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11 Two and many electron atoms

11.1 Helium

Abbildung 11.1. Helium atom with two electrons 1 and 2 at positions 7 and ry .

The partial differential equation of a three particle system is not solvable. In
Helium we have one nucleus and two electrons and the SE is given by

h? h? 2¢? 2¢? e?
A R A R - T ) = Ep(T1, o).
D dmegry 47T807’2+47T€07“12 Ye(T1, 7) Ye(T1, 7)
(11.1)

Because of the presence of the electron-electron interaction term 1/r15 this equa-
tion is not separable, so that an eigenfunction ¥(7'1, 7"3) of (11.1) cannot be
written in the form of a single product of one-electron wave functions. The wave
functions are said to be entangled. We remark that the equation (11.1) is un-
changed when the coordinates of the two electrons are interchanged (77 < 7).
Thus, if we denote by Pj5 an interchange operator that permutes the spatial
coordinates of the two electrons, the wave functions

Pop(7'1,72) = (72, 71) (11.2)

satisfy the same SE. If both functions solve the same SE with non degenerate
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150 11 Two and many electron atoms

eigenvalues F the functions can only differ by a factor A.

Pioh(71,79) = (72, 71) = M(T1, T 9) (11.3)
PLU(T 1, Ta) = XN(T1,T2) =¢(71,72) (11.4)
V(T 9, T1) = £(7T1,79) (11.5)

Moreover, both functions ¢ (7 1, 73) and 75,1 (7 ;) must be continuous, single-
valued and bounded. The eigenvalues of Pj5 are 1. The eigenfunctions are space-
symmetric 1, (T 1, T 3) (A = 1) or space-antisymmetric ¥_(7 1, T2) (A = —1).
States described by space-symmetric wave functions are called para states; those
corresponding to space-antisymmetric wave functions are known as ortho states.
For the parity operator we have

[Ho, Pia] =0 (11.6)

and the quantum number of the parity operator (+1, —1) are good quantum
numbers describing the space-symmetry of the wave function.

Experimentally we can acquire information on Helium atoms by ionizing the
Helium atom.

e 24.6 ¢V : Ionization of the first electron
e 54.4 eV : lonization of the second electron
e 79.0 eV : Sum of both, total energy of both electrons

The energy of 54.4 eV is known, since we already solved the SE for atoms like
He™ to be
Z? h? h?

B=-2 " _—y
! 12 2ma3 2ma?

— —4x13.6eV = —54.4¢eV (11.7)

The smaller binding energy of the first released electron is due to the shielding ef-
.. . 2 .

fect of the remaining inner electron. If we take 47;0”2 as a perturbation H' we can

apply perturbation theory. The energy without the electron-electron interaction

term is

h? h? 2¢? 2¢?
Hy=——2/1 — —1/y — = —108. . 11.
0 om ' 2m 47?507’1 4megrs 08.8eV (11.8)

The difference between -79 eV and 108.8 eV is not small so that we can expect
the result of the perturbation theory not to be very precise. The unperturbed
Hamiltonian is )
h? 2¢?
H0:H1+H2: ——AZ— ¢ .
— 2m dmegr;

(11.9)
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11.1 Helium 151

Equation (11.9) is the sum of two one-electron hydrogenic Hamiltonians. For such
a decoupled Hamiltonian we can write the wave function (71, 7’2) in the form
of single products of hydrogenic wave funtions

VOT 1L T2) = YT 1) (T2). (11.10)

Where we abbreviated a = nyf1m; and b = nolyms. The corresponding discrete
energies being given by

Ho"(71,75) = Hotha(T'1)16(72) (11.11)
= (Hy+ Hy)o (T 1)p(72) (11.12)
= (7o) Hitoa(T'1) + a7 1) Hatho(72) (11.13)
= U(T2) Bata(T1) 4 ¢a(T b (11.14)
= (Ba+ Ep)ta(T1)0(7T2) = EC (11.15)

(71, 7).

In general for N 'uncoupled’ electrons we have N single electron Hamiltonians

N
Hy = > H (11.16)
szaz(?l) = Eaiwai(?i) (11'17)
N
o= J[ve(7) (11.18)

E = ) E, (11.19)

R (0 Y T

2
2mag ) [ny7  ns

Using this approximation we find Fy to be Ey = —108.0eV. We still have to
take into account the symmetry of the wave function and the electron-electron
interaction term. For the electron-electron interaction term we find in first order
perturbation theory

//1/12(71)%*( )4W€Or2wa( Dp(To)d 7T 1d 7Ty (11.21)

B 4mo//|¢a ’|¢b(7“z)| 2d7d7T,  (11.22)
= (11.23)

The integral J is called the Coulomb integral describing the electrostatic inter-
action energy of two overlapping distributions of charge density o, (7'1) and
0n,(75). With the definition of charge densities we can rewrite the Coulomb
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152 11 Two and many electron atoms

integral

on,(T5) = —elz/zm (11.24)
Jniny = //Q’“(?“)_%| )d?ld?’g. (11.25)

47'('80 ‘ 2

Now, we evaluate .Ji4s for the unperturbed wave functions to get the energy
correction AE. With

. 73 1/2
Uis(7) = <@) e 7rifeo (11.26)
0
1 N R
. > 2£+1T£+1Y2m(7917¢1)yzm(7927902) (11.27)
{=0 m=—/¢

where in equation (11.27) r. is the smaller r of the two radial distances r; and
ro, Whereas r- is the bigger r of the two radial distances r; and ry, we have

e 9 Z(r1+ra)
J = @
(L) [ zz

Yo (%1, 01)Yem (U2, (pg)rlrg drldrgd cos ﬁld cos Vodp1dpfl1.28)

All values for ¢ # 0 and m # 0 vanish, because of the orthornormality condition
of the spherical harmonics and we have

62 T Zr _ Zr /r' /r'
J = < ) //e 0 e Feo L2 dr (11.29)
47r50 7ra0 rs

0 0

T2 9Z4(r1)

o0
2 3\ 2
e Z _9Z(r2) a0 2 _22<r1>
= (4m)? ( — rae " @ A ar+ [ 2 w0 dry | dry
dmeg Tag
0

J/

5a(5)

2725
(11.30)

5 ¢ Z
= = =34.0 eV. 11.31
8 47'[‘80 ap ¢ ( )
Thus the energy is

Eye=2FE,+J =—-108.8+34.0 = —74.8 eV. (11.32)

This is close to the experimentally measured energy of —79.0eV and is only 5%
off.
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11.2 Excited states of helium

If one of the two electrons in helium is not in its ground state but in a higher
orbital, we find the energy of the excited state in zero order perturbation to be

1
E®) = -7%13.6eV (1 + ﬁ> . (11.33)

The energy levels corresponding to the wave functions are degenerate in ¢ and
m and also exhibit the exchange degeneracy. Upon exchanging the electrons 1
and 2 we find the same energy for the two wave functions 1, (7 1)¥s(7 2) and
Va(7 2)Ys(71). We can solve this problem in two ways:

With perturbation theory on degenerate levels we have to solve

Hll - ESll H12 - ESIZ

=0. 11.34
Ha — ESy Hay — ESis (11.34)
with
Hy = GlH) (11.35)
Sij = (ils) (11.36)
i = =T )P(T2) (11.37)
Jo= by =a(T2)u(T). (11.38)
Evaluating of equation (11.34) leads to
Hy = Hy=FE,+E,+ Jg (11.39)
Sipo= Sp=1 (11.40)
Sz = Su =0 (11.41)
Hyy = Hy = Rap (11.42)
o= [ w;m)w;(?)mmwa( (T AT 1dT . (11.43)

The integral kg, in equation (11.43) is called ezchange integral and is a pure
quantum mechanical effect of two particles that cannot be distinguished. The
exchange integral can also be represented by the exchange charge density

0ar(T5) = —e (7 1) (71). (11.44)

The exchange integral is a measure of the overlap of the wave functions ¢, (71)
and ,(7"1). If the overlap vanishes there is no exchange degeneracy and the
integral is zero (ke = 0). With the relations above we can solve equation (11.34)

Ea+Eb+Jab_E Rab o
o B+E L, 5 |= (11.45)
Ei = Ea + Eb -+ Jab + KRab- (1146)

Physics of Atoms and Molecules



154 11 Two and many electron atoms

So the energy levels are split by the exchange energy x,, with the normalized
wave functions given by

Vs [%( DUs(T72) £ Ya(T72)8(771)] (11.47)

%I

An alternative approach is conclude from the application of the parity operator
that the wave functions have to be space-symmetric or space-antisymmetric.

$s(T1,T2) = (71,7 )
1 — — — —
BRYG; [Va (T 1)U(772) + Ya (T 2)(771)]  (Para) (11.48)
77Das< ) ) = 1/1—(71,7)2)
= L[%(71)%(72) Va(T2)10s(71)]  (Ortho)(11.49)

Without any calculations we conclude that

(+H-) = (+] ) =0= / U H o d 10T, (11.50)

471'607" 12

In the basis of ¢, and 1,5 the perturbation H' is already diagonal.

AE, = (|H|,) (11.51)
AE_ = (o H'|t0as) (11.52)
s
BB = 5 [T O(Ta) £ 0uTI(TY o
{a (T ) (7 )iwa(rg)@/zb(rl)} d71d7T 5 (11.53)

= 5 [ 4w (TR AT T

+ 5 [ TIPS (TP a7

1 — — — =

+ 5/@(“)%( )4W50T12¢b( 7o) p(T1) A7 d Ty
2

£ 5 [ TT ) oG (T (T) dT 1T

47'('807’12
(11.54)
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11.3 Indistinguishable particles 155

The first two and the last two integrals in equation (11.54) are equal so that AE
becomes

BB = [T 0P (TP dT 1T
TENT 12 ,
L [umn D e (T (T ) AT (1159
AEi = Jab:l:fiab (1156)

The twofold degenerated levels are shifted (.J,;) and split by the energy spacing
of 2k4p, which is a result of the electron-electron interaction. The energy levels of

a) b) 2
[w_|
+Kab Y+
-Kab Y- \\—
J
EatE .
r{-rz

Abbildung 11.2. a) Shifting and splitting of the energy levels due to electrostatic interaction
(Jap) and exchange interaction (kqp). b) Probability of finding two electrons of the antisym-
metric wave function at the same position. The probability is zero for r1o = 0; this is called
Fermi-hole.

the antisymmetric wave functions ¢ _ exhibit higher negative energies (E, + Ej +
Jab — Kab), because the electrons omit the same space and therefore the repulsion
is smaller. The values of J,; and k,, are always positive. In the ground state with
a = b the antisymmetric wave function is constant zero, so that the wave function
of the ground state is space-symmetric ¢, with energy £ = 2E, + J,,. Excited
states can be either space-symmetric or space-antisymmetric and there are no
allowed optical transitions in the dipole approximation between para (¢;) and
ortho (¢_) states.

(Foas) = —¢ / (1, T2) [F1 + Tl o 1, T2) d71dT2 =0 (1157)

Optical transitions between 1_ and 1, are forbidden (exception: strong LS coup-
ling, intercombination lines). Ortho helium cannot be transferred to para helium
by light absorption (behave like different atoms).

11.3 Indistinguishable particles

Two particles are said to be identical when they cannot be distinguished by
means of any intrinsic property. While in classical physics the particles can be
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156 11 Two and many electron atoms

distinguished by their paths of sharp trajectories, this is not possible in quantum
mechanics, if the particles are found in the same regions of space such as their
interaction region. Let us consider a quantum mechanical system of N identical
particles. The Hamiltonian and all observables corresponding to this system must
be symmetric with respect to any interchange of the space and spin coordinates
of the particles (i and j), defined by the parity operator P;;.

