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Chapter 4

Density operators

This will be a relatively short chapter: We will merely introduce here the concept of a
density operator, which incorporates the concept of classical probabilities into quantum
theory. Density operators are quantum states and hence generalize the concept of state
vectors.

4.1 Motivation
Let us imagine we have a single spin, associated with a Hilbert space H ' C2. We
now throw a coin. In case of heads, we prepare the spin in |0〉, in case of tails, we
prepare it in |1〉. That is to say, with the classical probability 1/2 we have |0〉, and
with classical probability 1/2 we get |1〉. How do we capture this situation? Can we
describe the system by a state vector

|+〉 = (|0〉+ |1〉)/
√

2? (4.1)

Not quite. This is easy to see: In case of a σx measurement, we would always get the
same outcome. But this is different from the situation we encounter here. In fact, when
we make a measurement of σx, we would get both outcomes with equal probability. Or

|−〉 = (|0〉 − |1〉)/
√

2? (4.2)

Again, this will not work, for the same reason. In fact, no state vector is associated
with such a situation, and for that, we need to generalize our concept of a quantum
state slightly: to density operators. This is, however, the most general quantum state in
standard quantum mechanics, and we will not have to generalize it any further.

In fact, the above situation is an instance of the situation where we prepare with
probability pj , j = 1, . . . , n, a system in a state vector |ψi〉. Since we encounter a
probability distribution, we have

n∑
j=1

pj = 1. (4.3)
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Such a situation is sometimes referred to as a mixed ensemble. How do we incorporate
that?

4.2 Definition of a density operator

4.2.1 Traces

A hint we have already available: Since all operations we can apply to state vectors
act linearly (time evolution and measurement), we already know the following: Let
as assume that we initially have the situation that with probability pj the state vector
|ψj(t0)〉 is prepared. Then we, say, evolve the system in time, which means that we
apply the unitary U(t, t0) to each state vector,

|ψj(t)〉 = U(t, t0)|ψ(t0)〉. (4.4)

In order to compute the expectation value of some observable A at time t, we merely
need to compute the expectation value for each of the initial states, to obtain

n∑
j=1

pj〈ψj(t)|A|ψj(t)〉. (4.5)

Before we can define the density operator, based on this intuition, we quickly remind
ourselves again of the trace of a matrix that we saw in the second chapter:

Trace of a matrix: The trace of a d× d-matrix A is defined as

tr(A) =

d−1∑
j=0

〈j|A|j〉. (4.6)

The trace has a number of interesting properties:
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Properties of the trace: For any matrix A and any unitary U ,

tr(UAU†) = tr(A). (4.7)

For two matrices matrices A, B,

tr(AB) = tr(AB) (4.8)

(cyclic interchange) and

tr(A+B) = tr(A) + tr(B). (4.9)

Also
tr(A∗) = tr(A)∗ (4.10)

and
tr(AT ) = tr(A). (4.11)

For numbers α ∈ C,
tr(αA) = αtr(A). (4.12)

The unitary invariance also means that the basis that we pick in order to compute the
trace does not matter. These properties also imply that the trace is a linear functional.

4.2.2 Density operators of pure states
We are now in the position to introduce a density operator for a so-called pure state:

Density operator of a pure state: A pure state associated with a state vector
|ψ〉 ∈ H from some Hilbert spaceH is given by the density operator

ρ = |ψ〉〈ψ|. (4.13)

We immediately find some properties of such an operator: We obviously have that

ρ = ρ†. (4.14)

Then,
tr(ρ) = 1. (4.15)

Finally, we have that
ρ ≥ 0, (4.16)

which means that all of its eigenvalues are non-negative, which is clearly the case, as
all the eigenvalues are given by 0 or 1, clearly non-negative numbers. We also have the
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property that

tr(ρ2) = tr(|ψ〉〈ψ|ψ〉〈ψ|) = tr(|ψ〉〈ψ|) = tr(ρ) = 1. (4.17)

How to we compute expectation values from such a density operator? Well, we
know that for an observable

〈A〉 = 〈ψ|A|ψ〉. (4.18)

This we can equally well (although at this instance in time this may look unnecessarily
complicated, but we will see the point in a second) write as

〈A〉 = 〈ψ|A|ψ〉 = tr(A|ψ〉〈ψ|) = tr(Aρ). (4.19)

We have hence made use of one of the above rules, and have written expectation values
as a trace of the observable, multiplied with the density operator.

