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Chapter 5

Angular momentum and
rotationally symmetric
problems

In this chapter, we will consider a special and still very important type of prob-
lems: Ones that are rotationally symmetric. In quantum theory, one frequently
encounters such problems. The most prominent example is the Hydrogen
atom, which will also form our most elaborate example at the end of the chap-
ter. We will see that the concept of angular momentum plays an important role,
which is why we also start with that.

5.1 Angular momentum

5.1.1 Definition

Let us consider the spatial degree of freedom of particles in R3. So the position
X and the momentum operator P have three components, as usual labeled
X1, X2, X3 and P1, P2, P3. We now define the angular momentum operator:

Angular momentum operator: This operator is defined as

L = X × P. (5.1)

This is of course exactly the same definition as angular momentum is defined

3
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classically. In components, we have

Li =
∑
j,k

ϵi,j,kXjPk, (5.2)

where ϵ is the completely antisymmetric tensor, with

ϵi,j,k =

 1 for even permutations of (1, 2, 3),
−1 for odd permutations of (1, 2, 3),
0 otherwise.

(5.3)

The angular momentum operator satisfies the following commutation rela-
tions:

[Li, Lj ] = iℏ
∑
k

ϵi,j,kLk, (5.4)

[Li, Xj ] = iℏ
∑
k

ϵi,j,kXk, (5.5)

[Li, Pj ] = iℏ
∑
k

ϵi,j,kPk. (5.6)

I hope the overloading of i is not confusing here: In one instance, it is of course
an index, in the other the complex unit.

5.1.2 Angular momentum operator as generator of rotations

Let us first discuss that the angular momentum operator is the generator of
rotations. This will not be used later, so if this should not be entirely clear, do
not worry. Let us denote with R(n, θ) the rotation operator, one that rotates
around the axis defined by n ∈ R3 by the angle θ ∈ [0, 2π). For example if n is
the unit vector along the z axis, then, this is just a rotation around the z axis.
Such a rotation R(n, θ) acts as follows

|ψ⟩ 7→ R(n, θ)|ψ⟩, (5.7)

where R(n, θ)|ψ⟩ is the rotated state vector. A rotation is now reflected as the
following transformation on wave functions,

(R(n, θ)ψ)(x) = ψ(R(n, θ)−1x). (5.8)

Here, R is the rotation matrix actually acting in R3. Is this confusing? I hope
not. R is the rotation operator actually acting in the Hilbert space. R is the
rotation operator in R3. Mathematically, such a construction is called a repre-
sentation. Intuitively, we turn the coordinates by R−1, and this is reflected by
applying R in Hilbert space. Why the inverse? Well, this is actually a matter
of definition. It makes a lot of sense for some reasons, but let us for the mo-
ment being just call it a convention. The angular momentum operator being
the generator of rotations means the following:
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Angular momentum as generator of rotations: For every n ∈ R3 and every
angle θ ∈ [0, 2π), we have that

R(n, θ) = exp

(
− i

ℏ
θn · L

)
. (5.9)

In just the same way, it should be mentioned, the momentum operator is
the generator of translations.

5.1.3 Spectrum of the angular momentum operator

The operator L2 commutes with each component of L,

[L2, Lj ] = 0, j = 1, 2, 3. (5.10)

The same is true, by the way, for any operator A for which

A = R(n, θ)AR(n, θ)† (5.11)

for any n ∈ R3 and any θ ∈ [0, 2π), so any rotationally invariant operator.
Therefore, the observables L2 and L3 are compatible, and they can be simulta-
neously diagonalized. Why L3? This is just a convention, any direction would
have done the job. Let us be specific and choose this z direction. Let us now
identify the eigenvalues of L2 and L3. Let us for that purpose define

L± = L1 ± iL2. (5.12)

These operators have the following properties:

L†
± = L∓, (5.13)

[L3, L±] = iℏL2 ± L1 = ±ℏL±, (5.14)
[L+, L−] = −2i[L1, L2] = 2ℏL3, (5.15)
[L2, L±] = 0. (5.16)

It is not difficult to verify all of these commutation relations, use

L2 =
1

2
(L+L− + L−L+) + L2

3. (5.17)

Let us denote with |l,m⟩ the normalized eigenvectors of L2 and L3: We write

L2|l,m⟩ = ℏl(l + 1)|l,m⟩, (5.18)
L3|l,m⟩ = ℏm|l,m⟩, (5.19)
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for reasons that will become clear in a second, where we will also specify what
values l and m can take. We find