[P, H] = 0. (11.58)

Note, if there are more than N = 2 particles we have N! permutations and P do
not commute among themselves (P;;, Pji). There are two exceptional states which
are eigenstates of H and of the N! permutation operators P, the totally symmetric
state ¥5(qq, ..., 1) and the totally antisymmetric state ¥q.s(q1, .., 1n)

Pws(ql, ey 1N) = ws<q17 ey 1N> (1159)

- 1, evenpermut.
Pwas((h? ey 1N) - was((ha ceey 1N) X { _1’ Oddpermut. (1160)

Note, equation (11.58) implies that P is a constant of the motion so that the sy-
stem of identical particles represented by v, or 1, will keep that symmetry at all
times. To our present knowledge of particles occurring in nature, the two types of
states 15 and 1,5 are thought to be sufficient to describe all systems of identical
bosons and identical fermions, respectively. This is called the symmetrization po-
stulate. Bosons (mesons, photons) are particles of zero or integer spin, described
by totally symmetric wave functions and obey Bose-Einstein statistics. Fermi-
ons are particles having half-odd integer spin (electrons, protons, neutrino) and
are described by totally antisymmetric wave functions. They satisfy Fermi-Dirac
statistics.

11.4 Wayve functions of helium

The correct wave function describing the electrons in the helium atom has to be a
totally antisymmetric wave function, since the electrons are fermions. In the case
of negligible spin-orbit coupling the Hamiltonian has no terms coupling space
coordinates and spin coordinates resulting in a product type wave function

w(?lymsﬁ??am@) = ¢(717?2)X(m81’m82) (1161)

which has to be antisymmetric by interchanging all coordinates of two electrons.
There are two possibilites to fulfil this condition
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11.4 Wave functions of helium 157

Also the spin wave function x(ms,, ms,) can be written in the product form, (in
the absence of spin-spin coupling) with four different combinations

X (s, M, ) X (ms, ) x(ms,) (11.63)
x1(1,2) = a@a2) 17 (11.64)
x2(L,2) = a(1)B2) 1) (11.65)
x3(1,2) = B(1)a(2) 1T (11.66)
xa(1,2) = BL)BE2) 1l (11.67)

These four combinations are not symmetrized but upon introducing the total Spin
- = —
operator S = S 1+ S5 we can achieve a symmetrized new basis by linear combi-

. . . . =2 o g2 o2
nation of these four wave functions, that are eigenfunctions of S=, S ., 51, S;
and Plg.

X1,1 17

)
)

—_

2)

2) [2(D)F(2) + /()] 1L+ 11
2) = pLBER) U

1,2) p2) = pMa2)] 1L -11

>0
=)

1

9

(
(
X1,-1(1
(

X0,0

The indices in xg,,, are the quantum numbers of 52 and ?Z The three functions
{X1.1; X1,0, X1,—1} have a total spin of S = 1 and magnetic spin quantum numbers
of my =1, 0, —1. These three spin wave functions represent the symmetric spin
wave functions, with total spin S = 1 and belong to Spin Triplet states. The
other spin wave function X is the antisymmetric spin wave function with total
spin S = 0 and belong to Spin Singlet states. Hence the correct wave functions
are

BT, T2) = —=[a()B@) - BL)a(2)] (11.72)

—
for para or singlet states (| S| = 0, spins antiparallel or zero) or

a(l)a(2)
(T ) x4 Sa(D)FE) + A (11,79
A1AR2)

for ortho or triplet states (\§>| # 0). The Pauli principle says that there are no
two identical particles (fermions) with the same quantum numbers. Therefore, we
have a correlation between the electrons resulting in specific allowed combinations
of spin and space wave functions. The ground state of helium has a symmetric
space wave function and consequently an antisymmetric spin function so that the
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158 11 Two and many electron atoms

ground state of helium is a singlet state. The excited states of helium (10)(n/)
are split by

Eli(],né = L+ Ew+ Jiope £ Kione (11.74)
oo o0 2
JlO,nE = /R2g( )7" /Rlo(rl) 1dr1dr2 (1175)
r>
o0 o0 T2
Kione = /RIO Ryo(r2)r /Rm R 7”1) s, drldrg(ll 76)
>
0 0

with para-He (+) and ortho-He (-). The triplet states are energetically lower
than the singlet states, due to the reduced electron-electron repulsion. The triplet
state (1s)(2s) is metastable, since relaxation to (1s)? is not possible upon light
emission (intercombination lines are forbidden). Excitation of triplet states is
possible upon collisions of atoms, spin-orbit coupling (which is very weak for
helium) and magnetic dipole transitions. Interaction with an electromagnetic field
in the dipole approximation do not result in changing the total electron spin,
because for such interactions it is

AS =0 (11.77)

and the transition is spin forbidden. Both integrals (11.75, 11.76) depend expli-
citly on the quantum number ¢. Thus, degeneracy in my is still present but not
in ¢. For a given n the Coulomb interaction Jig,s increases with increasing ¢.
This can be explained with bigger Coulomb repulsion upon decreasing (r,,) with
increasing /.

— — —
S = 5.+ 8, (11.78)
—9 —9 —9 — =
52 = §21792499,.79, (11.79)
- = h? 3
(Sl . SQ)XsmS = 3 |:S(S + 1) — §:| X sms (1180)

1 S8
Eﬁ) ne = Ero+ Ene+ Jiome — 5 {1 + 4%} K10,n¢

(11.81)

The energy splitting in equation (11.81) can be interpreted as an additional force
called exchange force. The sign of the exchange force depend on the orientation
of the spins, and the strengths of the force is sufficient to orient neighboring spins
(ferromagnetism). The naming of the different states are as follows

n**rL; (11.82)

n is the principal quantum number; S is the total spin quantum number (for
helium 0 and 1); L is the total orbital angular momentum quantum number (S,
P, D, F, ...); J is the total angular momentum quantum number.
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1s2p

Abbildung 11.3. The splitting of the unperturbed helium level for n = 2 by the Coulomb
integrals and the exchange integrals.

11.5 Slater determinant

The total wave function is antisymmetric upon exchange of all coordinates of
two electrons. If there are N independent electrons the wave function can be
written as a product of N single electron wave functions ¢;. To fulfil the symmetry
conditions of the wave function, the wave function can be written as a sum of

Slater determinants

Yas(1, 2, ...

on(1) on(2)

¢1(N)
$2(N)

on(N)

(11.83)

Using the formalism of the slater determinant, we can write the ground state

wave function of helium:
1(1)
1(2)
2(1)
2(2)

Vas(1,2,..., N

S S S S

15(1)a(1) (11.84)
= 15(2)a(2) (11.85)
— 1s(1)B(1) (11.86)
= 1s5(2)3(2) (11.87)
_ 1 Is(M)a(1) 1s(2)a(2)
= 5| 1s(15(1) 1s(2)8(2) (11.88)
1
= 5 | B0)1s2) 0()32) ~a@)s0)] | (11.89)

+

e The Slater determinant and sums of Slater determinants give always anti-
symmetric wave functions
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160 11 Two and many electron atoms

e Upon exchange of two rows or two columns, which correspond to exchange

of all coordinates of two electrons F;;, the Slater determinant change its
sign.

e If the quantum numbers of two electrons are the same, two rows are equi-
valent and the Slater determinant is zero. That correspond to the Pauli
exclusion principle that no two electrons in a system can have the same
quantum numbers.

11.6 Many electron atoms

The SE for atoms with N electrons is

- - — al h? al Ze?
E@ZJ(T’l, ra, ) TN) = _ZQ_Al_ZZLﬂ'&OT
e? NN 1
— — —
4W€0;Z|7}2_—>‘7| w(,r17 r27 7TN)

(11.90)

With increasing Z the electron-electron repulsion becomes stronger and stronger
and cannot be treated as a perturbation with respect to the electron-nucleus
interaction. For N electrons we have 1/2N(N — 1) electron-electron interaction
terms. Hartee (1928) used the averaged electron-electron interaction, which is for
the 7' electron

0i(75) = —eld; (7). (11.91)
and postulated a SE for single electron wave functions to be

(7)) = [ >, A Z Doy 2T
i Jj#i

7)) (11.92)

V(T = —— ‘d)j(?j)‘Q d7; (11.93)
! ’ 47T€0 ‘?2 - 7)]’ a )

The Hartree-Fock equations add an exchange term to the Hartree equation.

N N -

Z N - Ze? e? 3 9 (7" )P
(. — _ #d_) (7.
61¢z(rz) [ 47T€o7”z 47T€0 j;’éi\/‘?i_?ﬂ L ¢Z(T1)

7

{/ d);'(??g ¢i(T | ny= }Qﬁj(?i). (11.94)

? J

471'50

Solutions to the Hartree equations are found iteratively. One starts with zero
order single electron wave functions and potentials, calculates the energies, sort
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the energies obeying the Pauli principle and determine the averaged potential for
the it electron. With the help of the new potential one calculates the new wave
function. If this wave function is the same wave function as before the calculation
is finished. If the wave function has changed, it is used for sorting the energies
and so on. The solution is called a self-consistent solution. From the calculated
energies one can determine the configurations with the lowest energies and fill up
the orbitals with electrons. This gives the building up of atoms. Since there is no
¢ degeneracy due to the Coulomb and exchange integral and the energy increases
with increasing ¢ the orbitals are filled up in the following order:

Is, 2s, 2p, 3s, 3p, 4s, 3d,4p, 5s, 4d, bp, 6s, 4f, bd, 6p, 7s, 5f, 6d,7p  (11.95)

The underlined states have similar energies and lead to complex transition spec-
tra. Note, F;s < FEs; due to the higher probability density of 4s electrons at
r = 0 than for 3d electrons, leading to an effectively increased nucleic charge for
4s electrons compared to 3d electrons (but (r)sq < (r)ss). The wave functions of
many electron atoms are similar to single-electron wave functions with the same
Y (9, ¢), but with changed R,,,. The quantum numbers are the same n, ¢, m,, ms.
Electrons with the same quantum numbers n and ¢ belong to the same subshell
(nf). Those electrons are called equivalent electrons. Due to the Pauli exclusion
principle there are maximally 2(2¢ 4 1) electrons per (nf) subshell.

s pd f g (11.96)
¢ =01 2 3 4 (11.97)
204+1 =1 3 5 7 9 (11.98)
0;=2(204+1) = 2 6 10 14 18 (11.99)
The degeneracy d; is given by
p 0;!

the possible positions and the number of identical electrons. For example two
electrons (1;) in a (2p) subshell have degeneracy 15.

6!

di = g = 15. (11.101)

Now, we can build up the many electron atoms by filling up the subshells accor-
ding to their energies and obeying the Pauli exclusion principle. Electrons in an
open shell have the highest energy and are most weakly bound. They are _C>alled
valence electrons. Closed shells exhibit a total orbital angular momentum L and

total spin angular momentum S of zero. Tn the many electron atom nomencla-
ture closed shells are described by 1Sy (L =0, S =0, J = 0). They have a radial
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25 | He

Ne
20 F

Ionisation potential (e V)

Ar
15 1 Kr
il Xe
10
¥ £ Na K
Rb Cs

1
10 20

30 40 50 60 70

80

Atomic number Z

Abbildung 11.4. Ionization potential for neutral atoms as a function of nucleic charge Z.

symmetric charge distribution and are chemically inert (nobel gases: He, Ne, Ar,
Kr, Xe). Alkali atoms with one valence electron in the s-orbital have low binding
energy, low ionization energy, increased volume and are chemical reactive. We
see that the degeneracy is high in m, and ms. In the case of non equivalent
electrons in different subshells the Pauli exclusion principle is fulfilled and we

find for two electrons

C= 1l =Ly, |6 — Lo + 1, ..., Ly + L

s = |51 — Sa|, [s1 = s2| + 1, ..., 51+ s0.