4.2.3 General density operators
A general density operator is just extended by linearity from this definition.

Density operator of a mixed ensemble: Consider the situation of preparing |ψj〉,
j = 1, . . . , n with probability pj . This is associated with a density operator

ρ =

n∑
j=1

pj |ψj〉〈ψj |. (4.20)

How do we compute expectation values from that? We have for observables A that

〈A〉 =

n∑
j=1

pj〈ψj |A|ψj〉, (4.21)

from the very definition of a mixed ensemble. This we can, however, also write as

〈A〉 =

n∑
j=1

pjtr(A|ψj〉〈ψj |)

= tr

A n∑
j=1

pj |ψj〉〈ψj |


= tr(Aρ). (4.22)

So again, expectation values are just computable as the trace of the density operator
multiplied with the observable.

We now once more investigate properties of such a density operator: We find that
again,

ρ = ρ†. (4.23)
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In the same fashion as before, since now
n∑

j=1

pj = 1, (4.24)

we also have that
tr(ρ) = 1. (4.25)

Finally, we have that
ρ ≥ 0, (4.26)

since all of the probabilities are positive, and a sum of positive operators is positive.
These are exactly the same properties as above, except from one that is now missing.
We no longer have tr(ρ2) = 1. In fact, this property is replaced by

tr(ρ2) = tr

 n∑
j=1

pj |ψj〉〈ψj |

( n∑
k=1

pk|ψk〉〈ψk|

)

=

n∑
j,k=1

pjpktr(|ψj〉〈ψj |ψk〉〈ψk|)

≤ 1, (4.27)

where we have bounded the scalar products between two arbitrary state vectors. We
have now arrived at the most general concept of a state in (standard) quantum mechan-
ics. This is surely worth a box:

Density operators: General states of quantum systems with Hilbert space H are
given by density operators ρ. Their properties are

ρ = ρ† (Hermicity), (4.28)
ρ ≥ 0 (Positivity), (4.29)

tr(ρ) = 1 (Normalization). (4.30)

Pure states are those density operators for which

tr(ρ) = 1, (4.31)

those can be represented by state vectors |ψ〉 ∈ H as

ρ = |ψ〉〈ψ|. (4.32)

Otherwise, if tr(ρ2) < 1, the state is called mixed. For observables, expectation
values are computed as

〈A〉 = tr(Aρ). (4.33)
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4.2.4 Examples

This is a good moment to discuss a number of examples. Let us go back to our initial
situation discussed at the beginning of the chapter, of preparing |0〉 or |1〉 with equal
probability. We can now easily associate this with a density operator

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (4.34)

We can write this in matrix form – remember that operators and their matrix represen-
tation are identified with each other throughout the script

ρ =

[
1
2 0
0 1

2

]
. (4.35)

We have that

tr(ρ2) =
1

4
+

1

4
=

1

2
< 1. (4.36)

This in fact the minimum value tr(ρ2) can take for a system with H ' C2. The pure
state ρ = |0〉〈0| in turn is represented as

ρ =

[
1 0
0 0

]
, (4.37)

obviously satisfying tr(ρ) = 1. Generally, if we have probabilities p0 and p1 to prepare
|0〉〉 and |1〉, we have the density operator

ρ =

[
p0 0
0 p1

]
. (4.38)

But of course, we are not forced to take the standard basis. The situation of having
prepared |+〉 and |−〉 with equal probabilities is captured as

ρ =
1

2
|+〉〈+|+ 1

2
|−〉〈−|. (4.39)

This is

ρ =
1

4
((|0〉+ |1〉)(〈0|+ 〈1|)) +

1

4
((|0〉 − |1〉)(〈0| − 〈1|))

=
1

2
|0〉〈0|+ 1

2
|1〉〈1|, (4.40)

with matrix representation

ρ =

[
1
2 0
0 1

2

]
. (4.41)
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4.2.5 Non-uniqueness of ensemble representations

Eh, wait a minute? Was this not the matrix representation of the ensemble consisting of
|0〉 and |1〉? So we are faced here with the irritating situation that two different mixed
ensembles are described by the same density operator. Let us face it: There are many
different ways of preparing the same density operator! Since all expectation values of
observables are computed as

〈A〉 = tr(Aρ), (4.42)

we get exactly same same value for all observables in case of

ρ =

n∑
j=1

pj |ψj〉〈ψj | =
m∑

k=1

qk|φk〉〈φk|, (4.43)

even if all of the probabilities {pj} and {qk} as well as all state vectors {|ψj〉} and
{|φk〉} are different. In fact, now even n = m has to hold. What matters for all
outcomes in all experiments is the density operator, not the mixed ensemble we have
started with.

