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1 What this lecture is about

1.1 A short history of cryptography

Ideas of cryptography and secret communication are presumably about as old as mankind is. �ere are

many reasons why one would like to communicate with a legitimate recipient while making sure at the

same time that nobody else listens in to the conversation. �is feature of communication is intricately

intertwined with rather obvious features of human behaviour. For this reason it may not be a huge

surprise that the history of cryptography reads like a crime story in the �rst place.

Examples of applications of cryptography from the more recent past (viewed from the perspective of

the history of mankind, that is) include the cryptographic encoding of messages by a scytale, a device

used as a cipher by the ancient Greeks and Spartans during military campaigns, �rst mentioned by the

Greek poet Archilochus, who lived in the 7th century BC. It already features many aspects of a modern

cryptographic scheme. It consists of a cylinder with a strip of parchment wound around it on which a

message is wri�en. �e encryption arises from the fact that both the sender and the legitimate receiver

share the cylinder. Once this is available, one can wind the parchment around it to generate a perfectly

readable message. Without it, the message seems scrambled. �e key point is that while two legitimate

parties share the same object (a cylinder in this case, so a key in more modern terms), illegimate users

would not have access to this object. While this idea gives rise to a code that can obviously be broken,

it has a security level that is presumably su�cient to re�ect combat situations in the ancient world.

Turning to more recent events, it is well known that the fates of history in times of the second world

war have been deeply intertwined with the history of secure communication. For example, Admiral

Isoroku Yamamoto, the leading military commander of the Japanese Navy during World War II and the

architect for the a�ack on Pearl Harbor, announced his advent to the front line base on the island of

Bougainville to boost morale – of course strictly encrypted, that is. Only that it was not su�ciently

encrypted a�er all. �e encryption system used – the Japanese Naval Cipher JN-25D in this case – was

intercepted and with some e�ort successfully decrypted by US naval intelligence units. By the time,

Yamamoto was arriving, the US was already there.

Maybe even more prominently, during World War II, e�orts of encryption and e�orts of deciphering

messages had a decisive impact. Submarines obviously make sense only if their precise location can be

concealed. �e Enigma machine was the machine in the focus of a number of pivotal events. It was an

electro-mechanical rotor cipher machine, invented by the German engineer Arthur Scherbius at the end

of World War I and later developed into various variants, that were developed in the early 20th century

to protect commercial, diplomatic and military communication. What the Enigma does, basically, is to

transform each le�er into a product of permutations. Unlike the previously mentioned cryptosystems,

it required serious e�ort to break the code. An early version of the Enigma was broken by the Polish

General Sta�’s Cipher Bureau in December 1932. Later versions used by Nazi Germany could initially

not be deciphered; early on in WW II, the British Government Code and Cypher School at Bletchley

Park built up an extensive cryptanalytic capability to break later versions of the machine. Alan Turing, a

Cambridge University mathematician and logician and the inventor of the famous paradigmatic Turing

machine, provided much of the key insights that eventually led to the breaking the naval Enigma, which

had a major in�uence on the naval war. Once messages sent by submarines could be deciphered, the

advantage of submarines was gone, with signi�cant implications on how the war developed. �at is

to say, Alan Turing and his team at Bletchley Park had a major contribution to allied victory (a state

of a�airs that was later less appreciated when he was very badly treated, but this is a di�erent ma�er,
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intertwined with another historical development).

�ese examples are mentioned only to highlight how the history of cryptography – as a history of

code making and code breaking – is intimately intertwined with important events in history. By no

means is this supposed to mean that the use of cryptography is con�ned to the military realm. �ite

to the contrary, the use of cryptography is permeant to many aspects of our modern lives, in fact, it is

ubiquitous. Whenever one uses WhatsApp, https, or any instance of internet banking, one resorts to

a cryptographic scheme. Secure communication has become a pillar of how we communicate. A truly

fascinating story of the history of cryptography and how it is intertwined with human behaviour that

is a great read is presented in Ref. [58].

1.2 One-time pads

Ge�ing more concrete: One can communicate securely if two parties share the same key. In retrospect

this may seem obvious, at the same time it used to be far from clear. �e one-time pad was developed by

Gilbert Vernam in 1917 [61], proving that there is an absolutely secure coding scheme which is secure

against eavesdroppers with unlimited computational power. In the one-time pad, a plaintext is encoded

making use of a secret key (a pad, for that ma�er) that has the same length as the plaintext itself. �e

very same key is also employed by the legitimate receiver to decode the message. Given that one

makes use of the key only once, the encryption scheme is absolutely secure, a statement that has later

been proven by Claude Shannon [54]. In modern cryptographic systems (such as the Data Encryption
Standard (DES) [8] and the Advanced Encryption Standard (AES) [15]) now used widely, shorter keys are

being made use of to encrypt longer messages, for obvious pragmatic reasons. Such an approach uses

fewer resources, but at the same time is not to the same extent provably secure as the one-time pad is.

