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Dopant-Modulated Pair Interaction in Cuprate Superconductors
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A comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov–
de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the
pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic
inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions
of impurity atoms and various aspects of the local density of states such as the gap magnitude and the
height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a
length scale of order one lattice constant.
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The discovery of nanoscale inhomogeneity in the cup-
rates has recently generated intense interest. In particular,
the spectral gap in the local density of states (LDOS), as
observed by scanning tunneling microscopy (STM) [1–4]
in Bi2Sr2CaCu2O8�x (BSCCO), varies by a factor of 2 over
distances of 20–30 Å. This unusual behavior may help
reveal how the cuprates evolve from the Mott insulating
state at half filling to the superconducting state at finite
doping. The hole concentration in the CuO2 planes of
BSCCO is proportional to the number of out-of plane
dopant atoms, which also introduce disorder. This has led
to the proposition that poorly screened electrostatic poten-
tials of the dopant atoms generate a variation in the local
doping concentration and thus give rise to the gap modu-
lations observed in STM [5–7]. Poor screening has also
been argued to result in enhanced forward scattering [8],
which appears to be compatible with photoemission [9,10]
and transport measurements [11] in the superconducting
state of BSCCO. An alternate perspective is explored in
several works which associate inhomogeneous electronic
structure with a competing order parameter, such as anti-
ferromagnetism [12–14]. Only very recently has it been
possible to measure correlations between the inhomogene-
ities observed in STM and positions of dopant atoms [15],
thus providing a clue to the relation between disorder and
doping in this compound, as well as a means to examine the
above proposals.

In this Letter, we assume that the electronic inhomoge-
neity observed by STM, at least in the optimally to over-
doped samples, can be understood within the framework of
BCS theory in the presence of disorder. We show that the
conventional modeling of disorder as a set of random
potential scatterers fails to reproduce the most prominent
features of the STM experiments: (i) the subgap spectra are
spatially extremely homogeneous [3], (ii) the coherence
peaks in regions with larger gap tend to be much broader
and reduced in height, (iii) the ‘‘coherence peak’’ positions
are symmetric about zero bias, (iv) the dopants are found to
correlate positively with large gap regions [15], and
(v) charge modulations are considered to be smaller than
7% [15]. We propose that the dopant atoms modulate the
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local pair potential; i.e., the local attractive coupling g
between electrons is spatially dependent. In conventional
superconductors, such effects are difficult to observe be-
cause atomic-scale modulations in g produce LDOS mod-
ulations only on the scale of the coherence length �0. In the
cuprates, however, the situation is different due to the short
coherence length. We demonstrate that a model in which
dopant atoms modulate the pair interaction gives excellent
agreement with respect to the above mentioned key char-
acteristics of the STM data. A modulated pair interaction
could arise from local lattice distortions surrounding the
dopant atoms, which modify the electron-phonon interac-
tion in their vicinity. Another possibility is that the lattice
distortions modulate the superexchange interaction locally,
which is supported by the fact that the superexchange in
these materials varies strongly under pressure [16]. Even in
conventional superconductors, modulated pair interactions
have been suggested [17].

Model.—We consider the following mean-field
Hamiltonian for a singlet d-wave superconductor
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where �k � �2t�coskx � cosky� � 4t0 coskx cosky ��
and

P
hiji denotes summation over neighboring lattice sites

i and j. In the remainder of the Letter we will set t0=t �
�0:3 and adjust � to model the Fermi surface of BSCCO
near optimal doping (for the homogeneous system, �=t �
�1:0). In order to account for disorder in the out-of-plane
dopants, which are separated from the CuO2 plane by a
distance z, we include an impurity potential modeled by
Vi � V0fi, where fi �

P
s exp��ris=��=ris, and ris is the

distance from a dopant atom s to the lattice site i in the
plane. Distances are measured in units of

���
2
p
a, where a is

the Cu-Cu distance. The nearest-neighbor d-wave order
parameter �ij � gijhĉi"ĉj# � ĉj#ĉi"i is determined self-
consistently using (1) with gij � g� �g�fi � fj�=2 with
modulation �g; this form is assumed purely for conve-
nience in order to introduce a range �. In traditional BCS
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theory, gij � g is spatially uniform, and �ij is only modu-
lated in the vicinity of potential scatterers [18,19]. We will
argue that this approach is unable to reproduce observa-
tions (i)–(v) outlined above, and that gij is strongly modi-
fied near the dopant atoms.