For example (np)(n'p) gives
b
51

L
S

For example (np)(n'd) gives
41
S1

L
S

6 different terms
== 62 == 1
1
= 0,1,2
= 0,1
= '8, 'P,'D,®S,°P,°D
also 6 different terms

- 1, 82:2

= 0,1
= 'P,'D,'F,°P,°D,°F

For three electrons this process has to be extended stepwise.
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Sq 2% =y 8%
o i e =B sl “s 3 g
212|188 %5% g8 [ A0 Bt g TER i
E| 2% 5% 8 z 8 Bl g 535 £ 8
& | 88 e S 8 @ | S8 SR S 8
1[H |28 1s 13.595 | 52 | Te | 3P 4d10 552 5p* 9.01
2 |He |18 1s% 24581 || 53 | I 2Pg)2 4d10 552 5p° 10.454
1 10 2 6
e SShech o0 |24 Xe | '8 4d10 552 5p 12,127
4 | Be |18 252 9.320 | 55| Cs | 28 [Xe] 6s 3.803
5 (B | 2Py 252 2p 8.206 | 56 | Ba | IS 652 5.210
Bl Po 2s2 2p? 11.256 || 57 | La | 2Dg/2 5d 6s2 5.61
7 LN 28 252 2p? 14545 | 58 | Ce | 1G4 4f 5d 652 6.54
8|0 |3p; 252 2p* 13.614 | 59 | Pr | 4o 4f3 652 5.48
9 |F | 2Ps2 252 2p° 17.418 | 60 | Nd | 514 4f4 652 5.51
10 | Ne | IS 2s2 2p6 21.559 || 61 | Pm | 6Hs/2 4f5 6s2
62 | Fm | 7F 4f6 652 5.6
11 | Na |28 [Ne] 3s 5138 | 63 | Eu | 8" 467 6s2 5.67
12 | Mg | IS 3s? 7.644 | 64 | Gd | °D; 417 5d 6s2 6.16
13 | Al | 2Pz 3s2 3p 5.984 65 | Tb | 6Hisj2 49 6s2 6.74
14 |Si | 3P 3s2 3p2 8.149 || 66 | Dy | 51, 4f10 gg2 6.82
1551 Py [o48 3s2 3p3 10.484 || 7 | Ho | 4152 4611 g2
16 | S 3Py 3s? 3pt 10.357 || 68 | Er | 3Hg 412 gs2
17 | Cl1 | 2Pg)2 3s2 3p° 13.01 69 | Tm | 2F7)2 413 62
18 | Ar 3s2 3p* 15755 || 70 | Yb | 18 414 gg2 i 6.22
2 14
19 [K |25 |[Ar] 45 4880 TILin ke A e
1 2 2 S 7.0
20 | Ca | S = SIS gitimal My 414 543 652 7.88
21 | Sc | 2Da2 3d 4s? 654 || 4| w |sp 4114 534 6e2 :
A8 & . 7.98
22 | Ti |3F, 3d2 4s 683 || 7zl Re |6 s
5 s e | 68 414 5d5 6s 7.87
23 |V Fz/2 3d3 4s 6.74 76 | O 5 14 £ 16 a2
= ¥ s | 5Dy 414 546 65 8.7
24 | Cr S 3d°® 4s 6.764 77 | Ir 1R, 414 547 g2
6 5 4.2 9/2 S 9.2
25 | Mn | 68 3d® 4s 7.432 78 | Pt | 3D 14 548 g2
3 A8 3 414 548 65 8.88
26 | Fe | °Dq 3d2 48 787 || 79 | Au |28 | [Xe, 4114 5d19] 6s 9.22
27 | Co | 4Fos2 3d7 4s2 7.86 80 | H 18 ! 6s2 10‘434
28 | Ni | 3F4 3d8 4s? 7833 (e s S 6.106
29 | Cu | 28 3d10 45 raed I ol P
30 | Zn | 1S 3d10 452 piao1 |- Caeleos 00 aigait iy o
31 | Ga | 2Py 3d104s24p | 6.00 || of | po | 3p = 63, i
32 | Ge | 3P 3d10 452 4p2 | 7.88 85 | At | 2P. e
33 | As | S adl0.4a24nd, 081 3l R D02 s b i
34 | Se | 3P, 3d10 452 4p* | 975 P :
35 | Br | 2P3j2 3d10 452 4p° | 11.84 87 | Fr | 28 [Rn] 7s
36 | Kr |18 3d10 452 4pS | 13.996 || g3 | Ra | 1S 752 5.277
2 2
37 |Rb |28 | [Kd 5s [T e o s A o
1 2 2 8
38 [Sr |18 55 5602 | ot | 5y | 4K 512 64 7s2
2 3 a 11/2 L
39 | Y |2Dzpe 4d 55 6877l Sorl il ey 563 64 72 46
40 | Zr | 3F, 442 552 6.835 | o5 | Ny | 6L % 2 :
6 4 P Li1/2 5f* 6d 7s
41 | Nb | %Dyj2 4d* 5s 6.881 7 6 7.2
= = 94 | Pu | 7Fo 56 7s
42 | Mo | 7S 4d5 5s TGS Sl i 347 702
43 | Te | 68 4d5 5s? 7.228 || oo | an | o . 2
: 5 m | °Ds 517 6d 7s
44 | Ru | °Fs 4d7 5s 7385l ol s 2
- 5 (568 6d 7s?)
45 | Rh | “Fo2 4d8 5s 7.461 0 2
1 10 9% | Cf (59 6d 7s?)
46 | Pd | 1S 4d 8.33 o 5
: = 9 | E (5110 6d 7s?)
47 | Ag | 28 4d10 55 7:574 || o0 L o (3111 6d 7s?)
48 |cd |18 4d10 552 8.991 || 100 | 3o
49 | In | 2Py 410562 5p | 5785 || 100 | 1o
50 | Sn | 3Po 4d10 552 5p2 | 7.342 103 | Lw
51 | Sb |48 4d10 582 5p3 | 8.639

Abbildung 11.5. Electronic configuration of the atoms and ionization energies.
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Abbildung 11.6. Electronic configuration of the ground state of atoms with the spin orienta-
tions according to Hund’s rules. C* is the excited state of carbon leading to sp® hybridization.
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Abbildung 11.7. Coupling of two equivalent p-electrons. The dotted lines correspond to energy
levels which are forbidden by the Pauli exclusion principle.
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In the case of equivalent electrons in the same subshell the Pauli exclusion prin-
ciple forbid two electrons to have the same quantum numbers. Also combinations
of two electrons with quantum numbers are forbidden if they are identical upon
electron exchange. For example (np)? (Fig. 11.6)gives 3 different terms

6 o= =1 (11.114)
1

s1= s= (11.115)

L = 01,2 (11.116)

S 0, 1 (11.117)

= 18,'D, %P (11.118)

The terms of 1 P, 3S, and 3D are not allowed due to Pauli exclusion principle. The
forbidden 3D state would have two electrons with the same spin quantum number
in the same orbital m;, = +1. Furthermore, the total wavefunction, i.e. the pro-
duct of the spatial wavefunction and spin wavefunction has to be antisymmetric.
In the case of odd numbers for the total angular momentum (L = 1,3, 5, ...) the
spatial wavefunction is antisymmetric upon electron exchange. Singlet spin states
have antisymmetric spin wavefunctions and tripett states symmetric spin functi-
ons upon electron exchange. Thus, the state ! P would have a symmetric electron
wavefunction and consequently is forbidden. Due to the Coulomb interaction and
exchange force the levels split. The Hund’s rules establish empirically the ground
state configuration.

1 The term with the largest possible value of S for a given configuration has
the lowest energy; the energy of the other terms increases with decreasing

S.

2 For a given value of S, the term having the maximum possible value of L
has the lowest energy.

Explanation for the Hund’s rules are the following (Fig. 11.6): If the spin quan-
tum number is maximal, the spins are parallel and the electrons have to occupy
different orbitals, reducing the Coulomb repulsion. In addition, parallel spins are
favored because of the exchange force. For a given quantum number S maximal
quantum numbers of L provide the lowest energies. This is because of the re-
duced Coulomb repulsion in orbitals with high L and therefore higher averaged
electron-electron distance.

Introducing spin-orbit coupling result in splitting of 25 + 1 degenerated levels.
This is shown in Fig. (11.6) where the 3P, level split in three sublevels. Using the
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Abbildung 11.8. .

quantum numbers of the hydrogen wave function ¢, s, j, m; we find
- = - =
) €))L Se) = Allsjmy|L;- Siltsjmy) (11.119)
k
A
- §<esjmj|72 — T2 S2esjm;)  (11.120)
A
= 3 {jG+1)—2(l+1)—s(s+1)} (11.121)
= E(j)—E(j—1)=Aj (11.122)

Equation (11.122) is called Landé interval rule and is well satisfied experimentally
if the atom is well described by the L-S coupling case (only coupling and weak).
One finds

A > 0: Open subshell is less than half full. The lowest value of j exhibits the lowest
energy.

A < 0: Open subshell is more than half full. The highest value of j exhibits the
lowest energy.

The strength of Spin-orbit coupling is proportional to Z*, so that weak spin-orbit
coupling holds for Z < 40.

If spin-orbit coupling is dominant the total angular momentum couples for each
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11.6 Many electron atoms
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Abbildung 11.9. The splitting of the ground state configuration of carbon due to spin-orbit

coupling.
(1 1. 123)

individual electron 7
— — —
ﬁ
S = 0 only valence

ﬁ
This is called j-j-coupling. Since closed shells have L
electrons are relevant. Pure j-j-coupling is rarely found and most atoms show

intermediate coupling schemes.
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12 Molecules

Molecules consist of several atoms bound together. In addition to the atomic inter-
actions, interactions between the electrons and nuclei of the atoms (for example A
and B) have to be taken into account. The forces resulting from electron-electron
interaction and electron-nuclei interactions are comparable, but the masses of the
nuclei M are much bigger than those of the electrons m

~107%...107°. (12.1)

SE

Therefore, the velocities of the nuclei are much smaller than that of the elec-
trons and the kinetic energy of the nuclei is much smaller than that of the elec-
trons. Thus, the electrons can adapt nearly instantaneously to the positions of
the nuclei and the movement of electrons and nuclei can be separated. As long
as this assumption holds we can use the product solution method to uncouple
the movement of the electrons from the nuclei. Typical bond lengths of molecules

Ho: N
e
o
R e
r1 —
I
.‘ §> O —> )' -
p A B p
Ma Mg
| |
~0.74 A

Abbildung 12.1. Hydrogen molecule (Hs2) and coordinates of the two electrons and nucleic
protons. The center of mass is indicated as 0.

are in the range of Angstroms. The diatomic distance in the hydrogen and oxy-
gen molecule (Hy, Oy) was measured by neutron diffraction to be ~ 0.74A and
~ 1.21A, respectively. In Fig. (12) the coordinates of the individual particles are
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given. We can write them in the following form (here diatomic molecule)

R = Rp- Ra (12.2)
wo- % (12.3)
Ty = —%?% (12.4)
T, = i—hi???i (12.5)

ZaZ e
+ Y < 4 2AZBE (12.6)

4ﬂT€0‘7ﬁi'— 7?j’ 4ﬁT€0}%

i,j=1
i>j

With this abbreviations the SE is given by
Ty + T+ V]o(R; Ty, Tn) = BO(R; Tas o, 7). (12.7)

In order to get an impression of the energy scales we estimate the binding energy
of the electrons by choosing their wavelengths of the order of the internuclear
distance

h
~ 2 12.8
p 7 (12.8)
2 2
E. =~ 2p_m ~ ﬂfRQ some eV (12.9)
1 2 1

E, = Sy =hy/= (v =) .

