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Chapter 4

Field operators

4.1 Definition of field operators

4.1.1 Bosonic field operators

We will now get back to bosonic systems; in fact, for some courses to come, we will to
an extent oscillate between looking at bosonic and fermionic many-body systems. Let
us start from noting that the one-body basis can be chosen arbitrarily in principle. When
going from one set of bosonic operators to a new set, reflecting a basis transformation
of this kind, this can be captured by a transformation

bgj =

∞∑
k=1

〈gj |ψk〉bk, (4.1)

b†gj =

∞∑
k=1

〈ψk|gj〉b†k, (4.2)

defined by the scalar product between single particle state vectors. Going to a picture of
field operators can be seen as a transformation of this kind. They are very much help-
ful. On a higher level, the situation at hand is as follows: In second quantization, one
merely states how many bosons are occupying what single-particle orbital. When we
would like to find out how Hamiltonian interactions defined in the position representa-
tion manifest themselves, we would like to have some contact with the single-particle
wave functions. This connection is delivered by the field operators. Without such field
operators, it would not be obvious how to derive a Hamiltonian in second quantization
in terms of bosonic creation and annihilation operators. They often serve the purpose
of a vehicle: At the end of the day, the Hamiltonian does not necessarily contain the
field operators any more, but they are helpful to get the right expressions in the first
place. They are so important that they deserve a box.
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6 CHAPTER 4. FIELD OPERATORS

Field operators: The bosonic field operators are defined as

bj =

∫
dξψ∗j (ξ)Ψ(ξ), b†j =

∫
dξψj(ξ)Ψ

†(ξ), (4.3)

conversely,

Ψ(ξ) =
∑
j

ψj(ξ)bj , Ψ†(ξ) =
∑
j

Ψ∗j (ξ)b
†
j , (4.4)

and satisfy

[Ψ(ξ),Ψ(ξ′)] = [Ψ†(ξ),Ψ†(ξ′)] = 0, (4.5)

as well as

[Ψ(ξ),Ψ†(ξ′)] = δ(ξ − ξ′). (4.6)

We can write state vectors in terms of field operators as follows. If this looks a
bit odd at first, please be patient, it will be used to formulate Hamiltonians of inter-
acting models in a neat form, and again, to relate the wave functions in the position
representation to a second quantized picture.

State vectors in terms of field operators: A general symmetrized state vector
|ψN 〉 of N particles can be written as

|ψN 〉 =
1√
N !

∫
dξ1 . . . dξNψN (ξ1, . . . , ξN )Ψ†(ξN ) . . .Ψ†(ξ1)|ø〉. (4.7)

The normalization of the state vectors follows from the symmetrized wave function.
We hence start from the vacuum that we successively fill up, first by placing a particle
at ξ1 by means of Ψ†(ξ1), then with a particle at ξ2 using Ψ†(ξ2) and so on. The wave
function ψN specifies the amplitude of the respective term. Since the wave function is
symmetrized, we have for bosonic wave functions of identical particles

ψN (ξ1, . . . , ξN ) = ψN (ξN , . . . , ξ1) (4.8)

and analogously for any other permutation of the coordinates, since these expression
deliver identical expressions under symmetrization. We now turn to an interesting
expression. The following is true.
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Action of field operators on state vectors: When applying a bosonic field operator
to a state vector, we get

Ψ(ξ)|ψN 〉 =
√
N

∫
dξ1 . . . dξN−1ψN (ξ1, . . . , ξN−1, ξ)Ψ

†(ξN−1) . . .Ψ†(ξ1)|ø〉.
(4.9)

This expression will be helpful in a moment. We would like to derive this formula
for two particles at first, then it will become clear how to obtain general expressions of
this type. We have

|ψ2〉 =
1√
2

∫
dξ1dξ2ψS(ξ1, ξ2)Ψ†(ξ2)Ψ†(ξ1)|ø〉. (4.10)

Therefore, making use of the commutation relations for bosonic field operators, we get

Ψ(ξ)|ψ2〉 =
1√
2

∫
dξ1dξ2ψ2(ξ1, ξ2)Ψ(ξ)Ψ†(ξ2)Ψ†(ξ1)|ø〉

=
1√
2

∫
dξ1dξ2ψ2(ξ1, ξ2)Ψ†(ξ2)Ψ(ξ)Ψ†(ξ1)|ø〉

+
1√
2

∫
dξ1ψ2(ξ, ξ1)Ψ†(ξ1)|ø〉

=
1√
2

∫
dξ1dξ2ψ2(ξ1, ξ2)Ψ†(ξ2)Ψ†(ξ1)Ψ(ξ)|ø〉

+
1√
2

∫
dξ1ψ2(ξ1, ξ)Ψ

†(ξ1)|ø〉

+
1√
2

∫
dξ2ψ2(ξ, ξ2)Ψ†(ξ2)|ø〉. (4.11)

