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The energies of point defects in graphite have been calculated from first principles. The various interplane
interstitial configurations are found to have a wider range of energies than in some earlier calculations,
implying a larger interstitial migration energy than previously expected ��1.5 eV�. Interplane interstitials are
found to be stabilized by a shear of one graphite plane with respect to its neighbors, as this allows the
interstitial to bond to three or four atoms in two planes in the ylid and spiro configurations. The minimum
interstitial formation energy in sheared graphite is only 5.3 eV compared to 6.3 eV in perfect graphite. Such
interstitials form a strongly bound vacancy-interstitial pair with a formation energy of only 10.2 eV. The
formation energy of a single vacancy is 7.6 eV. The formation energy and the activation barrier of the
Stone-Wales defect in a single layer of graphite were also calculated.
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I. INTRODUCTION

Graphite is the most stable phase of carbon and it is used
as a catalyst, electrode material, refractory material, and neu-
tron moderator. Graphite consists of layers of three fold co-
ordinated, sp2 hybridized carbon atoms arranged in an
ABAB. . . stacking sequence. A single atomic layer of graphite
or graphene is the structural basis of carbon nanotubes,
fullerences, and related nano-materials, which are presently
the subject of intense interest. Nanotubes are of particular
interest because of their remarkable properties such as a high
stiffness, high electrical conductivity, high current-carrying
capacity, and ease of field emission.

There has been considerable experimental work on the
intrinsic defects in graphite due to the importance of radia-
tion damage. Until recently, its defects have been less exten-
sively studied at a theoretical level. The simplest intrinsic
defects are the vacancy and the interplane and intra-
plane interstitials. Thrower and Mayer1 derived the creation
and migration energies of the vacancy and the interplane
interstitial from experimental data. There have been various
calculations of the defects using semiempirical methods.2–7

Xu et al.7 used the environmentally dependent tight-binding
method to study the various interstitials. However, these cal-
culation methods have an empirical component and may be
inaccurate, particularly for the interstitials. The first ab initio
calculations were the plane-wave pseudopotential calcula-
tions of Kaxiras and Pandey.8 This work treated only the
vacancy and intralayer interstitial, but omitted the equally
important interlayer interstitials. The latter defects have only
recently been treated by ab initio methods by Heggie et
al.9–11 These authors found more stable types of interstitial,
the spiro and the ylid, in the presence of interlayer shear, and
also the possibility of vacancy-interstitial interactions for de-
fects in different layers. These defects have now been ob-
served by electron microscopy between walls in double wall
nanotubes.12,13 In this paper, we clarify the energies of the
various simple and more complex defects using ab initio
methods.

In addition to these works on defects in bulk graphite,
there have been a number of accurate calculations of the

energy of carbon adatoms on graphite, for the purpose of
understanding atomic force microscope images of
graphite,14,15 and also the growth mechanism of carbon
nanotubes16 and nanostructures.17

Finally, there is the topological rearrangement of bonds in
a sp2 bonded sheet known as the Stone-Wales trans-
formation.18 It consists of a 90° rotation of a pair of atoms. In
graphene, the rearrangement converts a group of four hex-
agonal rings into a 5-7-7-5 ring cluster by a single bond
rotation. This rearrangement is very important in the growth
mechanism fullerene molecules such as C60 because it is the
means for the topological rearrangement of the five fold
rings, for example, converting a 5-6-6-5 configuration into a
6-5-5-6 configuration.18,19 In nanotubes, the Stones-Wales
transformation has become very important20–24 because it is
believed to be the primary straining mechanism of a nano-
tube under tensile stress.20

II. COMPUTATIONAL METHOD

Formation energies of defects in graphite were calculated
from the total energies of perfect and defected supercells. We
performed ab initio calculations of the total energies using
the CASTEP plane-wave25 and the SIESTA atomic-orbitals26

codes. In this section we first describe the parameters used in
the calculations, then the calculation of the formation ener-
gies, and how we optimized the supercells with the defect.

