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Chapter 7

Superconductivity

Let us now have a look at another interesting and somewhat surprising phenomenon,
namely superconductivity (zero electrical resistance). Superconductivity can satisfi-
able be described within a microscopic theory, which is valid for T = 0 and small
temperatures. Until now, superconductivity at high temperatures remains to some ex-
tend unresolved.

7.1 Introductory thoughts

Superconductivity was first described by Kamerling-Onnes in 1911. He found that
mercury, that was cooled under Tc = 4.15K, lost its resistance abruptly. For all tem-
peratures below that critical Tc, the same behavior was observed. Today there are
more such superconducting substances known, that completely loose their resistance
upon cooling under some appropriate critical temperature. One of the most astonish-
ing effects might be the existence of permanent currents, which was also found by
Kamerling-Omnes; consider a ring of superconducting material at some T > Tc ex-
posed to an orthogonal magnetic field B. Now cool the ring to T < Tc and switch off
the magnetic field. A current will be induced in the ring, that is identical to the current
that was there when B was on. Since there is no resistance, the current will stay as it is
for ever.

Another effect is the Meissner-Ochsenfeld-effect, which states, that in the interior
of a superconductor, the magnetic field

B = 0. (7.1)

Superconductivity remained completely unclear for many years, until Gorter, Casimir
and London developed first theories, which were macroscopic in the beginning (we are
planning to get back to this later). Herbert Fröhlich observed first, that superconductiv-
ity in metals originates from interaction of electrons with phonons (the quasi particles
of lattice vibrations). That central insight led to a lot of research in microscopic theo-
ries, one of which was the BCS theory from Bardeen, Cooper and Schrieffer. It was the
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6 CHAPTER 7. SUPERCONDUCTIVITY

first satisfying theory, and – of course – formulated in second quantization. There is no
time to go more deeply into that, but let us understand the main ideas.

7.2 BCS theory

7.2.1 Microscopic Hamiltonian

The Hamiltonian of a gas of electrons (i.e. fermions) in a solid body of volume V reads
as follows.

Hamiltonian of electrons in solid body:

H = H0 +H1, (7.2)

H0 =
∑
k,σ

εkf
†
k,σfk,σ, (7.3)

H1 = − 1

2V

∑
k,k′,σ

Vk,k′f
†
k,σf

†
−k,−σf−k′,−σfk′,σ. (7.4)

As always f†k,σ denotes the fermionic creation operator with wave number k and
spin component σ. Moreover

εk =
k2

2M
− µ (7.5)

is the kinetic energy, corresponding to the wave number k, where M is the mass of an
electron and µ is the chemical potential, which is in a system of exactly N particles
(like a Lagrange or more precisely Kuhn Tucker multiplier) fixed by

〈
∑
k,σ

f†k,σfk,σ〉 = N. (7.6)

Vk,k′ is the effective interaction between the electrons in k-space, which obviously
satisfies

Vk,k′ = Vk′,k. (7.7)

7.2.2 Justification of the microscopic Hamiltonian

The central insight is the one from Cooper, supported by Fröhlich’s observations, who
noticed that the known ground state of non interacting fermions collapses if one allows
a small attractive interaction between them. The idea can be roughly summarized as
follows.

• On its way through the solid body, the electron deforms the background of posi-
tively charged ions. Before, we considered only a classical and fixed background,
but in a good microscopic theory we have to allow some movement in it.
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• Hence the electron leaves a trace of a slightly higher density of positively charged
ions, which again leads to the attraction of another (negatively charged) electron.
This effect can be seen like an effective attraction between two electrons. The re-
pulsion among each other is compensated by the mechanism, we talked about in
the last chapter on Fermi gases. So the trace of deformation leads to an attraction.

• There is a rather subtle effect, namely that the described attractive electron-
electron-interaction is, as a result of the slower movement of ions, retarded com-
pared to the Coulomb interaction between them, which can lead to knowledge
about the range of the effective interaction.

Those thoughts should have given some ideas why the Hamiltonian is plausible (even
if we do not deliver a full derivation here). The original publication is also not entirely
concrete on these matters, but in the meantime, the picture of an effective fermionic
interaction mediated via bosonic systems has been understood rather well.