Since now ψ2(ξ1, ξ) = ψ2(ξ, ξ1) for all ξ and ξ1, since this function is symetric, and
since

Ψ(ξ)|ø〉 = 0 (4.12)

for all ξ, because annihilation operators acting on the vacuum always lead to the zero
vector, we have

Ψ(ξ)|ψ2〉 =
√

2

∫
dξ1ψ2(ξ1, ξ)Ψ

†(ξ1)|ø〉. (4.13)

For wave functions in the position representation we arrive at

(Ψ(ξ)ψ2)(ξ1) =
√

2ψ2(ξ1, ξ). (4.14)

We can argue in a similar fashion for N particles: This is left to the reader as an
exercise. But the idea should be clear: We again can exhange neighbouring terms
iteratively.
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4.1.2 Fermionic field operators

For fermionic field operators there is not so much left to say. Let us briefly state the
anticommutation relations for fermionic field operators, when the coordinates are ξ =
(x, σ), as position and a third spin component.

Fermionic field operators: The fermionic field operators fulfill the anticommuta-
tion relations

{Ψ(x, σ),Ψ†(x′, σ′)} = δ(x− x′)δσ,σ′ . (4.15)

Equipped with these expressions we will now turn to first applications.

4.2 Hamiltonians of identical particles

4.2.1 Hamiltons in second quantization

Being prepared in this fashion, we can describe interacting bosonic systems consisting
of N constituents. The single particle state vectors will be denoted as {|ψk〉} with
wave function ψk. The Hamilton operator can then be written as

H(N) = H
(N)
0 +H

(N)
1 , (4.16)

H
(N)
0 =

N∑
j=1

Fj , (4.17)

H
(N)
1 =

N∑
k>j=1

Vj,k. (4.18)

Here F is a single particle operator, V a two particle operator. Fj only acts on the
particle labeled j, while Vj,k captures the interaction between particles labeled j and
k. In matrix form, for each of the Fj , we have

F =
∑
k,l

〈ψl|F |ψk〉|ψl〉〈ψk|. (4.19)

The matrix with elements

{〈ψl|F |ψk〉 : k, l = 0, 1, . . . }, (4.20)

to state this again, is the matrix that expresses the single particle Hamiltonian F in the
single particle state vectors {|ψk〉}. We will now try to write this Hamiltonian in terms
of creation and annihilation operators. As anticipated, field operators will come to our
rescue.
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We will see that this Hamiltonian is the projection of

H = H0 +H1

=
∑
j,k

〈ψj |F |ψk〉b†jbk

+
1

4

∑
i,j,k,l

(
〈ψj , ψi|V |ψk, ψl〉+ 〈ψi, ψj |V |ψk, ψl〉

)
b†jb
†
i blbk (4.21)

onto the completely symmetric subspace of the N -particle Hilbert space. The inter-
action V is local, in that the position representation of the operator V satisfies des
Operators V

〈ξ′1, ξ′2|V |ξ1, ξ2〉 = V (ξ1, ξ2)δ(ξ′1 − ξ1)δ(ξ′2 − ξ2). (4.22)

This is a very natural property of a point interaction. Of course, this interaction is sym-
metric, in that V (ξ1, ξ2) = V (ξ2, ξ1). This means that in the position representation,
we have

(〈ψj , ψi|V |ψk, ψl〉+ 〈ψi, ψj |V |ψk, ψl〉) =

∫
dξ1dξ2ψ

∗
j (ξ1)ψi(ξ2)V (ξ1, ξ2)ψk(ξ1)ψl(ξ2)

+

∫
dξ1dξ2ψ

∗
j (ξ2)ψi(ξ1)V (ξ1, ξ2)ψk(ψ1)ψl(ξ2).