Y Fuwg (v + 2) h . (v+ 2) (12.10)

To dissociate a molecule one has to overcome the binding energy of the electrons
or tear the atoms apart by the additional distance of R. With these assumptions
we find

kR*> =~ E,, H.O. (12.11)
| E
E, = ﬁ\/gzh ?62 (12.12)
I I
12.9 E?
ol Zﬁ; (12.13)

~ B |- ~107%xE. (12.14)
1

Physics of Atoms and Molecules




170 12 Molecules

Thus, the vibrational energies are about 0.1 eV and lie in the infrared spectral
region. For example the vibrational energy of the diatomic molecule HCI is
— Yo

Ug = — ~ 2990 cm™ ! = .
Co )\[Cm}

(12.15)

We estimate the rotational energy of a molecule by taking the Hamiltonian of a
rigid rotor with the moment of inertia I, I = mR?2, that is

L3 N?

where m is the mass of the particle (point mass) fixed at the distance Ry to the
axis of rotation. The eigenfunctions are proportional to the spherical harmonics
Y kg (O, @) of the nucleic coordinates and the energy eigenvalues are

h? h?

57+ 1) =5 s I (T + 1), (12.17)

B, — _
21 R?

H
The operator N is the angular momentum operator of the nuclei with

- 1 9 0 1 o2
N? = _p2 —(sin® — —_ .
n Lin@a@ (Sm@ a@) * sin2@aq>2] (12.18)
— J(J+1)
_ 21\ _ 22\ T 1)
E, = (Y|N°|¢)=nh e (12.19)
h? m
~ b (12.20)
~ 107* x E.. (12.21)

The rotational energies are in the range of 0.001 eV or in the far infrared / micro-
wave spectral region 1...10% cm™!. Therefore the contribution of the rotational
energies are negligible in comparison to the electronic and vibrational contributi-
ons to the total energy. After estimation of the relative contributions to the total
energy we see that the movements of the nuclei are much slower than that of the
electrons. For every nucleic geometry the electrons have enough time to adopt to
the actual situation and we solve the SE for the electrons for every fixed and for

—_
the electrons static geometry of nuclei (R fixed).

[TB+V(ﬁ;?1,...,?N) (R Th,..., Tn) = B(R)0(R:T1,..., Tn)
Ho (R, T1,..., Tn) = E(R)0(R;T1,.... Tx)
H®, = E,(R)®, (12.22)

H. in equation (12.22) is called the electronic Hamiltonian of the electronic wave
equation with ®, being the electronic wave functions. The electronic wave functi-

ﬁ
ons and electronic energies depend on the parameter R for every state described
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-
by the quantum numbers g. The wave functions {®,(R;7")} form a complete
and orthonormal set of functions:

/q>;<§’;?1, PN Bi T T, dT N =60y (12.23)

H
Therefore, the exact total wave function 1/(R; 7'1,..., 7 n) can be expanded for
— —
every R with the help of the electronic wave functions {®,( R;7)}

V(R T, T ZF SR T TN (12.24)

ﬁ
with the coefficients F,( R) representing the nuclear motion (vibration and rota-
tion) when the electronic system is in the state ¢. Inserting equation (12.24) into
(12.7)

Ty +T. +V(ER; }ZFT{’ R;7) = EY F(R)®(R;T)

and multiplying with [ ®%. .. d7’y,--- d7 n we find

Z/ R TN+T +V(ﬁ;?)—E] F(R)0(R:7)d7 1, d7yx = 0
(12.26)
0 = S (@[T + T+ V(R; 7) — E|®,)F,(R) (12.27)
= Y (@|Tn + H. — E|®,)F(R) (12.28)
= Y (@|Tn + E,(R) — E|®,)F,(R) (12.29)
Rl1 o /(,0 N? -
= ;@5'_@ 2Ok (R @) T RE |®) Fy(R)
+ [E,(R) — E|F,(R). (12.30)

In equation (12.30) we used the orthonormality of {@Q(I_%;?)} and the fact
— —
that E,(R) only depends on R and E is eigenvalue of the total wave function

10(?{); T'1,..., 7 n). The set of coupled equations (12.30) is exact and equivalent
to the full SE (12.7). The Born-Oppenheimer (BO) or adiabatic approzimation
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will now be introduced. Since ®, varies slowly with respect to R, © and ® the
following relation holds

0P, OF,
=5l < 133l (12.31)
— —
= Z<CDS|TN|CI)q>Fq(R) ~ Z(q)s|q)q>TNFq(R) (12.32)
q q

A (32 0 > + M+ES(R) —E| F(R)=0. (12.33)

a 21 R? OR OR 21 R?
NErot

Equation (12.33) is the nuclear wave equation. Since E,, is negligible small the
nuclear wave equation simplifies to

{_g% ; Eﬁ)} F(R) = ER(R), Vs (12.34)

In the BO approximation first the electronic wave equation (12.22) with the wave

—_
functions {@Q(ﬁ; 77)} are solved for parametric values of R to find the energies
ﬁ

E,(R). With the electronic energies E,( R) we can solve the nuclear wave equa-

e

q

Potential E (R) (eV)

0 1 2
Nuclear distance R (Angstrom)

Abbildung 12.2. Energy eigenvalue of the electronic wave function E, plays the role of a
potential for the nuclear wave function. Red horizontal lines indicate the energy eigenvalues of
the nuclear vibrational energies. For different quantum numbers ¢ the potentials are different.

tion (12.33) to get the wave functions Fs(ﬁ), where the energy functions ES(]—%>)
play the role of a potential. The total wave functions ¥, in the BO approximation
has the product form

bR T 0., Tx) = F(R)O, (R 71,..., Tw). (12.35)
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For every nuclear coordinate R the electron probability density |CI>q(72>; 7|2 is
different and the equations (12.22)and (12.34) have to be solved. The nuclei move

—_
in the potential given by the eigenvalues of the electronic wave equation Fg( R).

12.1 Diatomic molecules

The electronic wave equation (12.22), in which only the Coulomb interactions
are taken into account, is solved for diatomic molecules by using a system of
coordinates OX, OY, OZ which is fixed with respect to the molecule. The Z
axis is chosen along the internuclear axis from B to A. The origin O is the center
of mass and the spherical coordinates are R, © and ®. This is called the body-
fized or molecular frame. The position vector 7'; of an electron is the same in
the space-fixed and body-fixed frames, but the components of 7°; are different in
each frame. We will label the components of 7; by x;, y;, and z; in the space-fixed
frame and by Z;, 7;, and Z; in the body-fixed frame. The eigenvalues E(R) are
independent of the frame of reference.

T, = cosOcosP z; +cosOsind y; —sin O z; (12.36)
Y, = —sin® x; + cos® y; (12.37)
Z; = sin®cos® x; +sinOsin P y; + cos O z; (12.38)

The different frames of reference can be brought to coincidence by a rotation
through an angle ¢ about the OZ axis and rotation about OY’ axis through an
angle ©. We find that

0P, i

e =~ (12.39)
f : :

% = {—% cos OLz + % sin @Lx] P, (12.40)

NV 9
L: = —ihz (z%—yla—f> (12.41)
i=1 g !

12.2 Symmetry properties

In the electronic wave equation the three components of the total electronic or-
bital angular momentum T commute with the Hamiltonian (11.90) of a many
electron atom as well as 32. Thus, we have the good quantum numbers L and
My,. The fact that L is approximately a good quantum number is used in the clas-
sification of atomic energy levels and terms (e.g. ®P,). In contrast the internuclear
axis of diatomic molecule picks out a single direction in space. If we choose this
direction as the Z axis, then the operator Lz commutes with H., but not Lz,
Ly, and 2. Since the electronic molecular Hamiltonian H, is invariant under
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rotations about the internuclear line or Z axis, but not about = or ¥ axis, only Lz
commutes with the Hamiltonian. Therefore, simultaneous eigenfunctions of H,
and Lz can construct the electronic eigenfunctions @, of a diatomic molecule and
it is

L, = Mphd,, M, =0, +1, +2, ... (12.42)
+ARD,, A=0,1,2,... (12.43)

where A = | M| is the projection of the total electronic orbital angular momen-
tum on the internuclear axis. The azimuthal part of the ®; is therefore given
by

L iine
Py x Vorai (12.44)
By analogy with the spectroscopic notation S,P,D.,F,... used for many electron
atoms having the quantum number L the quantum number A is used for diatomic
molecules

Valueof A 0 1 2 3

T 111 (12.45)
Codeletter X II A & ...

To describe transitions or the state characterized by individual electrons we use
the quantum number A = |my| and the analogue notation

Valueof A 0 1 2 3 ...
11171 (12.46)
Code letter o © 6 ¢ ...

The electronic Hamiltonian H (without interaction to the nuclei) of a diatomic
molecule is invariant under reflections in all planes containing the internuclear
line, for example the X Z plane. If this operation 7, — —7, is described by the
operator Ay then

[A7,H.] = 0 (12.47)
NV 0
Ly = —ih; (Tlﬁ_@ - yla—@) , N electrons (12.48)

If A # 0 (thell, A, ® ... terms) the operator Ay acting on the wave function with
eigenvalue AR of Lz converts the wave function into another one with eigenvalue
—Ah. Both eigenfunctions have the same energy, because Ay commutes with H.,
and are doubly degenerate.

If we consider the case A = 0 we have X states, that are non-degenerate and
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simultaneous eigenfunction of H., Lz, and Ay can be constructed. The eigenvalues
of Ay are £1 and thus the ¥ states of diatomic molecules are specified by X and
Y.~ for states left unchanged or changed upon reflection in a plane containing the
nuclei, respectively. In the special case of homonuclear diatomic molecules (such
as Ha, Oz, Ny, etc.) there is an extra symmetry upon reflecting the coordinates
of all electrons with respect to the origin 7; — — 74, because of the center of
symmetry of this molecule. This operator commutes with Lz and the electronic
wave functions split into two sets, those that are even and do not change and those
that are odd and change its sign. The even electronic wave functions are denoted
by a subscript g called gerade states, the odd electronic wave functions denoted
by a subscript u called ungerade states. For homonuclear diatomic molecules we
have the following states

P20 Sn Sl 3ol | S | FA (12.50)

Exchanging the nuclear coordinates R — —R is the same operation as first
rotating the molecule as a whole through 180° about the Y axis, followed by the
operations J; — —¥, and 7; — —7 ;. If we denote the resultant spin of the
individual electron spins by S with the usual eigenvalues of S to be R2S(S+1)
we characterize the molecule by its multiplicity (25+1) as a left superscript. The
term symbol is written

25HIA forA=0,1,2, ... (12.51)
2A, A=2,5=1 (12.52)

The ground state of a molecule is often labeled by the symbol X and since the
ground state has very often maximum symmetry in diatomic molecules it is then
denoted by X 12;. Excited states of the same multiplicity as the ground state are
usually distinguished by the upper case letters A, B, C, ... and those of different
multiplicity by lower case letters a, b, ¢, .. ..

Hyperfine structure interactions due to coupling to the nuclear spins and the
orbital motion and spin of the electrons are usually small and can be neglected.
However, symmetry effects related to the spin of the nuclei have an important
influence on the structure of the wave functions especially if the molecule consist
of identical nuclei.

