Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones

We recently published the pre-print "Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones" on arxiv.org.

News from Feb 12, 2015

We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in absence of certain discrete symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g, but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F. Since F is a universal number in many other situations, this finding is remarkable. We apply our general considerations to specific lattice models of strained graphene and a pyrochlore Weyl semi-metal

Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones M. Trescher, B. Sbierski, P.W. Brouwer, andE.J. Bergholtz, arXiv:1501.04034.

5 / 9