(I) Ionen, Oberflächenpotentiale

a) Wie groß ist die Ionenstärke J einer Lösung die 0.25 M NaCl und 0.05 M CaCl₂ enthält? (1)

Das Medium einer Zellkultur besitze einen pH-Wert von 7.0 und eine NaCl Konzentration von 0.1 M. Die Zelloberfläche ist negativ geladen mit der Ladungsdichte σ von einer Elementarladung pro 10 nm².

- **b**) Man berechne die Debye-Länge **l**_{D.} (Angabe in nm) (1)
- c) Wie gross ist l_D wenn NaCl durch eine gleiche Konzentration von CaCl₂ ersetzt wird? (1)
- d) Wie gross ist der pH-Wert an der Zelloberfläche (mit NaCl im Medium)? (2)
- e) Skizzieren Sie den pH-Verlauf von der Zelloberfläche ins Medium. (1)

$$(\varepsilon_{\rm H2O} = 80, T = 20^{\circ} \rm C)$$

Hinweise:

Die Kationenkonzentration (inklusive Protonen) an der Zelloberfläche ist in erster Näherung gleich:

$$c_{+} = c_0 \exp(e_0 \phi(x)/k_B T)$$
 (c₀, Konzentration im Medium)

Der Wert von $\phi(x)$ für x=0 (an der Membranoberfläche, Oberflächenpotential) kann abgeschätzt werden gemäß:

$$\phi(0) = (\sigma l_D) / (\epsilon_0 \epsilon).$$

(II) Nervenerregung

- a) Wir betrachten ein Membranvesikel (kugelförmiges Liposom). Die Aussen- und Innen-Konzentrationen für NaCl und CaCl₂ seinen je 0.1 M. Die Membran sei nur für Na und Cl gleichermassen permeabel (P = 1). Wie gross ist das Membranpotential V_m ? (Hinweis: $V_m = \Phi_{innen} \Phi_{aussen}$)
- b) Bei der Nervenzellen-Erregung ändert sich die Potentialdifferenz über der Nervenmembran um $\Delta V_m = 150 \text{ mV}$, was hauptsächlich auf einen Einstrom von Na⁺ in die Nervenzelle zurückzuführen ist. Wieviel Na⁺-Ionen/cm² der Nervenmembran sind nötig, um die Membrankapazität ($C_m = 0.5 \mu \text{F/cm}^2$) um den Betrag ΔV_m umzuladen? (3)
- c) Aus einer Riesennervenzelle treten bei einem einzelnen Aktionspotential ca. $3x10^{-12}$ mol K⁺/cm² Membran aus. Der Zellendurchmesser beträgt 0.5 mm, Länge 1 cm, die K⁺-Konzentration im Zellinnern 0.4 M.

Wie viele Aktionspotentiale können bei blockierter Na⁺/K⁺ Pumpe fortgeleitet werden, bevor die K⁺-Konzentration im Nerveninnern um 1 % abgenommen hat? (3)

(III) Kanäle

In einer Zelle werden K⁺-Ionen von innen nach aussen transportiert. Die Innenkonzentration ist $c_i = 100$ mM, die Aussenkonz. ist $c_a = 10$ mM.,

das Membranpotential $V_m = \Phi_i - \Phi_a$ beträgt –150 mV.

Handelt es sich (energetisch) um einen Bergauftransport? (T = 300 K) (3)