The situation is hence quite subtle: Yes, a density operator is a concept that allows
to introduce the concept of classical probability distributions into quantum mechanics.
We have to have a way of incorporating probabilistic preparation, where we do one
thing with some probability and another with another. In statistical physics, we will
encounter such a situation frequently, where density operators are ubiquitous, to say
the least.

But no, once we arrive at a given density operator, there is no way to reconstruct
the mixed ensemble that can be held responsible for the density operator. In retrospect,
there always would have been infinitely many other ways of preparing the same density
operator (unless it is a pure state). Sometimes, people use notions of the kind, “the
system is in some pure state vector |ψj〉, j = 1, . . . , n, we simply do not know which
one”. Such reasoning is not quite precise and can be plain wrong, in which case it is
referred to as preferred ensemble fallacy.

4.3 Von-Neumann equation

Now that we have understood what a density operator is, the rest will be a piece of
cake. How do density operators evolve in time? Well, this equation is just inherited
from the Schroedinger equation by linearity. Since it was von-Neumann who first
described this situation well, it is called von-Neumann equation. But really, it is just
the ordinary Schroedinger equation written for density operators. There is no new
physics happening here.
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Von Neumann equation: Density operators of physical systems described by
Hamiltonians H evolve in time according to

ih̄
d

dt
ρ(t) = [H, ρ(t)]. (4.44)

So together with the initial condition at ρ(t0), this differential equation fully specifies
the density operator at a later time, exactly as the Schroedinger equation does for state
vectors. Is this equation mysterious? Not at all: Let us write

ρ(t) =

n∑
j=1

pj |ψj(t)〉〈ψj(t)|, (4.45)

then

ih̄
d

dt
ρ(t) = ih̄

n∑
j=1

pj
d

dt
|ψj(t)〉〈ψj(t)|

= ih̄

n∑
j=1

pj

((
d

dt
|ψj(t)〉

)
〈ψj(t)|+ 〈ψj(t)|

(
d

dt
〈ψj(t)|

))

=

n∑
j=1

pj (H|ψj(t)〉〈ψ(t)| − |ψj(t)〉〈ψ(t)|H)

= [H, ρ(t)]. (4.46)

Of course we can again write the non-differential form of time evolution:

Time evolution in terms of the time evolution operator: We have that

ρ(t) = U(t, t0)ρU(t, t0)†. (4.47)

4.4 Measurement for density operators

The last little piece that is missing is how to capture measurements in terms of density
operators. But this is again just inherited from the previous formalism by linearity. So
again, there is no new physics associated with that.
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Measurement in terms of density operators: Consider a measurement of the
observable A of a system prepared in the state ρ, and let πk with

A =

D−1∑
k=0

λkπk, (4.48)

and
πlπk = δk,lπk (4.49)

the projectors defined in the projection postulate. Then the probability of obtaining
the k-th outcome is given by

pk = tr(πkρ). (4.50)

The state immediately after the measurement is given by

ρk =
πkρπk

tr(πkρπk)
=
πkρπk
pk

. (4.51)

It is easy to see that for pure states with ρ = |ψ〉〈ψ| this reduces to the same projection
postulate that we have seen above.

4.5 Mixing and states of composite systems

4.5.1 Mixing quantum states
If we have a machine that prepares either ρ1 or ρ2 with probability p and 1 − p, how
do we describe this probabilistic situation? Well, this we already know: The new state
is given by the density operator

ρ = pρ1 + (1− p)ρ2. (4.52)

Such an operation is called mixing. Mathematically, this is called a convex combination
of ρ1 and ρ2. Physically, it means that we create a new state out of the probabilistic
situation of having either of the previous two states. Maybe unsurprisingly, mixing
mixes states: So even if ρ1 = |0〉〈0| and ρ2 = |1〉〈1| are both pure states,

ρ = p|0〉〈0|+ (1− p)|1〉〈1| (4.53)

is a mixed state, unless p = 0 or p = 1. Such a mixing reflects ignorance of the
exact preparation procedure. This is why in statistical mechanics, such mixed density
operators are ubiquitous, to say the least (one there usually never knows the exact
preparation of macroscopic bodies).