L3L±|l,m⟩ = L±L3|l,m⟩ ± ℏL±|l,m⟩, (5.20)

that is to say,

L3(L±|l,m⟩) = ℏ(m± 1) (L±|l,m⟩) . (5.21)

That means that unless L±|l,m⟩ is the zero vector, it is again an eigenvector of
L3, but with eigenvalue ℏ(m± 1). What is more

L2(L±|l,m⟩) = L±L
2|l,m⟩ = ℏ2l(l + 1)(L±|l,m⟩). (5.22)

Therefore, (L±|l,m⟩) is an eigenvector of L2 with the same eigenvalue as |l,m⟩.
We can go further than that. Consider the norm

∥L±|l,m⟩∥2 = ⟨l,m|L∓L±|l,m⟩ = ⟨l,m|(L2 − L2
3 ∓ ℏL3)|l,m⟩

= ℏ2
(
l(l + 1)−m2 ∓m

)
. (5.23)

Therefore, we can make use of normalization

L±|l,m⟩ = ℏ
√
l(l + 1)−m(m± 1)|l,m± 1⟩. (5.24)

Strictly speaking, the latter relation only follows up to a phase factor eiϕ with
ϕ ∈ [0, 2π), but we have taken the standard convention where this phase factor
vanishes. Since this norm is non-negative, we must have that

l(l + 1)−m(m± 1) ≥ 0. (5.25)

From this it follows that
−l ≤ m ≤ l. (5.26)

We also find that
L+|l,m⟩ = 0 (5.27)

if and only if m = l and
L−|l,m⟩ = 0 (5.28)

if and only if m = −l. One can recursively hence find all values of m: Starting
from |l, l⟩, one finds

L−|l, l⟩ ∼ |l, l − 1⟩, (5.29)
(L−)

2|l, l⟩ ∼ |l, l − 2⟩, (5.30)

and so on. In order to to have this lead to the value −l, we have to have a k ∈ N
such that l − k = −l. Hence, l = k/2. This argument is actually similar to the
one when we algebraically solved the harmonic oscillator.
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This is quite interesting. Purely from the algebraic structure, so using the
commutation relations, we have found that l can take either the values

l = 0, 1, 2, . . . (5.31)

or
l =

1

2
,
3

2
,
5

2
, . . . . (5.32)

The values for m are
m = −l,−l + 1, . . . , l − 1, l. (5.33)

In other words, the following is true:

Spectrum of the angular momentum operator: The two operators L2 and
L3 commute. Their eigenvectors are denoted as {|l,m⟩}. Here, l can be
either a positive integer or positive half-integer, with m taking integer-
spaced values between −l and l.

5.1.4 Angular momentum operator in the position representa-
tion

After all this algebraic beauty, let us get dirty again and compute the angular
momentum operator in the position representation. Unsurprisingly, polar co-
ordinates are a useful coordinate system for that. To start with, in the position
representation, the angular momentum operator takes the form

L =
ℏ
i
X ×∇. (5.34)

We remember that the momentum operator in the position representation is
given by (ℏ/i)∇. We remind ourselves of the form of the ∇ differential operator
in polar coordinates. This is

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
. (5.35)

We therefore get, with the first component being er,

L1 =
ℏ
i

(
− sin(ϕ)

∂

∂θ
− cos(ϕ)ctg(θ)

∂

∂ϕ

)
, (5.36)

L2 =
ℏ
i

(
cos(ϕ)

∂

∂θ
− sin(ϕ)ctg(θ)

∂

∂ϕ

)
, (5.37)

L3 =
ℏ
i

∂

∂ϕ
. (5.38)
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This means that,

L± = ℏe±iθ

(
± ∂

∂θ
+ ictg(θ)

∂

∂ϕ

)
, (5.39)

L2 = −ℏ2
(

1

sin θ

∂

∂θ

(
sin(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂ϕ2

))
. (5.40)
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We can hence write the eigenvalue equations as(
1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
ψl,m(θ, ϕ) = −l(l + 1)ψl,m(θ, ϕ),

(5.41)
∂

∂ϕ
ψl,m(θ, ϕ) = imψl,m(θ, ϕ). (5.42)

We will write the wave function as

ψl,m(θ, ϕ) = Φm(ϕ)Θl,m(θ), (5.43)

so that we immediately get
Φm(ϕ) = eimϕ. (5.44)

The continuity of the wave function implies

Φm(ϕ+ 2π) = Φm(ϕ), (5.45)

and hence m ∈ Z and therefore also l ∈ N, and again

l = 0, 1, 2, . . . , m = −l, . . . , l. (5.46)

Inserting ψl,m = ΦmΘl,m we obtain the differential equation(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− m2

sin2 θ
+ l(l + 1)

)
Θl,m(θ) = 0. (5.47)

The solutions of this differential equations are “known functions” in mathe-
matical physics. This does not mean much: The fact that these functions are
“known” is to my knowledge exactly their emergence in this very context. But
if one thinks about it, other “known” functions are not very different in their
status, after all. They are called spherical harmonics.