Smooth potential.—If the potential caused by the out-of-
plane dopant atoms were very smooth on the scale of �0,
the local properties of the inhomogeneous system would be
determined by the local value of the disorder potential and
the local value of the pairing interaction. Therefore, one
would expect an LDOS which is locally similar to a clean
superconductor with renormalized chemical potential ��
Vi in the case of a smooth potential Vi, or with renormal-
ized bond order parameter �ij � ��ij for a smooth off-
diagonal (OD) potential. In the case of a conventional
diagonal potential, a gap size modulation will be induced
because the gap is a relatively sensitive function of the
local chemical potential; see Fig. 1(a). On the other hand,
modulations of this type will inevitably have coherence
peak weight-position correlations opposite to experiment,
since large gap values in the homogeneous system imply
(within BCS theory) that spectral weight removed from
low energies is transferred into the coherence peaks
[Fig. 1(b)]. In a tight binding model, this effect can be fur-
ther enhanced by the presence of a nearby van Hove sin-

gularity �!vH�
����������������������������������������
�4t0 ���2��4�0�

2
p

� especially at �=t �
�1:2 where it coincides with the gap edge. Here �0 is the
bond order parameter in the homogeneous system. A simi-
lar although less pronounced positive correlation between
coherence peak weight and position arises also for the
smooth OD case. Note that throughout this work we ne-
glect inelastic scattering that would broaden the tunneling
conductance peaks at large bias but would not change their
weight, thus leaving our conclusions unaffected.

Single-impurity scattering.—Since a smooth disorder
potential cannot reproduce the experimentally observed
relation between the weight of the coherence peak and
the gap magnitude, we now address the opposite limit,
i.e., a very spiky potential caused by a dopant potential
with short range on the scale of �0. Some insight into this
situation can be obtained by analyzing single-impurity
scattering processes, which should be dominant for suffi-
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FIG. 1. (a) Bulk order parameter �0 for t0=t � �0:3 and a
constant nearest-neighbor attraction of g=t � 1:16 as a function
of chemical potential �. (b) LDOS for different � using the
order parameter displayed in (a).
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ciently short ranged and weak scattering potentials, where
interference effects are negligible. For simplicity, we as-
sume a constant order parameter in the following T-matrix
analysis and postpone the fully self-consistent treatment to
the many-impurity case.

Aweak to intermediate strength impurity V & t does not
lead to well-defined resonant states inside the gap, as
shown in Fig. 2(a). The positions of the coherence peaks
are hardly shifted at all, and while the spectral weight of
the coherence peaks is modified, this occurs in a distinctly
particle-hole asymmetric fashion. This is in striking con-
trast to the STM spectra, where inhomogeneous but
particle-hole symmetric coherence peak modulations are
observed. In addition, there is no distinct feature in experi-
ment corresponding to the van Hove features present, as,
e.g., in Figs. 1(b) and 2(a).

These shortcomings of the conventional potential scat-
tering model can be overcome by considering OD scatter-
ing instead. For the sake of clarity, in this paragraph we
neglect the diagonal component of the potential.
Figure 2(b) and 2(c) show the LDOS at the impurity site
for a ‘‘pointlike’’ OD scatterer with d-wave symmetry on
the four bonds emanating from site i � 0, ��0;�x̂ �

���0;�ŷ � ��, and a more extended OD scatterer with
��ij � ����fi � fj�=2, where fi is defined below
Eq. (1), and the negative sign applies to bonds oriented
along the ŷ direction. Scattering off an order parameter
enhancement [see Fig. 2(b)] strongly suppresses the coher-
ence peaks for large values of �� or more extended OD
scatterers. For scattering by a local order parameter sup-
pression [see Fig. 2(c)], exactly the opposite happens: an
Andreev resonance forms just below the gap edge, similar
to the case where the order parameter is suppressed near
surfaces [20,21] or on finite patches [22]. For large nega-
tive values of ��, or more extended OD scatterers, the
Andreev resonance moves to smaller energies, and its peak
height increases. It draws most of its spectral weight from
the van Hove singularity at ��; 0�, which is close to the part
of the Fermi surface with the largest d-wave gap, i.e., the
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FIG. 2. On-site LDOS for different single-impurity models
with t0=t � �0:3, �=t � �1, and �0=t � 0:1. (a) Weak point-
like potential scatterer. (b) Dotted line: attractive pointlike OD
scatterer with �� � �0 on the four bonds surrounding the
impurity site. Dashed line: extended attractive OD scatterer
with � � z � 1. (c) Same as (b), with �� � ��0.
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part which is most affected by order parameter modula-
tions. Although this indicates that the weight of the reso-
nance depends on band structure, we find that the
phenomenon is very robust over a wide range of t0 and �.

Many-impurity results.—We now address the effects of
self-consistency and interference between many impurities
by solving the Bogoliubov–de Gennes (BdG) equations
resulting from Eq. (1), on a 80� 80 lattice rotated by �=4
compared to the Cu-O bond direction (as in experimental
STM maps); i.e., our system contains 2� 802 lattice sites
in total. We assume that the dopant atoms are interstitial
oxygens, which each add two holes to the CuO2 plane.
Thus we consider a random distribution of 7.5% dopant
atoms for optimal doping.

In the limit of a smooth potential [Fig. 3(a)], the many-
impurity results agree well with the local � picture dis-
cussed above. The correlation between the dopant posi-
tions and the gap amplitude depends strongly on the
magnitude of the potential due to the nonmonotonic de-
pendence of �0 on the local �, as shown in Fig. 1(a). The
spatial variation of the gap, however, is not rapid enough to
reproduce the grainy gap maps seen experimentally with
gap ‘‘patches’’ of typical size 20–30 Å [3]; one is therefore
forced to consider ‘‘spikier’’ potentials [Fig. 3(b)]. In the
weak limit V & t, one recovers the results of the single-
impurity case; i.e., the coherence peaks are modulated in a
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FIG. 3. LDOS from self-consistent solution of BdG equations,
along a straight line for (a) conventional potential with z � 2,
� � 2, V0 � 1:5t; (b) same as (a), but with z � 0:57, � � 0:5,
V0 � t; (c) OD potential with z � 0:57, � � 0:5, �g � t; and
(d), combination of OD potential shown in (c) with conventional
potential as in (b) but with V0 � 0:6t. Conventional (OD)
potentials are depicted to right of each panel as a thin (thick)
line in units of t.
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particle-hole asymmetric way. For the stronger spiky po-
tentials required to reproduce the magnitude of the gap
modulations observed in STM, subgap states start to form
in contradiction with experiment [see Fig. 3(b)]. Further
discrepancies between Figs. 3(a) and 3(b) and the experi-
mental spectra are: (i) the LDOS clearly does not exhibit
the inverse relation between gap size and coherence peak
height; (ii) the spectra are quite particle-hole asymmetric
[see Fig. 3(b) and high energy regions in Fig. 3(a)]; and
(iii) the sizable potential required to induce gap modula-
tions inevitably leads to large [O�50%–100%�] local
charge modulations. The latter point puts strong constraints
on any potential scattering model, since the primary role of
the impurity potential is to couple to the density.

