Innovations
List of patents:
1. METHOD FOR POLYMERIZING MONOMER UNITS AND/OR OLIGOMER UNITS BY MEANS OF INFRARED LIGHT PULSES
EP - 16.04.2014
Appl.No 12730410 Applicant FREIE UNIVERSITÄT BERLIN Inventor Anja Heyne, Karsten Heyne
2. METHOD FOR THE INFRARED-LIGHT-INDUCED YIELD OPTIMIZATION OF CHEMICAL REACTIONS BY MEANS OF VIBRATION EXCITATION
US - 08.08.2019
Appl.No 16389662 Applicant FREIE UNIVERSITÄT BERLIN Inventor Karsten Heyne, Florian Kössl, Valeri Kozich
A method for the infrared-light-induced yield optimization of chemical reactions is provided. An energy input into at least one starting material that is subjected to a chemical reaction takes place by means of infrared light pulses having a mean wavelength in the range of 2000 to 100000 nm. The chemical reaction here is a reaction in which a product, the molecular formula of which does not correspond to the molecular formula of the starting material, is formed and wherein the yield optimization for the most part is not based on a thermal heating of the starting material. The infrared light pulses have a fixed wavelength and the energy input into the starting material takes place by means of vibration excitation by a one-photon process.
3. LASER PULSE SHAPING METHOD
WO - 25.07.2013
Appl.No PCT/DE2013/200002 Applicant FREIE UNIVERSITÄT BERLIN Inventor Lindinger, Albrecht; Heyne, Karsten
The invention relates inter alia to a laser pulse shaping method for microscopically viewing and modifying an object (5), in which a temporal modulation and a two-dimensional spatial modulation of laser pulses (P) are carried out, wherein at least the phase of the laser pulses is modulated dependent on the location, the modulated laser pulses (P"1-P"n) being directed at the object (5).
4. PURE NON-INVASIVE METHOD FOR IDENTIFICATION OF ORGAN DISEASES OR IMPAIRED ORGAN FUNCTION BY INVESTIGATION OF MARKER SUBSTANCES IN EXHALED AIR STIMULATED BY INHALED MARKER SUBSTANCES
US - 20.09.2018
Appl.No 15760211 Applicant FREIE UNIVERSITÄT BERLIN Inventor Theodore Von Haimberger, Anja Heyne, Karsten Heyne
The disclosure relates to a method for providing original data that can be used for subsequently determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism. This method is characterized by several steps, one of which is administering a marker substance to a living organism by inhalation, wherein the marker substance has a vapor pressure above 0.01 mmHg at 37° C. In other method steps, the concentration of this marker substance in exhaled air is determined at at least two different time points. Then, a difference in marker substance concentration is calculated.
5. METHOD FOR DETERMINING THE 14C CONTENT OF A GAS MIXTURE AND SYSTEM SUITABLE THEREFOR
WO - 03.03.2011
Appl.No PCT/EP2010/005331 Applicant FREIE UNIVERSITÄT BERLIN Inventor HEYNE, Karsten, Tom Rubin, Jens Beckmann
The invention relates to a method for determining the 14C content of a gas mixture in which 14C isotopes are present as constituents of a molecule, wherein the gas mixture is provided in a measuring chamber (2) and infrared laser radiation (L) is supplied to the measuring chamber (2). The laser radiation (L) provided for irradiating the gas mixture is deflected such that it passes through the measuring chamber (2) a plurality of times while interacting with the gas mixture and the laser radiation (L) is supplied to a detector in order to calculate the absorption of laser radiation by the gas mixture and to determine the 14C content of the gas mixture therefrom. A pulsed laser (1) is used for generating the laser radiation (L) and generates laser pulses having a pulse duration of less than 5 μs, in particular less than 500 ns, which are supplied to the measuring chamber (2).