Before we discuss their properties, let us finally write out what we have so
far,

ψl,m(θ, ϕ) = Yl,m(θ, ϕ)

= (−1)(m+|m|)/2Pl,|m|(cos(θ))e
imϕ

(
2l + 1

4π

(l − |m|)!
(l + |m|)!

)1/2

.(5.48)

We have here made use of the so-called associated Legendre functions. They are
defined as

Pl,m(x) = (1− x2)m/2 d
m

dxm
Pl(x), (5.49)

for m > 0, x = cos(θ). Here Pl are the Legendre polynomials defined as

Pl(x) =
1

2ll!

dl

dxl
. (5.50)



10CHAPTER 5. ANGULAR MOMENTUM AND ROTATIONALLY SYMMETRIC PROBLEMS

These are polynomials of degree l in x and hence Pl,m are polynomials of
degree l − m, multiplied by sinm(x). They have l − m zeros in the interval
x ∈ [−1, 1]. The Legendre polynomials satisfy a recursion relation,

(l + 1)Pl+1 = (2l + 1)xPl − lPl−1, (5.51)

(1− x2)
d

dx
Pl = l(Pl−1 − xPl). (5.52)

Using these recursion relations, one can in fact construct the Legendre poly-
nomials of the lowest orders and, for that matter, also the associated Legendre
polynomials (which then define the solution of our problem at hand). The first
Legendre polynomials are

P0(x) = 1, (5.53)
P1(x) = x, (5.54)

P2(x) =
1

2
(3x2 − 1), (5.55)

P3(x) =
1

2
(5x3 − 3x). (5.56)

The associated Legendre polynomials satisfy the differential equation

(
(1− x2)

d2

dx2
− 2x

d

dx
+ l(l + 1)− m2

1− x2

)
Pl,m(x) = 0. (5.57)

One also finds a number of useful relations for the spherical harmonics. One
of them already by construction: This is the completeness relation. Why are
spherical harmonics orthogonal for different values of m and l? Well, be-
cause they are position representations of eigenvectors of different eigenvalues,
which are always orthogonal. It is a good sanity check, however, to confirm in
the position representation that this really holds true. We find the orthogonal-
ity relation

∫ π

0

dθ sin(θ)

∫ 2π

0

dϕYl,m(θ, ϕ)∗Ya,b(θ, ϕ) = δl,aδm,b. (5.58)

For different values of l and a as well as for different values of m and b, this
expression simply vanishes. Again, let us be specific and name a few spherical
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harmonics:

Y0,0 =
1√
4π
, (5.59)

Y1,0 =

√
3√
4π

cos(θ), (5.60)

Y1,1 = −
√
3√
8π

sin(θ)eiϕ, (5.61)

Y2,0 =

√
5√

16π
(3 cos2(θ)− 1), (5.62)

Y2,1 = −
√
15√
8π

sin(θ) cos(θ)eiϕ, (5.63)

Y2,2 =

√
15√
32π

sin2(θ)e2iϕ. (5.64)

For negative values of m one can make use of the useful relation

Yl,−m(θ, ϕ) = (−1)mY ∗
l,m(θ, ϕ). (5.65)

The eigenfunctions associated with l = 0 are called “s-orbitals”, those of l = 1
are “p-orbitals”, of l = 2 “d-orbitals, l = 3 “f-orbitals”, and so on. We have
hence gone a long – and quite painful – way: We have understood the angular
dependence of the problem. We now turn to the radial part.

5.2 Rotationally invariant problems

Rotationally invariant problems are those for which the potential merely de-
pends on the distance from the origin. In other words, the Hamiltonian com-
mutes with rotations. Many important problems are of this form. First and
foremost, the Hamiltonian of the hydrogen atoms takes this form.

