21.05.2013

Physikalische Chemie II

Übungsblatt 4

1. Aufgabe: Reversible Zustandsänderungen eines idealen Gases

Berechnen Sie für ein Mol eines einatomigen idealen Gases die ausgetauschte Wärme Q, die verrichtete Arbeit W sowie die Änderungen der inneren Energie ΔU für die folgenden Prozesse:

- (a) reversible, isobare Expansion von 1 bar und 20 dm³ auf 1 bar und 40 dm³
- (b) reversible, isochore Änderung von 1 bar und 40 dm³ nach 0.5 bar und 40 dm³
- (c) reversible, isotherme Kompression von 0.5 bar und 40 dm³ auf Ausgangszustand von 1 bar und 20 dm³

Skizzieren Sie die Prozesse in einem p-V-Diagramm und berechnen Sie Q, W und ΔU für den Kreisprozeß. (6 Punkte)

2. Adiabatengleichungen

Wenden Sie den 1. Hauptsatz der Thermodynamik auf die adiabatische Expansion eines idealen Gases an und leiten sie daraus explizit die Adiabatengleichungen ab. (5 Punkte)

3. Druckluftspeicher bei adiabatischer Aufladung

Berechnen Sie für den Druckluft-Energiespeicher (Aufgabe 3 aus Blatt 3) die gespeicherte Energie bei adiabatischer Aufladung (Kompression).

Hinweis: über Adiabatengleichungen Endtemperatur berechnen.

(4 Punkte)

4. Temperaturhöhung bei adiabatischer Kompression

- (a) In einer Fahrradpumpe wird 500 cm 3 Luft bei Umgebungstemperatur (25 °C) adiabatisch von 1 bar auf 5 bar komprimiert. Berechnen Sie die Endtemperatur und die Größen ΔU , Q und W für das System Gas. Wenn der Pumpvorgang schnell erfolgt, kann er als adiabatisch betrachtet werden, da dann noch kein Wärmeaustausch mit der Umgebung stattgefunden hat.
- (b) Was verändert sich, wenn man die Pumpe mit Ar bzw. Butan (C₄H₁₀ betreibt)? Hinweis: Butan kann bei Raumtemperatur genähert als ideales Gas betrachtet werden, dabei sind etwa 25 % der Vibrationsfreiheitsgrade aktiv. (5 Punkte)