12.3 Neumann-Wigner non-crossing rule

For every electronic eigenfunction ®, of the molecule there is a multidimensional
— —

potential Es( R), which depends on the internuclear vector R. We want to know

how these potential curves changes as R varies, and if is it possible that two
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potential curves intersect. If we suppose we have two different electronic potential
curves Ej(R) and Ey(R) as depicted in Fig. 12.3 that are close but distinct at
the internuclear distance R.. The energies E§°) and Ego) are eigenvalues of the
electronic Hamiltonian Hy = H.(R.). The corresponding orthonormal electronic

eigenfunctions are q>§°) and @50). If we modify the internuclear distance R, to

[ E/(R
ES(R) 1( )
// EZ(R)

0 R, Rg* AR R

Abbildung 12.3. Angular momentum of a diatomic molecule with no coupling between the
electronic and nuclear orbital motion and without spin coupling.

R.+ AR with small AR, we can treat the new situation as a perturbation to the
electronic Hamiltonian

H.(R.+AR) = H(R)+H'=Ho+H' (12.53)
OH,

H = AR 12.54

OR, ( )

Hy = (@"H®f), i j=1,2 (12.55)

If we have a degenerate case with degeneracy of N and N wave functions 1#,({?2 we
have to solve the following determinant to obtain a non-trivial solution.

det| (W O1H' WY — EDs, o =0,  (r,s,u=1,2,...,N)  (12.56)
Solving the determinant yields N real roots E,(cll), E,g), o ,E,S\), If all these roots
are distinct the degeneracy is completely removed to first order in the pertur-
bation. Here, we have N = 2 and we have to solve the determinant at the po-

sition where the curves should cross, that is at R. + AR and Hy + H'. It is

(@50)]H0]®§0)> = EZ-(O)éij, and we have the determinant

(@ |Ho + B'|®\") —E (o |H'|®}") =0, (12.57)
@(O) o q)(o) (I)(O) Ho+ H' q)(o) _p Y .
(@ |1 @) (@ Hy+ H'|25”)
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The potentials £ (R) and Ey(R) are equal at position R.4+AR if the two equations
are simultaneously satisfied

EO—EV 4+ H —H, = o0, same energies for 1 and 2 (12.58)
o= 0. (12.59)

The last term follows from solving the determinant with two identical energy
values I/, so that the potentials can cross. We have to distinguish two cases:

e The matrix element Hj, is zero. That is the case if the two functions <I>§0)

and <I>§°’ have different symmetries (for example having different values of
A). Then it is possible to find a certain value AR where the energies are
the same Fi(R.+ AR) = FEy(R. + AR).

o If <I>§0) and <I>§°) have the same symmetry, then H{, will in general be non-
zero. In almost all cases it is impossible to find a single value AR for which
the two conditions are satisfied simultaneously. Thus in general two elec-
tronic curves belonging to the same symmetry species cannot cross. This is
called the non-crossing rule of von Neumann and Wigner.

gﬁt_

AT

2551

20,5+

15,5+

Energy (hv)

10,5+

55—+

0,5+

e R e e A
-9 -6 -3 0 3 6 9
vibrational coordinate y

Abbildung 12.4. Energy relaxation via internal conversion (IC). If two potentials have dif-
ferent symmetries, the can cross. This is naturally the case for singlet and triplet potentials.
However, if some coupling exist between two potentials Sy and S; for example by vibratio-
nal coupling, the population of the level Sy can relax via internal conversion (IC) to the Sy
state. In this case the IC increases with increasing overlap (and mixing due to coupling) of the
vibrational wave functions in the two potentials.

12.4 Rotation and vibration of diatomic molecules

In the nuclear wave equation (12.33)the first term describes the kinetic energy due
to radial motion (we are in the center of mass coordinate system) and the second
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term is the kinetic energy due to rotational motion. Es(R) acts as an effective
potential. The orbital angular momentum N of the nuclei A and B (diatomic
molecule) can be expressed by the total orbital angular momentum }, and the
orbital angular momentum of the electrons

— - =
N=K-1L. (12.60)

. . . — — — - .
The orbital angular momentum is given by N = R xf, where P is the operator
for the relative linear rn_o)rnegtum of A and B and R the internuclear position
vector. It follows that R - N = 0 and that the components of the electronic

— —
orbital angular momentum L and the total orbital angular momentum K along
AB, which we define as the z-axis are equal Lz = K.

T
2 N
A Ry OR; B

Abbildung 12.5. Angular momentum of a diatomic molecule with no coupling between the
electronic and nuclear orbital motion and without spin coupling.

—_ =

For an isolated molecule with negligible spin-dependent coupling and no coupling
between electronic and nuclear orbital motion the wave function v, must be a

simultaneous eigenfunction of K2 and K, where K, is the component of K along
the OZ (OA, OB) space-fixed axis. Thus we have that

K, = K(K + 1)y, (12.62)

where the rotational quantum number K is a positive integer or zero, and —K <
MK S K:

In addition equations (12.42, 12.43) show that v, is an eigenfunction of L
Lab, = F,(R)L:®, = £hAv, (12.64)
Koy, = +hAy, (12.65)
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and because of equation (12.61) 1, must also be an eigenfunction of K. The
possible values of the quantum number K are (see Fig. 12.4)

K| > K. (12.66)
K = AMNA+1,A+2, ... (12.67)

Now we show the rotational kinetic energy term is given by

1 - — 1 —5 - — —
1
= 2MR2<<I>SU_52+L§—2?-f+L§+L§\¢S>FS(ﬁ)
h —
— 2MR2[K(K+1)—A2]FS(R)
1 2 2 =
~ g @lLs + L ANeLs 2Ny Ll Fy(R)

(12.68)

Here we used the fact that &, are orthonormal eigenfunctions and eigenstates

H
of L. Because of the axial symmetry around the Z axis the expectation values
(Lg), and (Lz) are zero. The relative notion of nuclei can now be expressed as

0 = 5 |eor (Por) - | B + ) - EIRGE)
(12.69)
A2Rh? 1

C2uR? 2uR?
(12.70)

The energy E.(R) acts as an effective potential for the wave function Fs(]_%) and
depends only on the electronic states. Since the last two terms are much smaller
than the first one, due to the greater mass of p with respect to m we use the
approximation

E'(R) = E,(R). (12.71)

The wave function for the nuclear motion FS(]_%)) can be expressed in terms of
the product of a radial function §s,x(R) and an angular function Y g, (©, D)

— 1 =
Fi(R) = E&UK(R)YAKMK(@, D). (12.72)
The quantum number v is called vibrational quantum number and assigns diffe-

rent solutions of equation (12.69) and is related to molecular vibrations. For a
given electronic state s the different states called rovibronic states are labeled
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by the rotational quantum number K and the vibrational quantum number v.
= —
The angular function Y zxas, (O, ®) are eigenfunctions of K2 and K, for a given
— —

A. For ¥ states (A = 0) it is K = N and the angular functions reduce to the
spherical harmonics Y, (O, @).

Y akug (©,®) = Nagar, x eM5® (1 — cos @)(A_MK)/2 (14 cos©)~ (A+Mg)/2
) (K—Mk)
% (acos @> {(1 = cos©)F (1 4 cos ©)F )} |(12.73)
— (2K + 1)(k + Mk)!
Nagmy = /_\/22K+1 K+ MK — MK — Mg)! (12.74)

Inserting equation (12.72) into equation (12.69) and dividing by the angular func-
tions we obtain the radial equation for the nuclei

R K(K+1)
0 {_ﬂ <dR2 T T R ) + Ey(R) - ESUK] Ssox(R)  (12.75)
_ dES 1 ) d2ES
B(R) = E(Bo)t+ (R = Ro) dR R:R0+ §(R_RO) dR? |p_p

(12.76)

Since E4(R) has a minimum at R = Ry the second term on the right hand side
of equation (12.76) vanishes. Neglecting the third and higher order terms we get
the parabolic approximation that correspond to the harmonic oscillator

ER) = B(Ro)+ gh(R~ Fo)? (12.77)

. 1 d°E,
T2 dR? |,

(12.78)

Inserting equation (12.77) into (12.75) we find an eigenvalue equation of the
vibrational energy E,

R d? 1
{——M— + ~ks(R — Ry)* — E} Y, = 0. (12.79)

This is the same eigenvalue equation than for the harmonic oscillator and we find
the same eigenfunctions as in the case of the harmonic oscillator and eigenvalues
given by

1 1
Ev:th<’l}—|—§>:hl/0(’l}—|—§>, UIO,LQ,... (1280)

with wy = (ks/pt)/2. Additionally, we can simplify equation (12.75) by approxi-
mating the internuclear distance R by Ry, that result in an expression for the
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rotational energy FE,.

2 h2
E,.=——K(K+1)=—K(K+1)=BK(K+1), K=A,A+1,... (12.81
s KUSH) = KU 1) = BE(K+1) 1, (12381)
Iy is the moment of inertia of the molecule for an equilibrium distance Ry and
reduced mass p. The constant B describing molecular properties is called rota-
tional constant. The equilibrium distance and hence B depends on the electronic
state s. The total energy E,,x is the sum of the individual energies

Ewx = Es(Ry) + E, + E,. (12.82)

For allowed pure rotational transitions the permanent electric dipole moment
has to be non-zero. In the dipole approximation the selection rules are for pure
rotational transitions

AK = +1 (12.83)
AMy = 0, +1. (12.84)

Note, the energy of the molecule cannot depend on My in the absence of external
fields and with no preferred direction in space. The energy is twofold degenerated
for A # 0 with degeneracy 2(2K + 1) and for ¥ states with A = 0 we find
degeneracy of the energy levels of 2K + 1. The levels split in the presence of an
electric field (Stark effect).

In the representation of the principal axis system of a rigid body the kinetic
energy of a rotating body is

1 1 1
E, = —K’4+—K’+—K? 12.85

21, “+2Ib b+QIC ¢ ( )
K? = K2+ K?+K? (12.86)

where I,, I, and I. are the principal moments of inertia about axis a, b, and
¢ with its components of the angular momentum K,, K;,, and K. about the
axis. Diatomic molecules are axially symmetric about the internuclear line, with
I, =1, I.= I, and K. = K. The system is called symmetrical top molecule

1 1
E, = K2+ K? K? 12.
2-[(1( a+ b)+2Ic c ( 87)
E, = 1K(K+1)+ ! LA K= A A4 (12.88)
T2l 21, 21, ’ o R

The rotational energy in equation (12.88) consist of two terms. The first term has
a rotational axis that goes through the center of mass with I, = uR2 and depend
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on K(K + 1). The second term depends on the moment of inertia 'I.” and on
the eigenvalue of the electronic state A2h2. If we include the second term in the
electronic energy F¢(Ry) we get the same description of the rotational energy as
in equation (12.81).