(4.23)

From this, it should be clear how to proceed to the interaction term H1, however.
In order to show that the two formulations of the Hamiltonian give rise to the same
expressions, we start from H0. Admittedly, we leave it at that. It should be clear from
this argument how to treat H1 as well, which follows exactly the same logic. We will
more precisely show that the two expressions are the same when being computated for
arbitrary state vectors. For two arbitrary completely symmetric state vectors |ψN 〉 and
|ψ′N 〉 we find

〈ψ′N |H0|ψN 〉 =
∑
j,k

〈ψj |F |ψk〉〈ψ′N |b
†
jbk|ψN 〉

=
∑
j,k

〈ψj |F |ψk〉〈bjψ′N |bkψN 〉, (4.24)

where we merely have moved an annihilation operator into the dual vector. From the
defining expressions of bosonic field operators, we find

bj =

∫
dξψ∗j (ξ)Ψ(ξ), (4.25)

and hence

〈ψ′N |H0|ψN 〉 =
∑
j,k

∫
dξdξ′ψ∗j (ξ′)ψk(ξ)〈ψj |F |ψk〉〈Ψ(ξ′)ψN |Ψ(ξ)ψN 〉. (4.26)
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Now we can apply the rule Gl. (4.9) that we have established above. In this way, we
get the somewhat tedious expression

〈ψ′N |H0|ψN 〉 = N
∑
j,k

∫
dξdξ′ψ∗j (ξ′)ψk(ξ)

× 〈ψj |F |ψk〉dξ1 . . . dξN−1dξ′1 . . . dξ′N−1
× (ψ′N )∗(ξ′1, . . . , ξ

′
N−1, ξ

′)ψN (ξ1, . . . , ξN−1, ξ)

× 〈ø|Ψ(ξ′1) . . .Ψ(ξ′N−1)Ψ†(ξN−1) . . .Ψ†(ξ1)|ø〉. (4.27)

Of course, and fortunately, most terms will disappear, as they act onto the vacuum.
And so we get

〈ψ′N |H0|ψN 〉 = N
∑
j,k

∫
dξdξ′ψ∗j (ξ′)ψk(ξ)〈ψj |F |ψk〉dξ1 . . . dξN−1

× (ψ′N )∗(ξ1, . . . , ξN−1, ξ
′)ψN (ξ1, . . . , ξN−1, ξ). (4.28)

Since the wave functions ψN and ψ′N are symmetric in their arguments, we obtain
finally

〈ψ′N |H0|ψN 〉 =

N∑
l=1

∑
j,k

dξ1 . . . dξl . . . dξNdξ
′
l (4.29)

× ψ∗j (ξ′)ψ∗k(ξ)〈ψj |F |ψk〉
× (ψ′N )∗(ξ1, . . . , ξ

′
l, . . . , ξN )ψN (ξ1, . . . , ξl, . . . , ξN ).

This is what we intended to show. Let us remind ourselves that each term is

F =
∑
j,k

〈ψj |F |ψk〉|ψj〉〈ψk| (4.30)

so that indeed,
〈ψ′N |H0|ψN 〉 = 〈ψ′N |

∑
j

Fj |ψN 〉. (4.31)

We have therefore shown that a Hamilton operator that is composed of single particle
terms can equally well be written in terms of creation and annihilation operators. This
is done in a way so that the coefficient matrix is nothing but the matrix form of the
single body problem. A very similar argument applies to the interacting term H1,
again that the two formulations are identical on the symmetric subspace. It should be
obvious that the specifics of F and V do not matter here. We have learned something
very important here.

• One can write quantum many-body Hamiltonians in second quantization directly
in terms of bosonic creation and annihilation operators. In order to compute
Hamiltonians, one does not go back to first quantization and compute expres-
sions in the original Hilbert space. Instead, one can directly remain in the occu-
pation number basis. The coefficients in the Hamiltonian are obtained by solving
a one-body and two-body problem once and for all. This is an immense simpli-
fication!
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• This expression makes sense even if the particle number is not held constant.

Of course, we still have the freedom to pick the state vectors {|ψj〉}. One usually
picks the energy eigenvectors of the single-particle Hamiltonian F with energy values
Ej . This means that the single-particle Hamiltonian then becomes diagonal as

F =
∑
l

〈ψl|F |ψl〉|ψl〉〈ψl| =
∑
l

El|ψl〉〈ψl|. (4.32)

In the literature, these expressions are often written as

{|ψk〉 : k = 0, 1, . . . } = {|k〉 : k = 0, 1, . . . }. (4.33)

We will, unless there is the risk of confusion, often write the single-particle basis as
{|k〉}, even if they are not the eigenvectors of the harmonic oscillator, but some arbi-
trary single-particle Hamiltonian. In this notation,

F =
∑
l

El|l〉〈l|. (4.34)

The resulting expression is so important that it deserves a box in its own right.

General Hamiltonian of bosonic identical particles in second quantization: A
general Hamiltonian with two-body interaction takes the form

H = H0 +H1 (4.35)

=
∑
j

Ejb
†
jbj +

1

4

∑
i,j,k,l

(〈i, j|V |k, l〉+ 〈j, i|V |k, l〉) b†jb
†
i blbk.