In any case, ultimately, at the heart of the ma�er is how to establish a secure key in the �rst place.

1.3 Public key distribution schemes

�e most commonly used scheme is based on so-called public key cryptographic protocols, prominently

the famous RSA scheme named a�er Ron Rivest, Adi Shamir, and Leonard Adleman. �is ingenious idea

has actually been invented twice, once by RSA and once by James H. Ellis. Ellis was a British engineer

and cryptographer who in 1970 also invented a public key distribution scheme while working at the

Government Communications Headquarters (GCHQ) in Cheltenham. At the time his results were kept

secret; they became available only later a�er the embargo had been li�ed. In public key distribution

schemes, a message receiver, now and later on referred to as Bob, prepares two di�erent cryptographic

keys. One that is public and one that is private. Subsequently, Bob broadcasts the public key through

an authenticated channel so that everyone who listens to this channel can acquire a copy of the public

key. �ere is no requirement whatsoever to keep this public key secret. �e original sender of the

message, referred to as Alice, encodes her message with the public key from Bob and then sends out

the encrypted message through a public insecure channel. �e algorithm is set up in such a fashion so
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that the message encrypted with the public key can only be decrypted in conjunction with the private

key.

Public key systems are widely used, basically any cryptographic scheme one encounters in electronic

communication is based on a public key cryptographic scheme. �e RSA scheme is practically secure,

with a security level depending on the key length. Unfortunately, its security has not been proven. It

rests on the existence of one-way functions: �e multiplication is in P, while factoring is contained in

NP.

�e RSA algorithm involves basically four steps: key generation, key distribution, encryption and de-

cryption. �e core idea is the observation that it is practically possible to identify three very large

positive integers e, d and n with the property that the modular exponentiation for all integersm with

0 ≤ m < n satis�es

(me)d = m(modn) (1)

and that even knowing e and n or even m it can be extremely di�cult to �nd d. RSA involves a

public key and a private key. e basically takes the role of the public key, d is kept as the private key

exponent. Primality test [1], the decision problem that asks whether a given number is a prime number

or not, used to be in NP, until a probabilistic algorithm in BPP became known, and later the algorithm

was de-randomized to an algorithm in P (look for the Miller-Rabin primality test and Solovay-Strassen

primality test). A proof of P = NP would indeed prove that one-way functions do not exist, shaking

the basis on which RSA rests. �is would imply that there cannot be proven security in public key

distribution schemes. However, the precise practical implications would depend on the speci�cs of the

argument. For example, if the proof of P = NP was not constructive, then this proof would not give

advice on how to actually break the key.

1.4 �antum computers potentially breaking public key schemes

In any case, there is no denying that the lack of provable security poses a signi�cant security risk. RSA

itself was a highly unexpected discovery, and one should hence not rule out the possibility that someone

could �nd an e�cient factoring algorithm and thus compromise most public cryptographic systems.

What is more, a quantum computer [44] can solve factoring in polynomial time (Shor’s algorithm [55]

provides a quantum algorithm for factoring the runtime of which scales polynomially in the length of

the input - it is in BQP in the language of computational complexity). Large-scale quantum computers

do not exist yet, but the development is fast. In 2016, IBM made a 16 qubit cloud quantum computer

publicly available as a cloud service based on superconducting circuits, which has been characterized

using randomized benchmarking and developed into a 50 qubit machine in 2018. More recently still,

Google announced the 128 qubit Brizzlecone chip, based on a similar architecture. �ese devices are

still way too small (and too noisy) to pose a security risk. But their development is fast and the case

for quantum computing is open. And indeed, large-scale quantum computers could break essentially

all RSA based cryptographic schemes used today over night.

1.5 What quantum key distribution can deliver

�antum key distribution is di�erent. Its security on the level of the scheme is mathematically proven.

Its security is based on very fundamental physical laws of nature. �ese are the laws of quantum

mechanics. �antum mechanics is the theory of the world at the small scale: �at of atoms, ions

and light quanta. But since the macroscopic world is ultimately built from such building blocks, it
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equally applies to the macroscopic world: It is the best physical theory of nature that we have today.

In quantum key distribution, one envisions to make use of constituents in which the quantum features

are most manifest. Practically speaking, one sends single photons (excitations of light modes), weak

pulses or Gaussian light through �bres (the same kind of �bres that are used by the Telekom) or free

space, even via satellites.

