Summary of the online lecture Advanced Atomic and Molecular Physics (SoSe 2020)

- 1. Repetition atomic and molecular physics (script online)
 - a. Einstein coefficients
 - b. Laser concept
 - c. Simple model systems: Particle in a box, harmonic oscillator, anharmonic oscillator
 - d. Atomic orbitals, molecular orbitals (LCAO)
 - e. Light matter interaction, selection rules, transitions
 - i. Dipole approximation, Quadrupole approximation
 - ii. Line shapes, pulse widths
 - f. Born-Oppenheimer approximation
 - i. Electronic and vibrational wavefunction
 - ii. Limitations of BO-approximation: vibronic progression
- 2. Linear spectroscopic methods for molecules
 - a. Visible spectroscopy
 - i. Allowed transitions, symmetry
 - ii. Gouterman model, mixing of states
 - iii. Charge transfer transitions
 - iv. Dichroism
 - b. Fluorescence spectroscopy
 - i. Lifetimes, rate constants, yields
 - ii. Stokes shift
 - iii. Mirror image law
 - c. Dipole coupling spectroscopy
 - i. FRET, Dexter and others
 - d. Infrared spectroscopy
 - i. IR-active vibrations, symmetry
 - ii. Gas phase spectroscopy
 - 1. Lines, populations, isotopomers
 - 2. Rotational contributions, Vibrational-rot. contributions, R-,P-, Qbranch, transitions, selection rules
 - 3. Temperature sensitivity of lines and lasers
 - 4. FLIP-device, LiMAx-Test
 - iii. FTIR spectroscopy
 - 1. Techniques, steady state, time-resolved
 - iv. Couplings
 - 1. Davydov-coupling
 - 2. Fermi-resonance
 - 3. Overtones, combinational bands
 - e. Raman spectroscopy
 - 1. Raman active vibrations, symmetry
 - 2. Energy relaxation and pseudo-temperature in molecules
 - f. CD spectroscopy
 - i. Transitions, helicity, secondary structure information
 - g. X-ray diffraction
 - i. From diffraction patterns to structures
- 3. Non-linear processes, light conversion processes
 - a. SHG, SFG, DFG, OPG
 - b. Self-phase modulation

- c. Kerr-gating
- d. Detection of ultrashort pulses
 - i. Autocorrelator
 - ii. FROG
 - iii. Frequency resolved Kerr gating
- e. Generation of ultrashort pulses
 - i. OPA
 - ii. NOPA
- 4. Non-linear and time-resolved spectroscopic methods for molecules
 - a. Fluorescence spectroscopy
 - i. Up-conversion, coherent oscillations
 - ii. Anisotropy spectroscopy, rotation correlation
 - b. Non-linear formalism, Feynman diagrams
 - i. PFID
 - ii. Pump-probe spectroscopy
 - iii. Photon-echo spectroscopy
 - iv. 2D-IR spectroscopy, signals during pulse overlap
 - c. Pump-Probe spectroscopy
 - i. VIS-pump VIS probe
 - 1. Reaction in "dyes", photoisomerization, dissociation, polymerization
 - 2. Excited state electron transfer
 - 3. Excited state proton transfer
 - 4. Photodynamic therapy
 - ii. VIS-pump IR probe
 - 1. Reaction in "dyes", photoisomerization, dissociation, polymerization
 - 2. Excited state electron transfer
 - 3. Excited state proton transfer
 - 4. Hydrogen bond changes
 - iii. IR-pump IR probe
 - 1. Reaction in "dyes", Energy relaxation, hot ground states
 - 2. Dynamics of hydrogen bonds
 - 3. Dissociation reaction, ladder climbing
 - 4. Activation energy, thermal driven reactions
 - 5. Bimolecular reaction, alcoholysis reaction
 - d. 2D IR spectroscopy
 - e. 2D VIS spectroscopy