Numerical methods in plasmonics

The method of finite elements

Outline

- Why numerical methods
- The method of finite elements
- FDTD Method
- Examples

How do we understand the world?

- We understand the world through scattering of waves
- Rutherford, LHC, Sonography etc.

Source upper image:http://hyperphysics.phy-astr.gsu.edu/

Source: http://www.emeraldinsight.com/content_images/fig/1740160403044.png

How do we describe the world

- Using the language of mathematics
- Understanding of Maxwell's Laws:
 - No magnetic monopoles.
 - Electric charge
 - Changing electric fields lead to changing magnetic fields

Maxwell's Equations

$$\nabla \times E = -\frac{\partial B}{\partial t}$$
$$\nabla \times B = \mu_0 \left(J + \epsilon_0 \frac{\partial E}{\partial t} \right)$$

What is the problem?

- A few systems can be analytically solved
 - Via Artful neglect, Transformations etc.
- YET this does not suffice
 - For all other problems we need numerical methods

What does this mean for plasmons?

- Solve for irregular shapes
- determine scattering cross/sections

Source: http://tx.english-ch.com/teacher/aisa/irreg-hepta.gif

The method of finite elements

- Use continuous equations
- Solve problems in discrete steps

http://en.wikipedia.org/wiki/Finite_element_method

Preconditions

- Uniqueness of solutions
- Well-defined boundary conditions
- Reasonable computation time

The art of discretization

- discretization error-
- Errors propagate
- Smaller discretization error will not always lead to more precise results
 - computational complexity
 - linear behavior

$$\frac{\partial f}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

Adaptive meshes

- Optimize via the mesh
- Change resolution with complexity

Change the grid structure at curved interfaces

http://www.cita.utoronto.ca/~ljdursi/research/curve-region-oct.png

Summary

- We have two principle domains of changes
 - Discretization
 - Mesh structure
 - And the method, i.e. the number of grid points we connect or the type of grid points (i.e. in time)....

Computational electrodynamics

- Naturally, you do not reinvent the wheel
 - Open Source solvers (like MEEP from MIT)
- Finite Difference **Time** Domain (FDTD)
 - Time Evolution of Waves
 - Transmission
 - Reflection
- Finite Difference Frequency Domain(FDFD)

Yee Grid

- Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media (May 1966)
- Two staggered vector fields

How the EM fields interact

Source: http://emlab.utep.edu/

Update equations

$$\nabla \times \vec{H}|_{t+\frac{\Delta t}{2}} = \epsilon \frac{\vec{E}|_{t+\Delta t} - \vec{E}|_t}{\Delta t}$$

$$E|_{t+\Delta t} = E|_t + \frac{\Delta t}{\epsilon} \left(\nabla \times H|_{t+\frac{\Delta t}{2}} \right)$$

Source: http://emlab.utep.edu/

Sample setup

Sourece: http://emlab.utep.edu/

Software Packages

- Commercial Lumerical
 - Electrical detection of confined gap plasmons in metal—insulator—metal waveguides (>100 citations)
- Open Source MEEP (Examples)
 - Python-meep (Python interface to meep)

MEEP

$$\epsilon(\omega) = \epsilon_{\infty} + \sum_{n} \frac{\sigma_{n} \omega_{n}^{2}}{\omega_{n}^{2} - \omega^{2} - \mathrm{i}\omega\Gamma_{n}}$$

- Materials are implemented via
 - Differing permeability and permittivity

Free electron gas

Bound electrons

Conclusion

- We can use numerical methods such as the FDTD method to simulate plasmons
- Or determine the near field structrue of irregular shapes
- Or determine the cross sections (transmission and reflection) in a setup using numerical methods.