6. APPARATUS FOR SPECTROSCOPICALLY ANALYSING A GAS
WO - 27.09.2007
Appl.No PCT/EP2007/002525 Applicant FREIE UNIVERSITÄT BERLIN Inventor STOCKMANN, Martin; Björn, Riecke; Karsten, Heyne
The invention relates to an apparatus for spectroscopically analysing a gas, said apparatus having at least one radiation source (1), at least one detection apparatus (12; 20), at least one sample chamber (13) and a system of optical elements (4; 5; 6; 7; 9; 10; 11; 18; 19) which is intended and set up to direct at least part (3b) of the radiation (3) emitted by the radiation source (1) through the sample chamber (13) onto the detection apparatus (20), wherein the sample chamber (13) is used to hold a gaseous sample which contains the gas to be analysed, and wherein the apparatus is configured in such a manner that the sample can continuously flow through the sample chamber (13), and means (16) are provided for the purpose of determining the pressure and/or the volume and/or the concentration of the sample in the sample chamber (13). The invention also relates to a corresponding method for spectroscopically analysing a gas.
7. Measuring device and method for analysing a test gas by means of an infrared absorption spectroscopy
AU - 16.08.2012
Appl.No 2010334907 Applicant Humedics GmbH Inventor Heyne, Karsten
The invention relates to a measuring device and to a method for analysing a test gas by means of an infrared absorption spectroscopy. Said measuring device comprises: a measurement chamber (2) containing test gas which is to be analysed, a laser (1) which is arranged in relation to the measurement chamber (2) such that the light emitted by the laser traverses the measurement chamber (2), a detection device (61) which detects the light emitted by the laser (1) and traversing the measurement chamber (2), and an evaluation unit (8) which evaluates the signals generated by the detection device (61) for determining light absorption in the measurement chamber (2). According to the invention, said laser (1) is a laser emitting in a narrow-band, the line width thereof being less than or equal to the width of an infrared absorption line of the test gas which is to be measured, said laser (1) being embodied and adjusted so that the laser frequency is varied periodically within a defined spectral range, the laser frequency and the variation being selected such that at least one infrared absorption line of the test gas which is to be measured lies in the defined spectral range, and the detection device (61) is embodied and adjusted in order to detect, with temporal resolution, the light emitted by the laser (1) and traversing the measurement chamber (2) in such a manner that the light absorption can be determined, with temporal resolution, within the predetermined spectral range, the detection device (61) carries out an individual absorption measurement within a time span of 10-5 s or faster. Said measurement device is also suitable and adjustable for measuring test gas which is in the form of a respiratory gas of a human or animal, said respiratory gas being replaced in the measurement chamber only under the respiration effect of humans or animals, and the respiratory resistance of the measurement device is less than 60 mbar.
8. Verfahren zur Bestimmung der metabolischen Leistung mindestens eines Enzyms
DE - 18.10.2012
Appl.No 102011007310 Applicant HUMEDICS GMBH Inventor HEYNE KARSTEN
Die Erfindung betrifft ein Verfahren zur Bestimmung der metabolischen Leistung mindestens eines Enzyms. Es umfasst die Schritte der zeitaufgelösten Bestimmung der Konzentration eines Produktes in der Ausatemluft eines Individuums, wobei das Produkt durch eine Metabolisierung eines dem Individuum zuvor verabreichten Substrates durch mindestens ein Enzym des Individuums erzeugt wurde und wobei die Produktkonzentration zumindest bis zum Erreichen der maximalen Produktkonzentration in der Ausatemluft des Individuums bestimmt wird, der Anpassung einer Modellfunktion an Messwerte der Produktkonzentration, die durch die zeitaufgelöste Bestimmung der Produktkonzentration zwischen einem Anfangszeitpunkt und einem Endzeitpunkt erhalten wurden, und der Bestimmung der metabolischen Leistung des Enzyms anhand von Parametern der Modellfunktion, welche die Modellfunktion spezifizieren. Das Verfahren zeichnet sich dadurch aus, dass die Bestimmung der metabolischen Leistung des Enzyms anhand mindestens zweier Parameter der Modellfunktion erfolgt, mit der Maßgabe, dass als Parameter nicht gleichzeitig der Maximalwert der Modellfunktion und die Zeitkonstante der Modellfunktion gewählt werden, sofern die Modellfunktion eine monoexponentielle Funktion ist, und der weiteren Maßgabe, dass der Anfangszeitpunkt und/oder der Endzeitpunkt nicht als Parameter gewählt werden.