A. Ab initio calculations

The plane-wave CASTEP calculations used Vanderbilt27 ul-
trasoft pseudopotentials and k-point sampling by the
Monkhorst-Pack scheme. We used a plane-wave cutoff en-
ergy of 300 eV. The exchange correlation energy is calcu-
lated in the spin-restricted generalized gradient approxima-
tion �GGA� of the density functional with the par-
ameterisation of Perdew and Wang �PW91�. The GGA is
used because of its ability to describe large variations of
electron density, noting that graphite has large interstitial re-
gions. Some energies are compared for the local density ap-
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proximation �LDA� and GGA, in particular, bulk graphite
and the interstitials.

SIESTA calculations were done within GGA and LDA for
bulk graphite and the adatoms. For the interstitials, we used
SIESTA to perform convergency tests with respect to the size
of the supercell in the calculation. This was done within the
LDA, because it is computationally less demanding. The car-
bon core electrons were replaced by Troullier-Martins
pseudopotentials;28 valence electrons were described by a
double-� polarized �DZP� basis set with cutoff radii of
4.5 a.u. for the s and 5.4 a.u. for the p and polarizing d
orbitals.29 For the interstitial we also used a double-� �DZ�
basis �same cutoff radii� to verify the convergence with the
size of the supercell, see Sec. IV.

For the calculations of the total energies, we used 3�3
supercells in the in-plane direction of graphite. Cells contain-
ing a single sheet of graphite �graphene� and an adatom had
10 Å of vacuum between the layers to prevent interaction
between repeated images. The cells contained 19 carbon at-
oms including the adatom. The interstitials, vacancies, and
interstitial-vacancy pairs were calculated in a supercell three
layers thick with an ABA stacking. In this way, an interstitial
atom or a vacancy is placed between two layers AB and is
always separated by one normal layer before the next cell.
The cells contained 54 carbon atoms for the perfect structure
plus the added interstitial or minus the removed vacancy
atom. We also performed calculations for a 4�4�2 super-
cell �ABAB stacking� for some selected high-symmetry inter-
stitial positions �129 atoms�. Besides being somewhat larger
in the ab plane, this supercell has the correct stacking se-
quence of bulk graphite. These calculations were done with
SIESTA and the less expensive DZ basis as described above.

B. Formation energies and relaxation

The formation energies Ef were obtained from the total
energies of the supercells with a defect,30

Ef = Ed − Ebulk − n� ,

where Ed is the total energy of the defected supercell and
Ebulk the total energy of perfect graphite, which we calculated
for supercells of the same size as used in the runs with the
defects. � is the chemical potential of carbon, which we took
as the total energy of graphite. n gives the number of carbon
atoms that were added �n positive� or removed �n negative�.
Note that configurations with smaller formation energy are
more stable �smaller total energy� than configurations with
larger Ef.

Calculations of formation energies are difficult to con-
verge, because the total energies of a supercell are typically
on the order of 103 eV, whereas the formation energies are
only some eV. A convergence of the formation energy within
0.1 eV requires, therefore, the total energies to be accurate
within 10−5. At the same time large supercells are necessary
to have well-separated defects that cannot interact with each
other. The combination of the required high accuracy and the
large number of atoms make the calculations very demand-
ing. We estimate that the calculated relative formation ener-
gies are converged within 0.2 eV. By this we mean two for-

mation energies obtained with the same exchange-correlation
functional, pseudopotentials, and plane-wave or local-orbital
code. The absolute error in the calculated energies is larger,
on the order of 0.5 eV. This estimate is based on recalculat-
ing selected structures with better input parameters and the
comparison between the formation energies found with
CASTEP and SIESTA. The difference between the relative and
absolute energies will become more apparent when we dis-
cuss the formation energies or adatoms and interstitials in
Secs. IV and V. The bond lengths are converged within
0.01 Å unless explicitly stated otherwise. This accuracy was
estimated by comparing bond lengths �and angles� obtained
with the different ab initio methods.

The total energies of the cells with the defects were opti-
mized for the atomic positions until all forces were below
0.05 eV/Å. In the calculations at least one of the corner
atoms in the supercell was fixed to its position. For un-
sheared graphite all corner atoms were fixed, so that the
planes could not move with respect to each other.