7.2.3 Bogoliubov transformation of the Hamiltonian
We will now try to find the spectrum of the Hamiltonian. We can not find an exact so-
lution, but by using a similar strategy as we did with superfluids, we will finally end up
with a quadratic Hamiltonian. The idea is again to do a series of approximations which
are highly plausible, given the mindset laid out here, until one arrives at a quadratic
Hamiltonian that can be exactly solved. Needless to say, this can also be seen as an
invitation that it makes a lot of sense to revisit such derivations, and aim at bounding er-
rors made in approximations in a more rigorous mindset. To proceed, it will be helpful
to define the following two new sets of operators {Ak} and {Bk}:

fk,1/2 = ukAk + vkB
†
k, (7.8)

f−k,−1/2 = ukBk − vkA†k, (7.9)

with {uk}, {vk} ∈ R and

uk = u−k, (7.10)
vk = v−k, (7.11)

u2k + v2k = 1. (7.12)

This is, again, a Bogoliubov transformation, this time a fermionic one. It is easily found
that the inverse transformation reads

Ak = ukfk,1/2 − vkf†−k,−1/2, (7.13)

Bk = ukf−k,−1/2 + vkf
†
k,1/2. (7.14)

We would like the new coordinates to fulfill the same anti-commutation relations as the
old ones, which are

{Ak, A†k′} = δk,k′ , (7.15)

{Bk, B†k′} = δk,k′ . (7.16)
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Inserting these new operators into the above given Hamiltonian and also using anti-
commutation relations to order annihilation operators, gives us the new Hamiltonian.
(Note that one calls an order of this kind normal order)

H = E0 +H ′0 +H ′1 +H ′2, (7.17)

where

E0 = 2
∑
k

εkv
2
k −

1

V

∑
k,k′

Vk,k′ukvkuk′vk′ , (7.18)

H ′0 =
∑
p

εp(u2p − v2p) +
2upvp
V

∑
p′

Vp,p′up′vp′


× (A†pAp +B†pBp), (7.19)

H ′1 =
∑
p

2εpupvp −
u2p − v2p
V

∑
p′

Vp,p′up′vp′


× (A†pA

†
p +BpBp). (7.20)

H ′2 contains expressions involving higher order polynomials in Ap and Bp, which can
be neglected as they represent interactions between quasi particles. The final result will
show that the ground state is the vacuum (in terms of quasi particles) and as such, at
low energies, there will be little interaction between them.

Now we can again use the freedom we have, to choose {uk} and {vk} such that

H ′1 = 0, (7.21)

which will be the case if

2εpupvp =
u2p − v2p
V

∑
p′

Vp,p′up′vp′ . (7.22)

We decide to pick

up =
1√
2

1 +
εp√

∆2
p + ε2p

1/2

, (7.23)

vp =
1√
2

1− εp√
∆2
p + ε2p

1/2

, (7.24)

where ∆p is determined by the anti-commutation relations as

∆p =
1

2V

∑
k′

Vp,p′∆p′√
∆2(p′) + ε2k′

, (7.25)
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Kicking out H ′1 in this fashion was no approximation but just our freedom to choose
the pre-factors in the Bogoliubov transformation (which was of course a reason for
doing the transformation in the first place). The new Hamiltonian then becomes

H = E0 +H ′0, (7.26)

with

E0 =
∑
p

1√
∆2
p + ε2p

×
(
εp

(√
∆2
p + ε2p − εp

)
−∆2

p/2
)
, (7.27)

and
H ′0 =

∑
p

√
∆2
p + εp(A

†
pAp +B†pBp). (7.28)

This procedure, similar to the one we did for superfluids, leaves us with a, not only
quadratic Hamiltonian, but it even takes the form of uncoupled harmonic oscillators and
is thus solved. We have followed a very similar logic here as before when discussing
superfluidity.