This Hamiltonian has a simple interpretation. One can interpret the bosonic op-
erators as taking out bosons, letting them interact and putting them back again. The
amplitude by which this happens is defined by the single- and two-particle problem.
Specifically for the interaction term, one takes out two bosons, lets them interact and
places them back. This is a very compact and simple form to capture interacting quan-
tum many-body problems. Again, to derive this form, one only has to solve the one-
and two-body problems once and for all, to get the appropriate coefficients. Once this
is done, one does not have to return to the microscopic interactions any more. We can
hence always think in terms of occupation numbers.

4.2.2 Hamiltonians expressed in field operators
This Hamiltonian is call, as often eluded to already, a Hamiltonian in second quantiza-
tion. The field operators Ψ and Ψ† are often regarded as “second quantized instances
of a wave function”. This does not mean that we now have formulated a new quantum
mechanics of any sort, or a refinement of the “old” quantum mechanics we are more
familiar with: It is still the same quantum theory. It is just a neat, concise, and simple
formalism of capturing quantum many-body systems of identical particles. There is
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some substance, however, to the claim of performing a “second quantization” of wave
functions, and we will hint at that in this subsection.

Let us look into that. We focus on the situation of bosonic identical particles in an
external potential V1, interacting via a two-body interaction. In this situation, we have,
to start with,

F =
P 2

2M
+ V1, (4.36)

which leads for an arbitrary basis set {|ψk〉}, using

H0 =
∑
j,k

〈ψj |F |ψk〉b†jbk,

to the expression

H0 =

∫
dξ
∑
j

ψ∗j (ξ)

(
~2∆

2M
+ V1(ξ)

)
ψk(ξ)b†jbk. (4.37)

Turning to a picture of field operators, this becomes

H0 =

∫
dξΨ†(ξ)

(
−~2∆

2M
+ V1(ξ)

)
Ψ(ξ). (4.38)

Performing an analogous step for the interacting part of the Hamiltonian, we get the
form of a Hamiltonian of particles in a potential in second quantization, expressed in
field operators as follows.

Hamiltonians in terms of field operators:

H =

∫
dξΨ†(ξ)

(
−~2∆

2M
+ V1(ξ)

)
Ψ(ξ)

+
1

2

∫
dξdξ′Ψ†(ξ′)Ψ†(ξ)V2(ξ, ξ′)Ψ(ξ)Ψ(ξ′). (4.39)

The first term looks a bit like a single-body operators, despite the fact that it is
of course an expression involving field operators. According to the definition of field
operators, it is to be read as

∆Ψ(ξ) =
∑
j

bj∆(ψj(ξ)). (4.40)

The factor 1/2 originates from the indistinguishability of the configurations ξ, ξ′ and
ξ′, ξ. The total particle number operator expressed in field operators is∫

dξΨ†(ξ)Ψ(ξ), (4.41)
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the expectation value of which provides the total particle number. In a system consist-
ing of exactly N particles, one has∫

dξ〈ψN |Ψ†(ξ)Ψ(ξ)|ψN 〉 = N. (4.42)

Let us be aware of the fact, however, that we can also allow for superpositions of
particle numbers, unless a super-selection rule prevents us from doing so. Hence, this
particle number can in principle be an arbitrary non-negative real number. It looks like
the particle density of a single-particle problem. But again, now Ψ is an operator and
not a complex values function.

The analogy to the “first quantization” becomes even more transparent when con-
sidering the time evolution of field operators in the Heisenberg picture. This may at first
look a bit awkward, but let us not forget that any operator, including a field operator,
follows some time evolution in the Heisenberg picture. We have

Ψ(ξ, t) = eiHtΨ(ξ, 0)e−iHt (4.43)

for the Hamiltonian (4.39), again setting /~ = 1. Writing this in differential form, we
get the differential equation

i~
∂

∂t
Ψ(ξ, t) =

(
−~2∆

2M
+ V1(ξ)

)
Ψ(ξ, t)

+

∫
dξ′Ψ†(ξ′, t)V2(ξ, ξ′)Ψ(ξ′, t)Ψ(ξ, t). (4.44)

This is an equation of motion taking the form of a non-linear Schrödinger equation, or
even a linear Schrödinger equation in the simple case of having no interaction what-
seoever. This is quickly shown. One starts from the Heisenberg equations of motion

i
∂

∂t
Ψ(ξ, t) = −[H,Ψ(ξ, t)]

= −eiHt[H,Ψ(ξ, 0)]e−iHt, (4.45)

and makes use of the general property of commutators

[AB,C] = A[B,C] + [A,C]B. (4.46)

Again, we see the formal resemblance with the single-body picture of basic quantum
mechanics.