The adatom and interstitials were placed into high-
symmetry sides, see Secs. IV and V. They were fixed in these
places within the ab plane and allowed to relax along c. With
SIESTA we optimized the positions of the adatoms and inter-
stitials along c during the conjugate gradient optimisation,
i.e., the atoms were allowed to move along the c axis.
CASTEP does not allow constraining the position along cer-
tain directions only. We therefore optimized the position of
the adatoms and interstitials manually by performing several
runs with different c positions for the added atom.

In the calculations for the vacancies all atoms except the
corner atoms of the supercell were allowed to find their mini-
mum energy position. During the relaxation of the Stone-
Wales defect �5�5 supercell of graphene�, the rotated bond
and the corner atoms were fixed; the other positions were
optimized. We carefully verified the convergence of our sys-
tems. The most extensive tests were performed for adatoms
and interstitials; the results are described in Secs. IV and V.

III. BULK GRAPHITE

The calculated lattice constants for bulk graphite are
shown in Table I. We find an equilibrium in-plane lattice
constant of a0=2.439 Å using CASTEP and the GGA, slightly
less than experiment. The c /a0 ratio varied between 2.65 and
2.94. Van der Waals interactions as between two layers of
graphite are, in general, rather poorly described by density
functional theory. In view of this, our c axis lattice constants
are in reasonable agreement with experiment c /a0=2.74; see
Table I. A very useful review of calculations of the band
structure and structural properties of graphite is given by
Boettger.32

The calculated cohesive energy Ec is 35% larger than ex-
periment using the LDA; see Table I. In many systems, the
LDA overestimates the cohesive energy, and this effect is
improved by using the GGA. In our calculations this reduced
the difference between experiment and theory to 25% in the
spin-restricted calculations. An isolated carbon atom, how-
ever, is in the triplet state. Thus, the cohesive energy is only
given correctly if spin polarized calculations are used for the
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free atom. Taking this into account we find Ec=−8.30 eV
using CASTEP and −7.74 eV using SIESTA. GGA and spin
polarization thus account for the largest part of the overesti-
mate of the cohesive energy. However, for graphite the GGA
leads to a reduction of the interlayer bonding, an over-
estimate of the c lattice constant �see Table I� and a very low
surface energy.31 Hence GGA predicts some structural prop-
erties of graphite worse than LDA.

IV. ADATOMS ON A SINGLE LAYER

We first consider the energies of a single additional car-
bon atom on a single layer of graphite, equivalent to an ada-
tom on the graphite surface. There are five high-symmetry
positions for an adatom, as shown in Fig. 1. The most im-
portant are A, the bridge site above the bond center between
two layer atoms, C above the center of a hexagon of bonds,
and D directly on top of an atom.

The total energies of the adatom in the five sites are given
in Table II. For sites A, B, C, and D we compare the CASTEP

and SIESTA results. The average difference between the two
calculations is 3% �0.2 eV root mean square�. We expected
such differences, since a fully converged calculation requires
a larger basis �higher energy cutoffs and longer basis func-
tion� and also a finer sampling in reciprocal space. However,
our main interests are the differences in formation energy
between the high-symmetry sites. As can be seen from Table
II, they are larger than the deviations between CASTEP and
SIESTA. In particular, the order of the formation energies is
the same in the two ab initio codes. We therefore conclude
that our ab initio formation energies are converged within the
accuracy required for this study.

The lowest energy site is found to be the bridge site A; see
Table II. Here, the adatom is bonded to two layer atoms with
a bond length of 1.51 Å, as seen in Fig. 1�a�. Meanwhile, the
bond between the atoms within the layer weakens a little,
increasing its length from 1.41 Å to 1.56 Å. Thus, the ada-
tom is forming two reasonably strong bonds. The next most
stable position is E. This adatom is similar to site A, except
that the bond is tilted. This allows the adatom to bond to two
atoms with one slightly shorter bond of 1.5 Å and one bond
of 1.51 Å �Fig. 1�e��. The in-plane bond lengthens to 1.55 Å.
The next most stable site is B �Fig. 1�c��. At site B, the
adatom makes a shorter bond of 1.49 Å and a longer bond of
1.65 Å, lengthening the in-plane bond to 1.52 Å.