7.2.4 Discussion of the interaction

Since this can be seen like a “first date” with the ideas of superconductivity, we only
consider the case T = 0 and say µ = k20/(2M). All energies are thus expressed
in terms of the chemical potential, upon choosing εk. We will make the following
assumption about the interaction potential:

Vp,p′ =

{
C, if |εp|, |εp′ | ≤ ωc,
0, otherwise. (7.29)

with C ∈ R being some constant.
Here ωc � k20/(2M). So the interaction occurs only between electrons with some

momentum in a small sphere around the momentum k0. It is consistent with all said
above to assume

∆p =

{
∆, if |εp| ≤ ωc,
0, otherwise. (7.30)

In the limit of a large volume V , the constant ∆ can be found by solving the integral
equation

∆ = ∆
C

2(2π)3

∫
dp

1√
∆2 + ε2p

, (7.31)

where one integrates over all k for which

|εk| ≤ ωc (7.32)
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The integral becomes one dimensional as

∆ = ∆
C

2π2

∫ √k20+2Mωc

√
k20−2Mωc

dpp2
(

∆2 +
1

4M2
(p2 − k20)2

)−1/2
. (7.33)

Introducing the new variables p = k0 + x and using that k20 � 2Mωc, we get

∆ ≈ ∆
Ck20
4π2

∫ Mωc/k0

−Mωc/k0

dx

(
∆2 +

k20
M2

x2
)−1/2

. (7.34)

And finally

∆ ≈ ∆
Ck0
4π2

log

√
∆2 + ω2

c + ωc√
∆2 + ω2

c − ωc
. (7.35)

This is a curious expression, since ∆ is contained in both sides of the equation.

7.2.5 The spectrum of the Hamiltonian
We found the spectrum of the Hamiltonian to be

E0 +
∑
k

√
ε2k + ∆2

k(NA(k) +NB(k)), (7.36)

whereNA(k) andNB(k) are the number of quasi particlesA andB with wave number
k respectively. There are now two possible solutions to Eq. (7.35), one is trivially
∆ = 0. It corresponds to a state with neither any A nor B quasi particles and the
energy is just

Egs = 0. (7.37)

Also k0 = pF and up (Eq.7.23) and vp (Eq.7.24) can be chosen to be

up = 1, vp = 0 for εp > 0 (7.38)

and

up = 0, vp = 1 for εp < 0, (7.39)

where εp >< 0 implies |p| >< pF . If |p| > pF , it follows

Ap = fp,1/2, (7.40)
Bp = f−p,−1/2. (7.41)

Those operators thus annihilate fermions outside the Fermi sphere. Otherwise, if |p| <
pF :

Ap = −f†−p,−1/2, (7.42)

Bp = f†p,1/2. (7.43)
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As such, they fill up fermionic holes in the Fermi sphere. The ground state with energy
Egs = 0, is the one, where all states up to |p| ≤ pF are filled up and all states with
|p| > pF are empty. Exited states have some fermions that jumped up to |p| > pF . For
sufficiently large systems, the spectrum is thus continuous. If C is positive and large
enough, that is, if there is enough attractive interaction between fermions of opposite
momentum and different spins near the Fermi level, there exists another solution for
Eq. (7.35).

Energy gap of the superconducting solution : We find the solution

∆ = 2ωc
e−D/C

1− e−2D/C
, (7.44)

D =
2π2

Mk0
, (7.45)

which gives rise to an energy gap of 2∆ between the ground and first excited state.

This solution is called superconducting solution and the ground state energy is
Egs < 0. Hence it is the real ground state of the system. Fixing the particle number,
one finds an energy gap of 2∆ between the ground state energy and the first excited
energy. In fact,

A†pAp −B†pBp = f†p,1/2fp,1/2 − f
†
−p,−1/2f−p,−1/2. (7.46)

In the ground state one finds

〈f†p,σfp,σ〉 = 〈f†−p,−σf−p,−σ〉. (7.47)

Which corresponds to electrons appearing in pairs; pairs with opposite k and spin, the
so called Cooper pairs:

(k, 1/2;−k,−1/2). (7.48)

It is energetically favourable for the electrons to come in such pairs, in fact, the ground
state is well described by the BCS ground state vector.

BCS ground state vector:

|ψBCS〉 =
∏
k

(
uk + vkf

†
k,1/2f

†
−k,−1/2

)
|ø〉. (7.49)

“Divorcing” such a pair generates two unpaired electrons and NA +NB = 2, such
that the first excited energy is 2∆ above the ground state, and precisely that energy gap
is responsible for superconductivity, as too much energy is needed to generate such an
excitation. Thus no dissipation occurs.


