide an alternative picture based on a conven-
tional Fermi-liquid theory in contrast to the stripe scenario.
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