5.2.1 General considerations

We hence consider Hamiltonians of the form, R = |X|,

H =
P 2

2m
+ V (R). (5.66)

We have that
L2 = X2P 2 − (X · P )2 + iℏX · P. (5.67)

To bring the above Hamiltonian into a more convenient form, notice that

P 2 = P 2
R +

L2

R2
, (5.68)
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with the radial position operator R and the canonically conjugate quantity PR.
This operator PR takes in the radial position representation the form

ℏ
i

(
∂

∂r
+

1

r

)
. (5.69)

In this form, we can write out the time-independent Schroedinger equation
(the eigenvalue equation of the Hamiltonian). This is so important that it gets
a box:

Eigenfunctions of the Hamiltonian of a rotationally invariant problem:
For θ ∈ [0, π), ϕ ∈ [0, 2π), r > 0,(

− ℏ2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2mr2
L2 + V (r)

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ). (5.70)

These are the eigenvalue equations in the radial position representation.
The time-independent Schroedinger equation of the hydrogen atom is of this
form. What is more, we have almost completely solved it already! The only
remaining piece is to understand the radial part. We already know the eigen-
functions of L2, so we make a separation ansatz

ψ(r, θ, ϕ) = R(r)Yl,m(θ, ϕ), (5.71)

for R : [0,∞) → C. Inserting this into Eq. (5.70), we get(
− ℏ2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2mr2
l(l + 1) + V (r)

)
R(r) = ER(r), (5.72)

for r > 0.
Let us pause for a moment here. Why can we make this separation ansatz

and not lose generality? Since H is invariant under rotations, we have that

[H,L] = [H,L2] = 0. (5.73)

That is to say, H , L2 and one component of L are simultaneously diagonaliz-
able.

We have gone a long way, but are not quite there yet. The above equation
is merely an equation of a single variable. But it does not have the form of a
Schroedinger equation of a particle moving in a potential in one dimension.
But this form we can easily achieve. We simply have to substitute

R(r) = u(r)/r, (5.74)

for a function u : (0,∞) → C. Using(
∂2

∂r2
+

2

r

∂

∂r

)
R(r) =

(
1

r

∂

∂r
r

)2
u

r
=

1

r

∂2

∂r2
u, (5.75)
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we obtain (
− ℏ2

2m

d2

dr2
+

ℏ2l(l + 1)

2mr2
+ V (r)

)
u(r) = Eu(r). (5.76)

This is exactly the form of a time-independent Schroedinger equation of a par-
ticle in a potential. The potential is no longer just V , however, but

Veff(r) = V (r) +
ℏ2l(l + 1)

2mr2
. (5.77)

This is just like in classical physics, where the bare potential is modified by a
centrifugal term ∼ 1/r2. This means, by the way, that there is not necessarily a
bound state. From normalization one finds that V must be of the form

V (r) = o

(
1√
r

)
, (5.78)

in terms of the Landau notation, so V must “decay more rapidly” as 1/
√
r for

large r.

5.2.2 Spectrum of the hydrogen atom

There is a lot to say about arbitrary potentials, and it is good to know how this
procedure works. Essentially, we have to solve the radial problem separately.
We will early on focus on the most important case, however, the one reflecting
the potential of the hydrogen atom. To start with, it is more convenient not to
think of r as a coordinate, but of

ξ = κr, (5.79)

with
κ =

1

ℏ
√
−2mE. (5.80)

Then Eq. (5.76) becomes(
d2

dξ2
− l(l + 1)

ξ2
− V (ξ/κ)

|E|
− 1

)
u(ξ) = 0. (5.81)

We will now be more specific and concentrate on the Coulomb potential, so
the one encountered when considering the motion of a charged electron in the
presence of the field of an atomic nucleus. This potential goes like 1/r, or, more
precisely, we have

V (r) = −e
2
0

r
, (5.82)

where e0 is the elementary unit of charge. We define

ξ0 =

√
2m√
|E|

e20
ℏ
, (5.83)
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then we get (
d2

dξ2
− l(l + 1)

ξ2
− ξ0

ξ
− 1

)
u(ξ) = 0. (5.84)

We will now substitute u for a different expression. We are perfectly free to
do this, of course. The reason for this particular choice is that it respects the
asymptotic behavior of u nicely. We define a new function w : (0,∞) → C as

u(ξ) = ξl+1e−ξw(ξ). (5.85)

With this insertion, we get the differential equation(
ξ
d2

dξ2
+ 2(l + 1− ξ)

d

dξ
+ (ξ0 − 2(l + 1))

)
w(ξ) = 0. (5.86)

In the lack of a better idea, we write w as a sum

w(ξ) =

∞∑
j=0

ajξ
j . (5.87)

We therefore get

∞∑
j=0

aj
(
j(j + 1)ξj−1 + 2(l + 1)jξj−1 − 2jξj + (ξ0 − 2(l + 1))ξj

)
= 0. (5.88)