At the on-top site D the adatom bonds directly to only one
layer atom if we do not relax the atomic coordinates. We
show this configuration in Fig. 1�d�; the bond length is
1.55 Å. This position is 1 eV less stable than site A. The
symmetric on-top position D is unstable; relaxing the atomic
positions allows the adatom to strain the graphene layer, so
that it can form a shorter bond of 1.48 Å to the nearest atom

TABLE I. Calculated cohesive energy and lattice constants of hexagonal graphite, compared to the
calculations by Furthmüller et al. �Ref. 25� �using similar pseudopotentials as used for CASTEP in this work�
and experiment �Exp.�; spin. pol. stands for spin polarized calculation.

Plane wave, CASTEP Atomic orbitals, SIESTA

Exp.GGA LDA Furthmüller GGA LDA

a0, Å 2.439 2.439 2.44 2.492 2.466 2.461

c /a 2.94 2.72 2.734 2.81 2.65 2.73

Ec �eV� −9.42 −10.05 −9.027 −9.1 −9.92 −7.374

Ec, spin pol. �eV� −8.3 −9.6 −7.74 −8.88

FIG. 1. �Color online� Configuration of an adatom at the various
symmetry sites on a single graphite layer �graphene�. Light gray
atoms are part of graphene; the adatom is dark gray �red�. The inset
on top shows the high-symmetry sites of a single graphene sheet.

TABLE II. Calculated formation energies of an adatom at vari-
ous positions as obtained with CASTEP and SIESTA; compare Fig. 1.

Site
A

Bridge B
C

Center
D

On top E
Isolated
�triplet�

GGA, CASTEP

Ef �eV� 6.6 6.9 8.5 7.2 6.8 8.3

GGA, DZP, SIESTA

Ef, �eV� 6.3 6.8 8.2 7.2 7.7
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and a long bond of 1.7 Å to a second neighbor atom. After
relaxing the atoms in the graphene layer, the formation en-
ergy decreases by 0.5 eV to �7.2 eV; see Table I. Finally,
in position C above the center of a hexagon, the adatom does
not make bonds to layer atoms, and this is the most unstable
position with a formation energy of more than 8 eV. The
adatom lies 1.66 Å above the graphite plane, at 2.15 Å from
the atoms �Fig. 2�c��.

The formation energies of an adatom thus depends on the
number of bonds the adatoms form with the carbon atoms in
the layer. The formation energies are smallest ��6.7 eV� for
adatoms that have two bonds to the graphene layer �sites A,
B, and E�. Site D has two bonds with different lengths in the

relaxed structure. Moreover, an adatom at D strongly strains
the graphene sheet, which makes the configuration less
stable. Site C has the largest formation energy, because no
bond forms between the adatom and graphene.

The energy of a carbon atom well away from the layers is
9.4 eV in a spin-restricted calculation. This reduces to
8.3 eV for a spin-polarized calculation, as the isolated carbon
atom is in a triplet configuration. This implies an absorption
energy of 1.7 eV for the A site. These values compare to an
adsorption energy of 1.4 eV at the A site found in the spin-
unrestricted LDA calculations of Lehtinen et al.15 and
1.78 eV in the local-orbital LDA calculations of Lee et al.17

They found a smaller energy difference �0.18 eV� between
the bridged and on-top sites than we did, but the order be-
tween sites A, D, and C was the same.

V. SIMPLE INTERSTITIALS

We now consider interstitials in bulk graphite. The high-
symmetry sites of interstitials are labeled as for the adatom
in Fig. 2. Site A is the bridge site above a bond center, site C
is above an atom in one layer and above a hexagon center in
the other layer, while site D is directly between an atom in
both adjacent layers. Table III gives the formation energies
of the interstitial at the different sites.

We first compare the formation energies obtained with the
GGA and the LDA, CASTEP and SIESTA, and smaller and
larger supercells. The formation energies using the GGA are
systematically by 5% ��0.3 eV root mean square� larger
than the energies within the LDA. This is of similar magni-
tude as the ratio between the cohesive energies in the spin-
restricted calculations; see Tables I and II. Similarly, the
SIESTA results within the LDA are smaller than within
CASTEP by 7% ��0.4 eV root mean square�. These devia-
tions originate from two sources, the difference in energy
gain by carbon-carbon bonds �Table I� and the optimization
of the atomic positions. The latter was more restrictive in
CASTEP �four atoms fixed in all three directions� than in SI-

ESTA �constraints only in the ab plane�. Nevertheless, the
differences between the formation energies found with
CASTEP and SIESTA are again systematic. The order of the
high-symmetry sites is the same and the maximum difference
in formation energy between two high-symmetry positions is
very similar.