9. Verfahren zur Bestimmung der Leberleistung eines Lebewesens mittels quantitativer Messung der Metabolisierung von Substraten
DE - 30.06.2011
Appl.No 102009055321 Applicant Humedics GmbH Inventor Heyne Karsten, Prof. Dr.
Verfahren zur Bestimmung der Leberleistung eines Lebewesens, umfassend
– das Verabreichen von mindestens einem mit 13C markierten Substrat, welches durch die Leber unter Freisetzung von mindestens einem 13C markierten Metabolisierungsprodukt umgesetzt wird, und
– die Bestimmung des Gehaltes des mindestens einen 13C markierten Metabolisierungsproduktes in der Ausatemluft über ein bestimmtes Zeitintervall mittels mindestens eines Messgerätes mit mindestens einer Auswerteeinheit, dadurch gekennzeichnet, dass die gemessene anfängliche Zunahme des Gehaltes des mindestens einen 13C markierten Metabolisierungsproduktes in der Ausatemluft mit einer Differentialgleichung erster Ordnung beschrieben wird und aus der Lösung der Differentialgleichung erster Ordnung der Wert Amax für die maximale Konzentration des 13C markierten Metabolisierungsproduktes und die Zeitkonstante tau der Zunahme des Gehaltes des 13C markierten Metabolisierungsproduktes bestimmt werden.
10. METHOD FOR CONTROLLING THE EMISSION FREQUENCY OF A LASER
EP - 27.03.2019
Appl.No 17726584 Applicant HUMEDICS GMBH Inventor Axel Luchterhand, Alexander Helmke, Tom Rubin, Karsten Heyne
The invention relates to a method for controlling the emission frequency of a laser, which is distinguished by the following steps of: recording a first spectrum by passing laser light emitted by the laser through a sample to a detector, wherein the detector is connected to a multi-channel analyser which assigns pulses detected by the detector to a channel; determining a first channel which has been assigned the maximum of a first signal in the first spectrum; determining a second channel which has been assigned the maximum of a second signal in the first spectrum; recording a second spectrum in a similar manner to the first spectrum; determining whether the maximum of the first signal in the second spectrum has been assigned to the first channel and whether the maximum of the second signal in the second spectrum has been assigned to the second channel; adjusting the operating temperature of the laser, if differences were determined in the previous step, in such a manner that the maximum of the first signal in the second spectrum is assigned to the first channel and/or the maximum of the second signal in the second spectrum is assigned to the second channel.
11. PULSE SHAPER AND LASER WITH PULSE SHAPER
WO - 12.11.2009
Appl.No PCT/EP2009/055465 Applicant FREIE UNIVERSITÄT BERLIN Inventor Karsten Heyne, Mathias Hartmann, Klaus Molkenthin
The present invention relates to a pulse shaper, comprising a first and a second dispersive element, wherein an optical pulse can be coupled to the pulse shaper (1) along a coupling direction such that said pulse exits from the pulse shaper after passing through the first and the second dispersive element along an exit direction, and the first and second dispersive element are adapted to be moveable relative to one another and disposed in such a way that the path length to be traversed by the optical pulse through the first and the second dispersive element after coupling to the pulse shaper can be adjusted without any change in a displacement (Δy) between the coupling direction and the exit direction. According to the invention, the first and the second dispersive element are disposed in such a way that the shape of the optical pulse experiences a change as the pulse travels through the pulse shaper (1), said change being caused primarily or exclusively by the group velocity dispersion occurring during passage through the first and/or the second dispersive element.