The approximation of the harmonic oscillator potential is only accurate in the
vicinity of the equilibrium internuclear distance Ry. Using this potential we im-
mediately find the eigenfunctions, which is more difficult for real potentials. In
the harmonic approximation one can identify 3N — 5 normal vibrations for linear
molecules and 3N — 6 normal vibrations for non-linear molecules. N denotes the
number of atoms (see Fig. 12.4). For a linear molecule like carbon dioxide the
potential for small oscillations around the equilibrium position by an asymmetric
stretching will be V' = $k(Axy — Axy)? + k(Awy — Aws)?, with z; are the coordi-
nates for the three atoms along the internuclear axis. Solving the linear equations
of the atomic coordinates result in normal coordinates describing normal vibra-
tions. The HO potential underestimates the real potential for smaller R and is

Normal vibrations:

CO, H,O
(0] C (0] H O H
1 V2 1
1337 cm o> O «—0 3657 cm
symm. stretch
o,
AN
-1 V3 -1
2349 cm 9 o> —0 o 3756 cm

asymm. stretch \.
1 I V1 I 1
667 cm X i 1595 cm
I I bending vib.
2 X °
N
Number of normal vibrations:

Linear molecules: 3N-5 Non-linear molecules: 3N-6

Abbildung 12.6. Normal modes of carbon dioxide and water.

far to strong for large internuclear distances R. A much better description of the
electronic potential for the nuclear vibration is given by (see Fig. 12.4)

E{(R) = Ey(00)+ Vi(R) = Es(00) + D, [e72*F~F0) _ ge=alf=Rol]i 9 89)
Vi(R) = D.]-1+a*(R— Ry)*+...] (12.90)
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q

Potential E (R) (eV)

0 1 2
Nuclear distance R (Angstrom)

Abbildung 12.7. Comparison between the harmonic oscillator potential (blue) and the much
more realistic Morse potential.

The terms Ry, D., and « are positive constants and are properties of the mole-
cules. Upon expanding Vj;(R) we find by comparison of the coefficients

1
D.o® = ka; a = wy 2%@ (12.91)
and the energies
1 1\?
hw?
= 12.
Buwo D, (12.93)
B=x.= < 1 (12.94)
hw
Dy = D, — 70 (12.95)

The quantity fwg is known as the anharmonicity constant and the dissociation
energy of the molecule (from the vibrational ground state at 7" = 0K) is given by
Dy. A deficiency of the Morse potential is that it is finite at R = 0, in contrast to
the true interaction V(R) which is infinite at the origin. Another defect is that
the potential falls off exponentially at large R instead of showing the R~ fall-off
due to van der Waals interaction between two neutral atoms which are far apart.
The wave functions of the Morse potential W, , are given by
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Molecule ‘ Ro(A) ‘ Dy (eV) ‘ To—1 (cm

-1 ‘ B/(hc) (cm

1) [ 10 [D[ (Cm) |

Hy
O,
Cly
Ny
CcO
NO
HCI
NaCl

0.742
1.21
1.99
1.09
1.13
1.15
1.28
2.36

4.5
5.15
251
9.83
11.13
6.5
4.46
4.24

4159.2
1556.3
965.9
2330.7
2143.3
1876
2885.6
378

60.8
1.45
0.244
2.01
1.93
1.70
10.6
0.190

0.40
0.50
3.53
28.1

Tabelle 12.1. Equilibrium distance Ry, dissociation energy Dy, fundamental vibrational fre-
quency Ty = vy/c, rotational constant B and the magnitude of the electric dipole moment in
debyes (1 debye = 3.36 x 1073°Cm).

Jre—l(R=Fo)]

8uDe.
a2h2

Vollk — 20 — DTk — v

1)52

AU —z/2 (

Vade Z — )Nk —v—s)
1 1

20 2

leV = 8065.48cm™"

= 1.60219 x 1071 J

em™ b = 1.98648 x 10722J

(12.96)

(12.97)

(12.98)

(12.99)

(12.100)

(12.101)
(12.102)
(12.103)
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0,5

0’0 T NAAAANAANAAANANA SN T

_0’5_

-1,0 1

Energy (eV)

Morse potential; D=-2.0 eV
v=0 (E=0.0726358 eV)
v=4 (E=0.605357 eV)

v =12 (E=1.41285 eV)
v=26 (E=1.99836 eV)

-1,5-

1 2 3 4 5 6 ' 7
Displacement

Abbildung 12.8. Morse Potential with some selected eigenfunctions of the Morse potential.

Wave function

Displacement

Abbildung 12.9. Asymmetric shift of the probability of the eigenfunctions of the Morse po-
tential to larger nuclear distances (displacement) upon going from v =0 to v = 5.
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Amplitude

o 5 10 15 20 25 30
Displacement

Abbildung 12.10. Enhancement of the wave function amplitude at larger displacement for
high vibrational excitations near the dissociation limit.

Abbildung 12.11. Explicitly calculated dependence of the N-H stretching vibration of a
NH3;NH} complex with the hydrogen bonding stretching.
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12.4.1 Centrifugal distortion or rotation-vibration coupling

The rotational energy FE, was approximated by the simple 'rigid rotator’ expres-
sion with a fixed internuclear distance at the equilibrium distance Ry leading to
a decoupling of vibrational and rotational motions. Without this approximation
we get a refined equation

0 = ——’u— + Veff(R) — Foox gva(R) (12.104)

h* K(K +1)
2u Rz

1—
Ver(R) = Vo+ 5ks(R — R)*+ci(R—R)?+co(R— Ry)* (12.106)

‘éff(R) = VM(R)+ K=AA+1,... (12.105)

In equation (12.106) we expanded V.;s(R) to the fourth order about its minimum
Vo at R = R;. Due to the fact that R is no longer a constant with R = Ry we
find a new equilibrium position at R;. The new equilibrium position R, coincides
only with Ry if K = 0. If we use the simple approximation of ¢; = ¢ = 0 and
ks = ks in equation (??) we find the new equilibrium position to be

R K(K +1

Ry = Ro + _%-

2u a*RyD,
The new energy eigenvalues can be calculated by treating the coefficients ¢; and
co as perturbations. The energy eigenvalues are given to second order by

(12.107)

1 1\? 2
Eox = —D.+ hw = - — K(K+1
K + hwy (v—|—2) B<v+2) +2,uR8 (K +1)
1
— a (v + 5) KK+1)- bK*(K + 1) (12.108)
N—_—— —
~ ”  stretching correction to the rigid rotator
rotation—vibration coupling
?)FLSWO 1
_ 1L 12.109
“ T LuaRiD. < aR0> ( )
h4
b = T2t D, stretching constant. (12.110)

In contrast to molecular vibrations in the condensed phase (liquid, solid phase)
excitations of molecular vibrations in the gas phase are coupled to rotational
transitions. If we assume excitation from the vibrational levels v — v’ and rota-
tional levels K — K’ and no rotation-vibration coupling we find the following
energy differences:

1 1
Ey—E, = h (v’ + 5) +B'K'(K'+1) — hev (v - 5) — BK(K +1)
(12.111)
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The rotational constants B and B’ are distinct for the different vibrational quan-
tum numbers v and v’. From the measurement of the spectral positions of the
absorption peaks one can determine the changes of the rotational constants and
thus the averaged internuclear distance for simple molecules. In the case of the
linear triatomic ?C'O; molecule the internuclear distance between the oxygen
and carbon atom is given by Ro—o = 1.1588 x 1078 cm.

The total wave function ¢ is given by

1 _
U =19Yxny= ‘PSXSMSE&UK(R)YAKMK(Q P)xn. (12.113)

In equation (12.113) @, is the spatial part of the electronic wave function, xsas, is

12
CO2
R-branch P-branch
0020 |
Resolution:
Av=05cm”’
o: 0015 f
o]
=
g 0,010 |
K~}
i
[]
2 0,005 | 1
< o,
P-branch
0,000 |
200 ; 750 ' 00 : 725

Energy in cm-’

Abbildung 12.12. Rotation-Vibration spectrum of 2CO, and 3CO;. There are two rotatio-
nal transition branches R (J — J+1) and P (J — J —1) coupled to the vibrational transition
v = 0 — 1. The dip in the middle of the two branches is related to the energy difference
AU = 1) — Ty = 2349 cm™! of a vibrational transition of '2CO,. The analogue energy for
1304 has a value of 2282 cm 1.

the spin function of the electrons, and sk (R) and Y axar, (©, @) are the nuclear
vibrational and rotational wave functions, respectively. The function yy is the
nuclear spin function. The function ®, is even or odd under the transformation
R — —R. For example for A = 0 the X7 and X states are even while the ¥

— —

and X states are odd. The function xgsp, is unaffected upon R — —R. The

vibrational wave function §s,x(R) depends only on the magnitude R of the vector
— —

R and is unaltered when B — — R. The rotational wave function Y arary (6, @)
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= AD + A1 A2x"2+ A3x"3 +...
—o—P-branch |  ¥IATAT R AR
2350 4 Parameter Value sd
A0 2349,7084 0,03364
Al -0,78079051 0,00337

iy A2 -0,0023305477  0,00007
~ 2340 |
= R =0,39999
(&) R*2=(0,99999
S~ SD =0,04789
S 3wt
>
)
—
2

2320 +
LLl

2310 |

1 i 1 i 1 A L " J
0 10 20 30 40 50

Rotational quantum number K

Abbildung 12.13. Spectral positions of the rotation-vibration absorption maxima as a functi-
on of K. The solid line is a polynomial fit to second order with coefficients: Ag = 2349.71+0.04,
A} = —0.781 £ 0.004, A, = —0.00293 £ 0.00007.

is either even (for K = 0,2,4,...) or odd (for K = 1, 3,4, ...) under the
ﬁ

—_
transformation R — — R. The overall symmetrical (S) or antisymmetrical (A)
character of the function v is given as follows:

g7 g ut u”

Keven S A A S (12.114)
Kodd A S S A

The nuclear spin function yx can be symmetric or antisymmetric with respect
to the interchange of the nuclei. For example 1°O:

e %0, has two spinless nuclei; Iy = 0

e Y is a constant and trivially symmetric in the interchange of the nuclei.
e The total wave function ¥ has to be symmetric (Boson)

e U vy, ¥ have to be symmetric

e If the electronic state is even (g7, u™), only even K are allowed and if the
electronic state is odd (¢, u™), only odd K are allowed

e The electronic ground state of O, is a 32; state

e Only odd rotational quantum numbers K are allowed. The ground state of
the *O, molecule is given by K = 1.

Physics of Atoms and Molecules



190 12 Molecules

The same effect is observed in C'O, which has a ground state 12; and therefore
only even rotational quantum numbers K are allowed (AK = £2). This results
in reduced numbers of vibration-rotation transitions. If the symmetry is reduced
160 = ¢ = O all vibration-rotation transitions can be observed.

The degeneracy of rotational levels is (2K + 1) (for ¥ states), and the relative
population ratios are given by

% _ IK (E—B0)/(5T) _ (9[¢ 4 1) BReK(K4D)/(sT), (12.115)
0 go

Since the rotational energies are small compared to the room temperature
1 ~1
kBTT:293K ~ E eV ~ 204cm (12116)

we can expect population of higher rotational levels at room temperature. The
rotational level with the highest population K,,,, is given by

kgT 1
Koz =\l37om ~ 5 (12.117)

That the population varies for different rotational quantum numbers K is visible
in Fig. 12.4.1. In this figure the rovibronic absorption spectrum of the triatomic
linear molecule 2CO; is presented. The vibration that is excited is the asymme-
tric stretching vibration which is infrared active and Raman inactive. Changing
the vibrational quantum number v,s of the asymmetric stretching vibration is
always connected with changing the rotational quantum number K. This is due
to the fact that changing the average bond length by going to higher or lower
vibrational quantum numbers changes the moment of inertia and therefore the
rotational quantum number (AK =+ 1). Excitation of the bending vibrations of
12C0, changes only the rotational quantum number for rotations with rotation
axis perpendicular to the bending vibration plane (AK +1). Rotations parallel to
the bending vibration plane do not change K and lead to the so called Q)-branch
with AK = 0.