The last two rows in Table III show the convergence of
the formation energies with the size of the supercell. We
compare the energies found for 3�3 supercell with three
layers and a 4�4 supercell with four layers using SIESTA and
a DZ basis. As can be seen in Table II, the deviations are at
most 2.5%. The error introduced by the size of the supercell
is thus smaller than the uncertainties resulting from the
exchange-correlation functional and the size and type of the
basis set. All these uncertainties are smaller than the differ-
ence in formation energy we obtain for interstitials in differ-
ent high-symmetry positions.

The formation energies in Table III depend strongly on
the position of an interstitial atom. Ef is correlated with the
number of bonds an interstitial forms with the carbon atoms
in the layer. The most stable, high-symmetry site �smallest

FIG. 2. �Color online� Configurations of the interstitials at the
various sites A to E and for the free �F� interstitial as obtained with
CASTEP and GGA; compare Table II. Light gray atoms are part of
graphite; the interstitial is shown in dark gray �red�. For the high-
symmetry positions D and the free interstitial the top view is given
as well. The inset at the top shows the high symmetry sites for an
interstitial in graphite.
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Ef, see Eq. �1�� is site E in Table III regardless of the details
of the calculation. At this site, the interstitial forms four
bonds, of length 1.48 Å and 1.53 Å, two to each layer, as in
Fig. 2�f�. The next stable high-symmetry site is site A. Here,
as in Fig. 2�a�, the interstitial sits away from the center of the
interlayer and it forms two bonds to one layer of lengths
1.5 Å and 1.6 Å, and two bonds to the other layer both of
1.5 Å. Allowing the E interstitial to relax in all three direc-
tions, we obtain the site with the lowest formation energy in
unsheared graphite, denoted F or free �Table III�. The F in-
terstitial makes two bonds with a length of 1.48 and 1.52 Å
to the layer above and below the interstitial, respectively; see
Fig. 2�g�. Within the ab plane the relaxed interstitial is close
to the high-symmetry site E, but moved slightly out of the
center of the triangular towards the D position, as can be
seen in Fig. 2�h�.

The F interstitial in unsheared graphite and the A and E
high-symmetry sites all have a formation energy below 7 eV;
see Table III. In these three configurations, the interstitial
forms four bonds of similar length �1.5 Å. Site C is the next
high-symmetry site in order of increasing formation energy
with Ef =6.7–7.3 eV depending on the exchange-correlation
functional and the type of the basis set. In this site the inter-
stitial moves towards the carbon atom above it and pushed
this atom out of the graphite layer; see Fig. 2�c�. The inter-
stitial forms three bonds with length 1.56 Å; the angles be-
tween the interstitial-layer-atom bonds are 97°.

Sites B and D have the highest formation energies of all
high-symmetry positions. In both sites the interstitial forms
only two strong bonds. In site B, Fig. 2�b�, the added atoms
binds to its nearest neighbors in one layer with bond lengths
of 1.52 and 1.62 Å. In site D the interstitial has two bonds of
length 1.44 Å to the atoms above and below; the distance to
two of its second neighbors decreased from 2.2 Å to
�1.75±0.05� Å; see Fig. 2�d�. In site D the graphite layers
above and below the interstitial are strongly strained. The
two carbon atoms directly above and below the interstitial
moved out of their high-symmetry positions in the ab plane;
see Fig. 2�e�. The angle between the two short bonds be-
tween the interstitial and its two neighbors thereby decreased
from 180° to 165°.

The formation energies depend closely on the numbers of
bonds formed by the interstitial. Sites E and A form four

bonds, two to the layer above and two to the layer below the
interstitial. This configuration has been called a spiro by Tell-
ing et al.,11 so-called because of its resemblance to the core
of the molecule spiro-pentane. The lowest energy interstitial
configuration of high symmetry is E and the diffusion path
passes over site B. This corresponds to a migration energy of
more than 1.5 eV ��1.7 eV when referred to the fully re-
laxed position, in Table III�. This is much larger than the
experimental value of 0.1 eV.