The coefficients of each power of ξ have to vanish, and therefore

((j + 1)j + 2(l + 1)(j + 1)) aj+1 + (−2j + (ξ0 − 2(l + 1))) aj = 0. (5.89)

This gives rise to a recursive relation for the coefficients,

aj+1 =
2(j + l + 1)− ξ0
(j + 1)(j + 2l + 2)

aj . (5.90)

We can now make a fairly subtle observation. When considering the behavior
for large j, we have to have

aj+1

aj
→ 2

j
, j → ∞. (5.91)

This means that
w(ξ) = Θ(e2ξ), (5.92)

again in the Landau notation (it is helpful to familiarize with this notation). In
order not to have u(ξ) ∼ eκξ for large ξ, the sum has to be finite. Let us assume
that the sum stops after the N -th term, so

aN+s = 0 (5.93)
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for s = 1, 2, . . . . Then
ξ0 = 2(N + l + 1), (5.94)

N = 0, 1, 2, . . . . n appeared here as a “computational trick” in this argument,
but it is in fact a quite profound quantity. N is the “radial quantum number”.
We are in fact now done. The eigenvalues of the Hamiltonian are given by

E = −2me40
ξ20ℏ2

= − me40
2ℏ2(n+ l + 1)2

. (5.95)

Let us define
n = N + l + 1 (5.96)

as the “main quantum number”, then we get the following values:

Energy values of the hydrogen atom:

En = −me
4
0

2ℏ2
1

n2
, n = 1, 2, . . . . (5.97)

Indeed, the energy values – so the eigenvalues of the Hamiltonian – merely
depend on the combination n = N + l + 1. For a given value of n, the values

l = 0, 1, . . . , n− 1 (5.98)

of the angular momentum quantum number are possible. Taking into account
that on top of that, m takes the values

m = −l,−l + 1, . . . , l − 1, l, (5.99)

then one finds that the n-th level is
n−1∑
j=0

(2j + 1) = 2
n(n− 1)

2
+ n = n2 (5.100)

fold degenerate. We hence know the spectrum of the Hamiltonian of the hy-
drogen atom.

5.2.3 Orbitals of the hydrogen atom

Now we are there for all practical purposes. It is still interesting to see how the
radial part looks in the position representation. After all, we went through this
ordeal also for the angular part of the orbitals. Let us hence get it over with.
Unsurprisingly, we start from Eq. (5.86), and set ξ0 = 2n, to get(

d2

d(2ξ)2
+

(
(2l + 1) + 1− (2ξ)

d

d(2ξ)
+ ((n+ l)− (2l + 1))

))
w(ξ) = 0.

(5.101)
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This differential equation is the Laguerre differential equation. Again this is a
“known differential equation”, and the solutions are “known”. Again, there
are Laguerre polynomials and associated Laguerre polynomials. The latter are
written as Lb

a with non-negative integers a, b. So the radial solution is given by
the following expression:

Radial solution: With ξ = κr and for a constant A,

w(ξ) = AL2l+1
n+l . (5.102)

It follows from properties of these associated Laguerre polynomials that the
radial part has N = n− l − 1 positive zeros.

This is it! We are now done with the solution of the hydrogen atom, and
we can write down all orbitals in the position representation. This is no new
material, but rather a summary:

Eigenfunctions of the hydrogen atom: For n = 0, 1, . . . , l = 0, . . . , n − 1,
m = −l, . . . , l,

ψn,l,m(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ), (5.103)

Rn,l(r) =
u(r)

r
(5.104)

=

(
(n− l − 1)!(2κ)3

2n((n+ l)!)3

)1/2

(2κr)le−κrL2l+1
n+l (2κr),

with

κ =

√
2m|E|
ℏ

=
me20
ℏ2n

. (5.105)

Obviously, these eigenfunctions are orthogonal. We can also write

κ =
1

na
, (5.106)

where a denotes the so-called Bohr radius,

a =
ℏ2

me20
. (5.107)

Note also that the radial part does not depend on m at all. The position repre-
sentation of these eigenfunctions are the orbitals. The ones for l = 0 are rota-
tionally symmetric, the others are not. The “term schemes” known from spec-
troscopy are simply combinatorical consequences of the above energy levels:



5.2. ROTATIONALLY INVARIANT PROBLEMS 17

Each difference between two energy eigenvalues gives rise to a line in a spec-
trum. The corresponding spectral series are called “Lyman series”, “Balmer
series”, “Paschen series” and so on. This is today rather of historical impor-
tance.