In general the expectation value of the transition dipole moment (dipole appro-
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ximation) is given by

N M
—* g —
(Hr) = // Yk, @R, )8 i (R) |~ > Tited ZiR;
i=1 j=1
% Yarwe®( R, 7)Fwx (R)d cos Odd (12.118)
= / / Y akonty, Hie oY AR M d cos Od® (12.119)
i=fo=y’ / Y akat, HpermY Ak d cos OdD. (12.120)

In equation 12.120 the term ﬁperm is the permanent dipole moment of a mole-
cule. HCI has a permanent dipole moment in contrast to homonuclear diatomic
molecules such as Hy or Ny. Molecules with zero permanent dipole moment have
no infrared active rotational transitions. For molecules with non vanishing per-
manent dipole moment the selection rules for pure rotational transitions are in
analogy to the electronically transitions of atoms (dipole approximation):

AK = +1 (12.121)
AMg = 0, +1 (12.122)

12.4.2 Electronic spin and Hund’s cases

The most important magnetic interaction in molecules is the coupling of electronic
— —
spin S and the electronic orbital angular momentum L . If the nuclear spins are
ﬁ
ignored, the total angular momentum operator J for a diatomic molecule is given
by
— - = — - =
J=L+N+S=K+ S (12.123)

where N is in a direction orthogonal to the internuclear line. In the case of
|AE| > |A| > B that is the electrostatic interaction is much larger than the spin-
orbit interaction which is in turn larger than the rotational energy. An example
is given by the A?II term of CO™. In the electronic ground state X2X7T it is
found that |AE| = 20733 cm™', the spin-orbit constant is A = —117 cm™*
and the rotational constant is B_:> 1.6 cm~!. The electrostatic interaction has
axial symmetry and this causes L to precess about the internuclear axis, and
therefore Ly = +Ah and (Lz) = (Lz) = 0. Since in this case the rotation of
the molecule is slow, and the spin-orbit interaction is large compared with the
rotational energy, the spin angular momentum S will also terﬁ to precess about
the internuclear axis. Thus, simultaneous eigenfunctions of S?2 and Sz can be
found with eigenvalues of S(S + 1)h* and XA, respectively. Since Nz = 0 it is

QO = A+ 3 (12.125)
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where (2h are the eigenvalues of J; and the quantum number ¥ can take the
(2S5 + 1) values —S, =S + 1, ..., S. The quantum numbers A and ¥ are the
— —

projections of L and S on the internuclear line. The additional L-S coupling

leads to an energy given by
AE = AAY. (12.126)

For a given number A the energy levels split into (25 + 1) multiplet components,
which are equally space in energy by the factor A. For %ample if A =1 and
S =1, we have Q = 0, 1, 2 and Iy, 3II;, and ®II,. Since N? is now given by

— — — - =
N=J-QnE =7 -0 (12.127)

and we can rewrite the rotational energy by

E. = BlJJ+1)- 5 ] (12.128)
depends on the electronic state
E, = BJWJ+1)], J=Q,0+1,... (12.129)

ﬁ
Since | J | > Jz and J > () this can be used to determine an unknown quantum
number €2 by missing spectral lines with lower values of J.

12.5 LCAQO: Linear combination of atomic orbitals

To determine the orbitals of molecules we start with linear combinations of single
electron atomic orbitals. This approach simplifies wave function optimization with
variational methods (Rayleigh-Ritz). We define a test function e

Vtest = = ZCjSOj (12.130)

constructed by a complete basis set of single electron atomic orbitals {p;}. We
have to minimize

ciorH ) cjp;dV
Jorbdv [ cier o cipidV '
i J
> > ciciHj
i
= =0 12.132
> 2668y ( )
i
with the following integrals
Si; = /gofgojdV, overlap integrals for i # j. (12.134)
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To minimize (or maximize) € we have to fulfil the equations

de  Oe
(%Z- n oct

)

Vi =0 (12.135)

Using equation (?7) together with equation (12.132) we have

ZZC:CJ'HZ']' = EZZC:CJ'SZ‘]‘ (12136)
) j i J

9 de

%) 5F =0
81:8>1 ZHijcj == GZSijCj (12137)
J J
> (Hij—€Sy)e; = 0 (12.138)
J

Equation (12.138) is a homogeneous system of linear equations (for all i’s). We
have to solve it in a non-trivial way to determine the coefficients {c;} and build
the optimized eigenfunction of the molecular orbital. Thus, the determinant in
equation (12.139) has to vanish. As a result we obtain solutions of €,, which have
to be inserted into equation (12.138) to determine the coefficients {cf'}.

In the case of the H, molecule we choose the normalized 1s atomic orbitals
(AO) ¢1 and ¢, which are centered around the protons A and B (see Fig. 12.5).

1 - Qa
1 = pr(A) =pi(ra) =/ — e /™ (12.140)
agTm
1
P2 = ¢1s(B) = pa(rg) = | — e7"B/® (12.141)
agm
ra = |7~ Ral; r5=|7 — Ryl (12.142)
Ta = T—R/2% Tr=T+R/2 (12.143)

Since ¢ and o are normalized we have S;; = Sy = 1, we find the overlap
integral S(R) to be

ao 3 agp

S(R) = S12(R) = /w’f(m)%(rg)d? = (1 L (£>2> e /e (12.144)

The overlap integral is a two center integral and can be solved using confocal
elliptical coordinates. The matrix elements H;; are determined by using the fact
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Abbildung 12.14. Coordinate system for the molecular ion H, .

Abbildung 12.15. .

that 1 and @9 are eigenfunctions of the hydrogen atoms A and B.

H, = H H 12.145
1 A+ g+ IncoR ( )
JR— h?
- Vv v
2m "4 2m "B
2 2 2
- ‘ ‘ (12.146)

47T€0|?—§A| 471'60’?—§B| 47T€OR
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We can directly evaluate the matrix elements

Hi = [ G0 Hapilra)d? (12.147)
[t ead® - [ i) e aa)d + 5
= r r r— r r r
©1(ra)dap1(ra Y1\rAa 4#507"3@1 A ineoR
Bt —C / () — 1 (r )T (12.148)
= s — r T T .
! dregR J Pilra dmegrp p1ira )
Coulomb‘irntegral J
2
= Fi —J 12.149
! +47T€0R ( )

The integral J in equation (12.149) describes the electrostatic attraction of
—elp1|* from the nucleus A on the nucleic charge of the atom B. The Cou-
lomb integral is positive (([ e%o1|2d7")). Since the system is symmetric under
exchange of nuclei A and B the matrix elements Hy; = Hao are identical. The
overlap integrals are given by

Hyy = /%(TA)HeziPz(TB)d? (12.150)
/ ) |- 4 & +H] (rp)dT  (12.151)
= ra) |— r r )
P1lra 477'607“,4 47T€[)R B | ¥2\ls
———
E1s5¢p2(rB)
Bt —")s /*( V)T (12.152)
= . — r rg)dr :
! 4megR J P1ira 47T€07"A902 B )
overlap i;teg'ral K
o2
= | F S(R) — K. 12.153
AR o

The overlap integral K describes the electronic overlap probability density
—epi(ra)pe(rp) which interacts with the nucleic charge of atom A. Due to sym-
metry reasons it has to be Hyjy = Ha;. The term K in equation (12.153) is without
classical interpretation, but represents the term that is responsible for the binding
of different atoms. Now we have to solve the determinant:

Hll—e H12—GS .
Ho—eS Hoy—e | =0 (12.154)

This leads to a quadratic equation with solutions for the energies

Hyy + Hyo

= 12.155
Hll - H12

L= 12.156

¢ TS ( )
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Inserting the solutions into the system of equations we have the coefficients

of = o = (12.157)
2(1+ S(R))
_ _ 1
o = —Cy = (12.158)
2(1 - S(R))
and can build the eigenfunctions v, and ¥ _

1
by = 2“+Sm»WMm+¢MBﬂ (12.159)

1
Yo = 21— S(R) [p15(A) — ¢15(B)] (12.160)

(12.161)

The eigenfunctions ¢, and t_ given in equations (12.159) and (12.160), respec-
tively, are gerade and ungerade functions under the inversion operation 7 — —7~
and represent the molecular orbitals for H, . The wave function v, is the binding
wave function and exhibit an increased electron density between the two nuclei A
and B (see Fig. 12.5), whereas the wave function 1_ exhibits a knot at the center
of inversion symmetry and a strongly reduced electron density between the two
nuclei. The electron density is given by

—e€

ely<|* = ZE55MJMi¢UBm%¢®i¢MBﬂ (12.162)
— gl + lon(BIP £ [¢;S<A>¢1S<§>1 + ggt)AB)solS(A)J
(12.163)

Physics of Atoms and Molecules



12.5 LCAO: Linear combination of atomic orbitals 197

"p_ = \Pq-‘Pb

0, =9+,

Abbildung 12.16. Orbital wave functions of the hydrogen ion. The wave functions 14 and
1_ represent the binding and antibinding orbitals of the hydrogen ion. The binding orbital
exhibits increased electron density between the nuclei, while the antibinding orbital shows
reduced electron density between the nuclei.

NN\

O+ G*.

o

AR
N\

Abbildung 12.17. The binding and antibinding molecular orbitals of the hydrogen ion has
axial symmetry.

The two energies of the molecular orbitals are given by

Hll + H12
er(R) TS(R) (12.164)
) By, + ﬁ — J(R) + (Els + 4;;03> S(R) — K(R) (12.165)
= 1+ S(R) |
2 J(R)+K(R)
L - 12.1
BT R 14 S(R) e
Hyy — Hyo e? J(R) — K(R)
_ _ Hi-Hy _ 12.1
e_(R) 1—-S(R) e AregR 1—S(R) e
R R
S(R) — {1 + CL_O + B_ag} e /a0 (12.168)
o2 R
_ 1 (1 o —2R/ao :
E g { ( n ao) e } (12.169)
e? R R
— — - /ao
K(R) e {1 - } e . (12.170)
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The integrals J(R), K(R), and S(R) were solved by the use of confocal elliptical
coordinates. The molecular ground state is connected with the wave function
(binding state). To compare these energies with the dissociation energy D, one

e, V., 1o,

Eqg WisA) —  E ¥ B

I ‘Icsg

Abbildung 12.18. Energy splitting of the molecular orbital states.

has to calculate the full dependence of €, (R) of the internuclear distance R. The
equilibrium distance Ry is calculated to be Ry = 1.32 Aand the dissociation
energy is calculated to be D, = Ej3 — ey = 1.77 eV. The experimental values are
Ry = 1.06 Aand D, = 2.79¢eV. The discrepancy is due to the fact that for B =0
the charge at the origin is 2, comparable to the helium atom. But in the case of
the helium atom we saw, that the effective charge is less than 2. The next step
is to optimize the molecular orbitals with varied nuclear charge (e=2""/). Up
to now we considered only homonuclear diatomic molecules where the covalent
bonding is strong. In general Hy; # Haye and if we set S(R) = 0 we find for
heteronuclear diatomic molecules:

O = (HH — 6)(H22 — 6) — H12H21 (12171)
H21 = Hik27 |H12’2 - A2 >0 (12172)
0 = (Hll - 6)(H22 - 6) - |I{12|2 (12173)
Hy +H Hy — Hy )\’
%::;%}2i¢C£7J%4A2 (12.174)

Hy, + H. Hy, — H. 4A?
_ Hdnt 2 Hu 22\/1+( (12.175)

2 2 HH —Hgg)z

For many heteronuclear molecules it is |H1; — Has| > A so that we can expand
the square root and get
A2
_ = H —_ 12.176
‘ N, Hy (12.176)
AQ

= Hypp—o —
# " Hy — Hy

(12.177)

€+

The lowering of the lowest energy level is now given by the term
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140 (eV)

3130
0.1

12.0

0.05
=]5120
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6.0

=1.0

-0.05
=20

-0.10
4-3.0

Abbildung 12.19. The lowest electronic energy curves of Hy . The curves labeled A show the
calculated wave functions using LCAQO, while the curves labeled B show the exact solutions.