A typical LDOS line scan for a many OD impurity
calculation is shown in Fig. 3(c). Note that, by construc-
tion, this model has homogeneous low-energy LDOS as
well as strong correlations between the dopant positions
and the local gap values. As in the single-impurity case, the
line shape of the LDOS near the gap edge is determined
primarily by Andreev scattering. Because the form of the
LDOS near the gap edge is reminiscent of a coherence
peak, we will simply adopt this terminology, as used in
experiment. Although the dopant atoms inevitably give rise
to a conventional potential as well, the qualitative features
of OD scattering just described are not affected by a
moderate admixture of conventional scattering [see
Fig. 3(d)]. Comparing Figs. 3(a)–3(d), it is evident that
the OD LDOS spectra are far more particle-hole symmetric
than those with potential disorder, and display the inverse
relation between gap magnitude and coherence peak
height, as expected from the single-impurity discussion
(see Fig. 2). In Fig. 4 we show the associated gap map
(a), the coherence peak height map (b), and the charge
modulation map (c) for parameters corresponding to
Fig. 3(c). Figure 4(d) displays the correlation functions
between the gap map and the dopants, and the gap map
and the peak height map [23]. The local pairing modulation
shown in Fig. 4 reproduces qualitatively the correct nega-
tive correlation between the gap amplitude and the coher-
ence peak height [3,24], the positive correlation between
dopant atom locations and large gap values, and the rela-
tively small charge modulations observed in experiment
[15]. In addition, the spectra exhibit the same remarkable
particle-hole symmetric modulations of the coherence
peaks observed in experiment [3,4]. This symmetry should
manifest itself in Fourier transform quasiparticle interfer-
ence patterns as well.

In the OD scattering model, short-distance correlations
between the dopant atoms and the gap size are nearly
perfect, as seen in Fig. 4(d); indeed, they are considerably
stronger than reported in experiment [15]. This might be
due to the difficulty of identifying all dopant positions
experimentally, to the presence of additional cation disor-
der in BSCCO [25], or to the finite experimental resolution
of the dopant resonances. The dopant-gap correlations are
quite robust against inclusion of a conventional scattering
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FIG. 4 (color online). Many OD impurity model for parame-
ters of Fig. 3(c): (a) 2D real-space map of the local coherence
peak position (gap) in units of t; (b) coherence peak height [note
the inverse color scale with respect to (a)]; (c) total charge (note
the small scale); and (d) the correlation function between the gap
map and the dopant atoms (solid line), and the gap map and the
peak height map (dashed line). Lines without (with) symbols
correspond to the parameters used in Fig. 3(c) [Fig. 3(d)].
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component [the two solid curves in Fig. 4(d) coincide], but
the gap-peak height correlations are rapidly suppressed, as
seen in Fig. 4(d).

A natural question is the extent to which these correla-
tions are robust against different choices of parameters. We
find that the local spectral properties in the spiky regime of
the OD model are insensitive to parameters, provided the
amplitude of the gap modulation �� is comparable to or
larger than the splitting of the van Hove and coherence
peaks in the pure system. In that case the weight of the van
Hove peak is absorbed into the coherence peak [Fig. 2(c)].

While we assert the primacy of the OD channel of
scattering for the modulation of the states near the anti-
node, we emphasize that nodal quasiparticles are very
weakly scattered by this potential, and so microwave and
thermal transport are probably only minimally influenced
by the effects discussed here [11]. This further implies that
the elastic contribution to the ARPES spectral peaks near
the antinodal and nodal points are determined by com-
pletely different scattering processes.

In the calculations reported here we have focused on
optimal doping where it is generally believed that a mean-
field BCS treatment is appropriate. In order to address the
doping dependence of the inhomogeneities the presence of
strong correlations in the underdoped regime has to be
taken into account.

Conclusions.—We have offered strong evidence that the
inhomogeneity in the coherence peak position as observed
17700
in STM experiments is driven by dopant atoms, located
away from the CuO2 plane, whose primary effect on one-
particle properties is to modulate the local pair interaction.
This ansatz allowed us to reproduce most of the corre-
lations observed in recent STM experiments: nanoscale
inhomogeneity of the coherence peak position [1–4], ho-
mogeneity of the LDOS at low bias [3], low charge dis-
order [15], negative peak-height to gap value correlation
[3,24], and positive gap -dopant position correlation [15].
We believe that our results represent an important step
towards understanding the microscopic nature of the pair
interaction.
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