We also now know how to describe the initial state of the first example of the first
day: This initial preparation is simply

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (4.54)
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Such a state is called maximally mixed. If captures the situation that we have no a-priori
knowledge of the spin of the atom coming out of the oven.

4.5.2 Partial traces
We will now learn something quite remarkable, an insight the significance of which
may not be easy to grasp at this point, but which has quite profound consequences. Let
us first define the partial trace.

Partial trace: Consider a composite quantum system consisting of parts equipped
with Hilbert spacesHA ∼ C2 andHA ∼ C2 each, so

H = HA ⊗HB . (4.55)

The partial trace of a quantum state ρ over the second system is then given by

ρA = trB(ρ) =

d−1∑
j=0

〈j|ρ|j〉, (4.56)

where {|j〉 : j = 0, . . . , d − 1} is a basis of HB . Similarly, one can define ρB .
The new states ρA and ρB are states on HA and HB , respectively, and are called
reduced states.

What is the significance of such a reduced state? Well, let us consider a composite
quantum system and consider an observable A that is supported on HA only: So on
both Hilbert spaces, this is

A⊗ 1. (4.57)

If we have a state ρ, what is the expectation of this observable in this state? It is clearly
given by

〈A⊗ 1〉 = tr((A⊗ 1)ρ). (4.58)

But this is nothing but
tr((A⊗ 1)ρ) = tr(AρA). (4.59)

So if A is supported on HA only, the expectation values with respect to the full ρ and
the reduced ρA are the same.

This operation of a partial trace is hence the one related to “disregarding a part” of
a system. Colloquially speaking, it reflects the situation that we only consider a part
of a composite subsystem and are no longer interested in the entire system. Clearly,
expectation values of observables that act only on this part are not affected by this. This
is conceptually an important operation, as in physics, one never speaks of the “wave
function of the universe”: Obviously, we have systems in the laboratory, and we want
to speak about their quantum state. This means that we disregard the rest of the world
when speaking about what we have in the lab. And this “disregarding” is reflected by
the partial trace.
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Let us mention that a similar concept of course also exists in classical physics.
Here one simply integrates or sums over the degrees of freedom that one would like to
disregard. If we have a joint probability distribution, of course it makes sense to speak
of a probability distribution of a part.

4.5.3 Entangled states
To come back to quantum mechanics, fortunately, if we have a product state, there is
nothing to worry about when it comes to the partial trace:

Product state: A product state of a composite quantum system is a state of the
form

ρ = ρA ⊗ ρB . (4.60)

One indeed has that
trB(ρ) = ρA. (4.61)

If there are no correlations between a system (for example, the lab) and an environment
(for example, the rest of the building), the partial trace of the joint state is just the state
of the lab itself. This is reassuring: This is the very reason why state vectors of objects
in labs make any sense, and why quantum mechanics courses usually start with that
concept.

However, let us have a look at the following situation. Let us consider a joint system
that is prepared in a pure state ρ = |ψ〉〈ψ| with

|ψ〉 =
1√
2

(|0, 0〉+ |1, 1〉). (4.62)

Such a state vector makes perfect sense, it is contained in the Hilbert spaceH = HA⊗
HB . But let us now have a look at its partial trace (here the vectors |k〉 act on the
second Hilbert spaceHB):

ρA =
1

2

1∑
k=0

〈k| ((|0, 0〉+ |1, 1〉)(〈0, 0|+ 〈1, 1|)) |k〉 =
1

2
(|0〉〈0|+ |1〉〈1|). (4.63)

This is a mixed state! In fact, it is a maximally mixed state.

Entangled states: Pure states of composite systems which are not product states
are called entangled states. Their reduced states are mixed.

This is radically different from the situation in classical physics: If I look at a
marginal distribution in classical physics, if the joint distribution was extremal, this is
still true for the marginal distribution. However, here we encounter that reduced states
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of pure entangled states are mixed. This means that if the state of the system in the
lab and its environment are entangled, there is no way we can associate it with a state
vector: It simply does not make any sense, since the state is mixed. In such a situation,
there is no “|ψ〉 of the system itself”.

The concept of entanglement is related to several remarkable phenomena in quan-
tum physics: In fact, it plays a key role in condensed-matter physics, in quantum in-
formation theory, and in quantum many-body theory. In fact, in a subtle way it is
even responsible for the classical limit of quantum theory: One needs entanglement to
explain how classical properties (such as trajectories of particles) emerge in quantum
theory.