A’ H iy < H (12.178)
— _— .
Hyy — Ho P\ Hy — Hy "

&1 Hiy Hyy — Hyo

— X = >1 12.179
(02) e~ — Hy His ( )

C1 His Hys

— X ~ <1 12.180
(Cz)+ € —Hyu  Hyp — Hiy ( )

In the case of heteronuclear bindings the binding is strong if the interacting
atomic orbitals are similar and Hy; =~ Has. If this is not the case, the ratios of
coefficients for ¥, and _ is very different, meaning the molecular orbitals are
poorly mixed (1 ~ 1 and ¥ ~ ).
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£
Hyy
H 2
2 A [(Hq4-Hyy)
€y

Abbildung 12.20. Energy splitting of the molecular orbital states of heteronuclear diatomic
molecules.

1s 1so,
United atom R— Separated atoms
(R=0) (R > )

Abbildung 12.21. Correlation diagram between united atom and separated atom states for
homonuclear diatomic molecules. The energy spacings are arbitrary and the actual energies vary
from molecule to molecule. The diagonal lines sketch only trends and for a specific distance R
the actual energies have to be calculated.
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12.6 Benzene: Application of the LCAO-MO method

In molecules with more than two (H,") identical atoms the symmetry is higher.
In the case of benzene CsHg we find six identical atoms with six single bonds (o)
between the carbon atoms C' and the hydrogen atoms H and six bonds between
the carbon atoms. This is due to sp? hybridization. One p, atomic orbital per
carbon atom remains and is responsible for double bonds between the carbons.
The molecule does not change under rotation about the z-axis (see Fig. 12.6) by
60°. Thus it has Cg symmetry. Due to the fact that all atoms are identical, the

H

H

Abbildung 12.22. 'Resonance structure’ of benzene. The 6 carbon atoms are equivalent and
the molecule has Cg symmetry. The z-axis is directed perpendicular out of the paper plane.

picture of a 'resonance structure’ as presented in Fig. 12.6 has to be wrong. The
molecular orbital wave functions are given by

=) it (12.181)

with equal coefficients |¢;|. The probability to find an electron at the atom i does
not depend on ¢ and the electron is called delocalized. There are six electrons
from the six p, orbitals, which are delocalized. To determine the coefficients we
use the symmetry property Cg of the system. Assume a p, atomic orbital ¢(7)
centered at the origin of the molecule. The atomic orbital centered at the atom ¢

—_
at I?; is given by
- =
¢;(7) = (T — Rj). (12.182)

If H is the Hamilton operator describing the delocalized electrons, the operator
commutes with Rgo:

[H, Reo] =0 (12.183)
and both operators share the same eigenfunctions. The eigenvalues \ are
Reot)(T) = (Reo ™) = A(T) (12.184)
Moo= 1 (12.185)
N = €%k k=0, +1, £2. (12.186)
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If we let Rgo operate on 1 we find
_
Reotp(T) = R6OZCJ¢J (77— ) Z%&m@( - Rj)

H
_ chqu_l(? —R;_y) (12.187)
J

~ (12.188)
_ Tk S (T - R,) (12.189)

J
N Z%’%’—l _ %k ch¢j (12.190)

j J
iigm Zcm+1¢m — ik Zcmgbm, ¢m linear independent  (12.191)
Cmi1 = ke (12.192)
s = (12.193)

The solution is

Cgk) _ ei%”’%g’“) (12.194)
]c§k)| _ |c(()k)]. (12.195)

The probability to find an electron in the status k at the j* carbon atom is
proportional to o \c§k)]2. Since this probability is the same for every j the wave
function has to be symmetric in j and is given by

r = Zc (T — R;) = co)Ze T (T — R,). (12.196)

The coefficient c(()k) in equation 12.196 is the normalization coefficient (for example

1/4/6) and we can now solve the system of equations

(Hyj — e.Si) ¢ =0 (12.197)
and calculate the eigenenergies. We can set
Hi;=a (12.198)
which is independent of ¢ and set
Hiip1=0 (12.199)

which is the resonance integral and does not depend on 7 and is cyclic i —1 = i+5.

In the Hiickel method the following approximations are made:
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e Only the nearest neighbor interactions are not zero
H;; #0, j=1+x1

e Overlap with the neighboring atoms are neglected

Sij = 0ij

Inserting the coefficients into equations 12.197 we find with the Hiickel method

0 = (H11 —6k511>cgk) + (H12 —6k512)cgk) 4+ ... +<H16 —6k516)6ék)

« I =0 8
(12.200)
0 = (a—e)esh 4 Bei6h 4 Bei T ho (12.201)
0 = (a—e)+ 0 (e%k + e—i%”’“) (12.202)
21k

e = o+ 28cos (%) L k=0, +1, 2. (12.203)

The terms a = (i|H|i) and § = (i|H|i £ 1) are negative and 3 is the interaction
between the nearest neighbors which result in a stabilizing interaction. The lowest
energy term is € = o + 23, which is the ground state of benzene. According to
Pauli’s principle we can fill up the ground state with two electrons of opposite
spin and go on with the second next lowest state and so on. Since we can fill
up the states with 6 p, electrons the total ground state energy is (in the Hiickel
approximation without electron-electron interaction S)

Eges = 2(a+208)+4(a+ ) =6a+ 83 (12.204)
€0 = a+28 (12.205)
6 = a+p (12.206)
€ = a—pf (12.207)
e = a—20. (12.208)

The total energy of the six delocalized electrons is Fy, = 6 + 83, which is 23
lower than the total energy for three localized double bonds with £ = 6a+64 (wi-
thin the Hiickel approximations). Therefore, the stabilizing of the delocalization
of the electrons is 23. The wave functions ¢, are given without normalization

Yo = ¢1+ P2+ d3+ Qs+ P5+ P (12.209)
w:l:l _ e:tzw/3¢1 + e:l:127r/3¢2 + e:l:mr(b3 + 6:i:z47r/3¢4 + e:tz57r/3¢5 + e:l:267r/3¢6
(12.210)
¢i2 _ e:ti27r/3¢l + e:I:z'471'/3¢2 + e:l:i27r¢3 + 6:I:i871'/3¢4 + 6ii107r/3¢5 + 6:I:z'l27r/3¢6
(12.211)
Y3 = —¢1+ d2— P53+ da— ¢5 + do (12.212)
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k=3 o—2pB

o

k=-1 ; k=1 % o+

k=0 + o+ 2B

Abbildung 12.23. Energy eigenvalues of the benzene molecule calculated with Hiickel method.

The wave function vy has zero knots, 111 has one knot line, ¥15 has two knot
lines, and 13 has three knot lines going through the molecule.

1 2 3 4 5 6

Abbildung 12.24. Qualitative representation of the benzene wave functions with increasing
number of knots along the benzene ring.

Physics of Atoms and Molecules



12.6 Benzene: Application of the LCAO-MO method 205

(b)

Abbildung 12.25. Molecular orbitals of benzene forming single bonds (a) and double bonds
(b).
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12.7 Hybridization, structure of polyatomic molecules

Atomic orbital wave functions represent solutions of the SE. A linear superpo-
sition of solutions is again a solution of the SE. Molecular orbitals can be built
of superpositions of atomic orbitals resulting in binding and antibinding orbitals
(Fig. 12.7). For example upon excitation of an electron of the s-orbital of a carbon

(c) Molecular orbitals combinations of p, and py-crbitals
Abbildung 12.26.

atom ((1s)?(2s)?(2p)?) to the excited state ((1s)%(2s)(2p)?), we get one electron
in the 2s, 2p,, 2p,, and 2p, orbital, and we can form a linear superposition of se-
veral wave functions (Fig. 12.7). This is called hybridization. Hybridization of an
s-orbital and an p,-orbital leads to digonal hybridization with MO wave functions
¥4 and 9, (Fig. 12.7). These two functions give rise to two o bonds in opposite
directions along the z-axis. Ethine is an example for sp-hybridization (Fig. 12.7).

1

vy = N—+(¢s+¢pz) (12.213)
1

Yo = K(zzzs—zﬁpz) (12.214)

(12.215)
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Hybridization of an s-orbital and two p-orbitals is called sp? hybridization. This

L @ (
-2

sp hybridization of s and p, orbitals

Abbildung 12.27.

Molecular orbitals of ethine:

The sp-orbitals form the 6-bonds,
while the remaining py and Py
orbitals form the m-bonds.

Abbildung 12.28.

type of hybridization is responsible for the molecular structure of ethylene (Fig.
12.7, Fig. 12.7). The angle between the three o-bonds, which lie within one plane
is 120°.

1

ho= (ws + \/iwpz) (12.216)

Py = % <ws + \/gwpy — %wpz> (12.217)

1 3 1
Y3 = 7 (ws — \/;wpy — E%> (12.218)
(12.219)

S

Hybridization of an s-orbital and three p-orbitals is called sp® hybridization.
This type of hybridization is responsible for the molecular structure of methane
(Fig. 12.7). The four new wave functions called hybrid orbitals are equivalent and
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(a) sp2 hybridized wave functions (b) p, wave functions

Abbildung 12.29.

wave function of the
o-electrons

wave function of the
m-electrons -

Abbildung 12.30.

orthonormal (in the sense of the scalar product) and point in the four different
directions of a tetrahedra: (1,1,1), (1,-1,-1), (-1,1,-1), and (-1,-1,1). The four un-
paired electrons occupy the wave functions t1,..., 14 with parallel spins (Hund’s
rule) and experience a reduced Coulomb repulsion because of reduced overlap of
the wave functions. The resulting angle between the main directions of the wave

functions is 109.47°. For the directions we can write

Y x Ti=z+y+z
'Lpg X ?2:—.’1]—3/—'—2
- =
cos = UL
(7"1)2(7"2)?
—-1-1+1 1

(12.220)
(12.221)

(12.222)

(12.223)
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Abbildung 12.31. Atomic wave functions of the carbon atom (left) and its hybridized wave
functions (right). The angle between the main directions of the wave functions is 109.47 °.

In the methane molecule (CHy4) the four molecular orbitals responsible for the
four single bonds between the carbon and the four hydrogen atoms are given by
the hybrid wave functions ; and the hydrogen wave functions ¢; (see Fig. 12.7)

- az;w(agol—kbwl) (12.224)
U, = ﬁ(atpzwwag) (12.225)
Uy = a++b?<a¢3+b¢3) (12.226)
v, — a++b2(ago4+b¢4). (12.227)

Hybridization result in strongly increased electron overlap and therefore in stron-

Abbildung 12.32. Hybridized wave functions and molecular orbitals of the methane molecule
(left) and ethane molecule (right).

ger chemical bonds.
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12.8 Van der Waals interaction

12.9 Electronic transitions in molecules

Absorption (a.u.)

Emission intensity (a.u.)

T T T T T T T T T T T T T
200 250 300 350 400 450 500 550
Wavelength (nm)

Abbildung 12.33. .

Abbildung 12.34. Hybridized wave functions with sp? hybridization and angle of 120 ° bet-
ween the orbitals (left). The remaining p. orbital (right).
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o-Elektronen

w-Elektronen™%

(b)

Abbildung 12.35. Hybridized wave functions (sp?) and molecular orbitals of the ethylene
molecule (upper panel). The remaining two p, orbital perpendicular to the o bonds form a

double bond (lower panel).

Abbildung 12.36. Hybridized wave functions (sp). The remaining two p, and two p, orbitals
lead to two 7 bonds perpendicular to the o bond. The molecules can form triple bonds (e.g.

ethine).
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Abbildung 12.37. .
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