The most notable feature of these formation energies is
that they span a much larger range than those of previous
calculations such as Xu et al.7 They also appear to contradict
the experimental values of Thrower and Mayer.1 particularly
the notably low migration energy of 0.1 eV. Our values,
however, agree broadly with values found by El-Barbary et
al.33 Heggie33,34 suggests that the experimental formation en-
ergies of Thrower and Meyer1 correspond to a simplified
interpretation of defect migration, which does not include
more complex forms of disorder such as shear.35

VI. SHEARED INTERSTITIALS

The low formation energy of the configurations A, E, and
F in unsheared graphite described above already suggests
that the lowest energy interstitial site has a low symmetry. It
is well known that the shear energy of graphite layers is very
small, because of the weak interlayer bonding.36 The inter-
esting result found by Telling et al.11 is that the interlayer
interstitials are stabilized if a graphite layer is allowed to
shear with respect to the adjacent layers. The shear allows
the interstitial atom to bond to more atoms in adjacent layers
than for the simple interstitial. It will also attract the layers
slightly to do this.

The shear energy is proportional to the layer area which is
displaced. Thus, an interesting point is that increasing the
lateral size of the supercell does not necessarily help conver-
gence, as the total energy of the cell can appear to increase.
In fact, large cells starting with the ideal structure have dif-
ficulty finding the minimum energy configuration, and the
shear should be included in the starting structure to over-
come this.

For the calculations of shear graphite, we started from the
following relaxed configurations of unsheared graphite, the

TABLE III. Formation energies with the GGA and the LDA using CASTEP and SIESTA of simple intersti-
tials in different configurations, compare Fig. 2. The last two rows verify the confergence with the size of the
supercell using a DZ basis set, see Sec. II A. All formation energies are in eV.

Site
A

Spiro
B

Bridge
C

On top D
E

Spiro
F

Free

GGA, CASTEP, 55 atoms

6.8 8 7.8 8 6.5 6.3

LDA, 55 atoms

PW, CASTEP 6.5 7.8 7.3 7.7 6.2 5.9

DZP, SIESTA 6.1 7.7 6.7 7.4 5.8 5.5

LDA, DZ, SIESTA

55 atoms 6.8 8.5 8 8 6.5 6.1

129 atoms 6.9 8.4 8.2
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fully relaxed geometry �free�, sites B and D. In the first two
starting configurations we allowed all carbon atoms to relax,
obtaining the global and a local minimum configuration. For
site D we allowed the atoms except one corner atom and the
interstitial to relax. This resulted in a ylid position with three
bonds, which is further discussed below.

Three new geometries were found, depending on the size
and direction of the shear. The simplest is the bridged inter-

stitial, which corresponds to site B in unsheared graphite.
The shear is 0.1aCC, �110� where aCC=a0 / �3=1.41 Å is the
bulk bond length. The sheared cell is schematically shown in
the right side of Fig. 3�a�. The interstitial makes four bonds
with the layers above and below. The bond lengths are
1.50 Å in this configuration, about 5% larger than in bulk
graphite; see Fig. 3�a�.

The second configuration for a shear is half a bond length
in a bond direction or 1 /2aCC, �110�; compare right panel in
Fig. 3�b�. This shear allows the formation of the ylid inter-
stitial �starting from the D site of unsheared graphite� with
Ef =6.7 eV. The ylid is so called because of the y arrange-
ment of bonds around the interstitial, two bonds to one layer
and one bond to the opposite layer within a vertical plane.
The bond lengths in this case are 1.45 Å. The strong bonds
to both layers have caused the layers to move together
around the interstitial; see Fig. 3�b�.

The third configuration occurs for a shear of 1 /2aCC
�100�, shown in the right panel in Fig. 3�c�. The interstitial
then forms a so-called spiro configuration in which it forms
four bonds, two to each layer. This site is the most stable of
the interstitials, having a formation energy of only 5.3 eV.
This energy is nearly 1 eV below that of the most stable
simple interstitial; compare the GGA results in Table II and
III. In this case, the bond lengths are 1.48 Å as shown in Fig.
3�c�. Again, the graphite layers have been brought together to
achieve these shorter lengths. The last two configurations
have cross links between neighboring graphite sheets.

