

Many atoms!

Laue

silicon

enzyme Rubisco

Chris Jones, CafePress

(100)

XRD (powder) pattern

Figure 17.1 The basic fcc, bcc, and hcp parent structures.

Graef & McHenry, Structure of Materials(Cambridge)

Lattice plus basis

Hunklinger

First commercial TEM IG Farben, 30th

TITAN Scanning TEM (with spectroscopy) and TITAN Cube, FEI since 2005

General (conventional) TEM setup

TEM grid with specimen

Image and diffraction plane

warwick.co.uk (JEOL 2000FX Handbook), wikipedia

Spherical abberation

Bleloch, Materials Today (2004)

Correcting abberation

Scherzer (1949): Electron lenses have always abberation as long as the system

- is spherically symmetric
- produces a real image of the object
- fields of the system are constant in time
- there is no charge on the axis

Urban, Science (2008)

Bledloch, Mat. Today (2004)

High-resolution TEM

Scanning TEM images of AlN and Si(112)
Distance of silicon atoms is 78pm
Magnification is 5 10⁷

Urban, Science (2008).

Phase contrast transfer function

PCTF = sin [2 $\pi \chi(\mathbf{g})$] ACTF – resultion amplitude contrast

Urban, Phil. Trans. A (2013)

Light atoms I – Oxygen in BaTiO₃

Light atoms II – Go for hydrogen

Conventional TEM grid with graphene as new TEM grid

carbon and hydrogen ad-atoms

Meyer & Zettl, Nat. Comm. (2008)