FIG. 3. �Color online� Three interstitial structures in sheared
graphite: �a� bridge, �b� ylid, and �c� spiro �compare Table III�. The
interstitial atom is shown in dark gray �red�; graphite is shown in
light gray. All the bond lengths are in Å. The right panels in �a�–�c�
show schematically the shear induced by the interstitial. The forma-
tion energies were obtained with CASTEP and the GGA, compare
Sec. II A.

FIG. 4. �Color online� Two types of vacancies: �a� V� and �b�
V�. Arrows indicate relaxation directions for the nearest neighbors
�red� of a V. The layer below is light brown. All bond length are
in Å.

FIG. 5. �Color online� The intimate I-V pair in sheared graphite �a� side view �b� top view. The interstitial atom is red; atoms in the sheet
below are light brown. All bond lengths are in Å. Dashed line indicates the weakly reconstructed vacancy bond.
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The interstitials of shear graphite lower their energy by
segregating at the dislocation core. Comparing with the cross
links in the perfect graphite, they are much more stable in
the dislocated graphite. Nevertheless, the energy differences
between the lowest-energy, spiro configuration and the less
stable bridge and ylid configuration are similar to unsheared
graphite, �Ef�sheared��1.4 eV, and �Ef�unsheared�
�1.5 eV.

VII. VACANCIES

The AB plane structure of hexagonal graphite allows there
to be two vacancy structures. Vacancy V� consists of a va-
cancy lying directly above an atom site on the adjacent lay-
ers. Its formation energy is calculated to be 7.6 eV in GGA.
The other configuration V� is a vacancy site lying between
centers of hexagonal voids on the planes adjacent to the
plane of the vacancy. Its formation energy is found to be
8 eV. Our values compare to 7.8 eV found by Kaxiras and
Pandey9 and 7.4 eV by Al-Barbary et al.33 The vacancy
atomic configurations and the directions of atomic relaxation
are shown in Fig. 4. The three nearest atoms move away
from the vacancy and are displaced by about 0.4 Å. The
displacement of the more distant atoms is, however, suffi-
ciently smaller. This result contrasts with the results of Xu,7

where the vacancy’s first neighbors move closer to the va-

cancy and the first and second neighbors are displaced by
0.3 Å. The migration barrier for vacancies is an order of
magnitude larger than that of the interlayer interstitials.9

VIII. INTERSTITIAL-VACANCY (I-V) PAIR

The various configurations of interstitial sites allows the
possibility of a variety of interstitial-vacancy configurations.
In many materials, a nearby vacancy and interstitial will re-
combine to give a perfect lattice without any energy barrier.
In other cases, they can form an I-V bound pair. Ewels et
al.12 found that both possibilities can occur in graphite, de-
pending on the symmetry of the interstitial atom. Their cal-
culations used a local-orbital basis and the LDA. Our calcu-
lations using a plane-wave basis and GGA find that the
structure adopted depends on whether the interstitial initially
lies in a sheared or unsheared graphite.

A vacancy site, V� and V�, is introduced, and an intersti-
tial atom is placed at various sites around it in a sheared
graphite. The interstitial and the vacancy interact to form a
metastable I-V complex, referred to as an intimate I-V pair.
Its formation energy is calculated to be 10.8 eV. This is a
gain in energy of 2.1 eV compared to the most stable isolated
interstital and vacancy configurations, even in sheared graph-
ite. In the most stable form of this complex, the interstitial
adopts the ylid structure. The plane of the vacancy is sheared

FIG. 6. �Color online� The re-
combination process between an
interstitial and a vacancy in un-
sheared graphite; �a� I and V� and
�b� I and V�. All bond lengths are
in Å.
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by 1/2aCC �110� with respect to the adjacent layers, as in the
isolated ylid interstitial �Fig. 5�. The interstitial atom is
bonded to one of the three C atoms surrounding the vacancy
and also bonds to two C atoms in the sheet below. The two
other C atoms around the vacancy form a weakly recon-
structed bond. The single bond from the interstitial to the
vacancy is extremely short, 1.32 Å, while the other two are
1.44 Å. The short bond is a distorted double bond, which

accounts for the stability of this I-V complex. This complex
can only recombine into perfect graphite once the recombi-
nation barrier of about 1.3 eV is overcome.11

In unsheared graphite, the interstitial sites are less stabi-
lized. This allows the I-V pairs to recombine without a bar-
rier. In this case, we find that the recombination process is
barrierless, whatever the type of vacancy, V� and V�, the
form of interstitial, or the distance between the vacancy and

FIG. 7. �Color online� Stone-Wales defect. �a� In-plane atom pair exchange within the GGA for different 	 as indicated in the panels. The
direct-exchange atoms are dark gray �red�. All the bond lengths are in Å. �b� The corresponding formation energy as a function of the rotation
angle 	.
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the interstitial are, as shown in Fig. 6. As described in the
previous section, the cross-linked structures for interstitials
are unstable in unsheared graphite. Therefore, during geom-
etry optimization the I-V defect would relax to the perfect
graphite associated with lower energy.

IX. STONE-WALES DEFECTS

The Stone-Wales �SW� transformation in a graphite sheet
is the rotation of a pair of atoms by 90° to convert four
hexagonal rings into two pentagons and two heptagons, as in
Figs. 7�a� and 7�b�. The pair of five- and sevenfold rings is a
dislocation dipole with an in-plane Burgers vector, so a
Stone-Wales defect is also two back-to-back dislocation
cores.

Figure 7�d� shows the energy as a function of rotation
angle of the atom pair in the defect. The SW defect is found
to have a formation energy of 4.8 eV within the GGA; see
Fig. 7�b�. However, there is also a substantial energy barrier
to its formation or removal. The top of the barrier is 9.2 eV
above the perfect lattice or 4.4 eV above the SW defect
level. The transition state at the top of the barrier is roughly
at a rotation angle of 45° and corresponds to the structure
shown for 	=45° in Fig. 7�a�. The large barrier energy is due
to the large atom rearrangements needed, including the
breaking of two CuC bonds at the transition state.

In the SW defect, the two central atoms get closer to each
other by 5% of the interatomic distance. The displacements
of the other atoms are 3% in the first neighbors, 2.5% in the
second neighbors, 1.5% in the third neighbors, and less than
1% in the farther neighbors. Our results are different from
Xu et al.’s7 suggestion that the displacements of atoms up to
the fifth nearest neighbors are very significant.

Our calculated SW energies of 4.8 eV within the GGA
and 5.2 eV within LDA are lower than the Huckel value of
6.02 eV of Zhou and Shi24 and 5.9 eV for graphite found by
Jensen et al.22 by SIESTA. The latter was obtained with a DZ
basis set. In view of the differences in formation energy be-

tween plane-wave and DZ local-orbital calculations dis-
cussed in Sec. IV �compare Table III�, there is reasonable
agreement between Jensen et al.’s22 and our SW energies.
The SW defect energy is much less than the “concerted ex-
change” energy of over 10 eV found by Kaxiras and Pandey9

because they did not include relaxation of the neighboring
atoms.

The barrier height of 9.2 eV �9.4 eV within the LDA�
compares well with the 10 eV barrier found by local-orbital
DFT calculations.23 In nanotubes, the SW barrier energy is of
great interest because it decreases as a function of strain and
curvature.20 Plastic flow and fracture is believed to occur via
the SW mechanism.

X. CONCLUSIONS

This paper has investigated the energetics of interstitials,
vacancies, I-V pairs, and the Stone-Wales defects. It has been
found that the defects, whether they are in-plane or out-of-
plane, have high formation energies on the carbon materials
�graphite, carbon nanotubes, fullerenes, etc.�. A barrier for
interstitials to diffuse exists. On a single layer of graphite,
the interstitial prefers to form a bridge configuration. In
graphite, the interstitial prefers to shear graphite layers to
form the bridge, the ylid, or the spiro configuration. The
spiro structure is the most stable. The energy barrier to meta-
stable configurations is at least 1.4 eV. In sheared graphite,
an I-V pair would relax into an intimate I-V pair with lower
formation energy. The ylid interstitial neighboring the va-
cancy is favored. On the other hand, in unsheared graphite,
an interstitial will recombine with a vacancy to form perfect
graphite without any barrier.
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