Ultimately, the security is rooted in structure elements of quantum mechanics: One cannot learn about

the unknown quantum state of a quantum systems without disturbing the state. �ere are trade-o�s:

One can perform a gentle measurement, learn very li�le and at the same time disturb very li�le. And one

can do hard projective measurements. But there is no way one can obtain some information about an

unknown quantum state without changing the same state to some extent. An implication of this feature

is that quantum information cannot be copied or cloned, as one commonly says in this context. It is

impossible to build a machine that takes a physical system in an unknown quantum state and produces

two quantum systems in the very same state. If one could do disturbance-free measurements, that would

be possible, but the no cloning feature of quantum mechanics [18, 67] forbids that. We will see that this

is a simple consequence of the linearity of quantum mechanical laws. �antum key distribution is no

far-fetched dream: It is already reality. One can commercially buy quantum cryptographic devices:

�e company ID�antique is only one out of many o�ering such products. It has been one of the

early successes of the �eld of quantum cryptography to implement a BB84 scheme (the simplest and

most used scheme for quantum key distribution that we will discuss soon) making use of an installed

optical �bre cable linking Geneva and Nyon over 23 km through Lake Geneva in 1995, at remarkably

low quantum bit error rates [42, 43]. �is e�ort basically started the development of long-distance

quantum key distribution. In the meantime, satellite-based quantum key distribution is being pursued.

Why is not all modern cryptography done via quantum key distribution and it is still a market niche?

�is has various reasons. �e core reason is that reliable quantum key distribution over arbitrary

distances is still hindered by serious technological obstacles. One needs to build so-called quantum
repeaters to compensate for losses, in order to maintain security in the presence of realisticly high

noise levels. �ere is signi�cant progress in this direction, but fully �edged quantum repeaters have

not been implemented yet. �is means that quantum key distribution is still con�ned to relatively

short distances. �en, it is a marketing issue: �e market may well grow a lot if people realize that

the security claim in quantum key distribution is very di�erent from that in public key distribution.

Such processes take time. �e BMBF (Bundesministerium für Bildung und Forschung) has “bug-proof

communication” on its web page as one of the strategic aims, and indeed, there is a large scale project

on realizing quantum repeaters by the BMBF, called Q.Link-X (which we are part of). It should be clear

that quantum key distribution is no science �ction, but an important technology of tomorrow.

1.6 Some further reading

�antum cryptography is a young �eld, but not that young, and the literature on the subject is ex-

tensive. It is a sub-�eld of quantum information science, the �eld of research exploring applications of

single quantum systems to address tasks of information processing. �e following list provides some

hints at good literature in the �eld, even though this list makes no claim of completeness in any sense

whatsoever.

�is much seen and cited review article on “quantum cryptography” [26] dates back to 2002 and

is hence no longer entirely new. What is more, it puts a strong emphasis on practical imple-

mentations and not so much on mathematical details. However, it remains an excellent source
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for information on how one can realistically implement quantum key distribution schemes. It

addresses physicists much more than mathematicians.

�e review on “cryptographic security of quantum key distribution” [48] takes a very di�erent

perspective. Here, the mathematical foundations of security proofs are at the heart of the ma�er.

A brief but excellent overview for the impatient, “a brief introduction of quantum cryptography

for engineers” can be found here [49].

�e topic of this course is basically quantum information theory. �e text book on the subject

ma�er, on “quantum computation and quantum information” [44], dates back to the year 2000,

but is still surprisingly fresh. �e topics on the stabilizer formalism that we will cover here are

nicely explained there.

Having said that, issues of quantum communication are studied comparably li�le in that text

book. �is omission is �xed by the text book [66], actually published by the same publisher,

Cambridge University Press. It beautifully explains all notions of channel capacities that we will

discuss here.

A signi�cant proportion of the course will be dedicated to multipartite quantum networks beyond

point-to-point architectures. Here, interesting graph problems come into play, related to routing

and scheduling as well as questions of computational complexity. Here is a strong link to the

other two courses of this thematic semester of MATH+. �is is a young �eld that is just emerging.

Literature on this aspect can be found here [16, 17, 20, 22, 23, 28], with background in the relevant

graph theory being presented here [9, 14].

2 Elements of qantum mechanics and a bit more

�antum mechanics is a physical theory. Obviously, there are entire courses with more than double

the number of lectures dedicated to elementary quantum mechanics. Last term, I was teaching another

four hour lecture on “advanced quantum mechanics”, and again we have only been looking at the tip

of the iceberg. �at is to say, we will have to keep the background as minimal as possible, to get going

with our main theme.

2.1 �antum bits

Classical bits can take the values 0 and 1 only. �is is the commonly used basic unit of information,

re�ecting an on and o� state of a basic cell. �e state space of a classical bit is the straight line segment,

re�ecting a “mixture” or a convex combination 0 and 1. If the probability of having 0 is p0 and that of

having one 1 is p1, then the state of the system is given by a vector (p0, p1) ∈ R2 with

p0, p1 ≥ 0 (2)

normalized as

p0 + p1 = 1. (3)

�is may be a bit of an overloaded way of pu�ing it: But this is a convex set, a simplex in fact, and

(1, 0) and (0, 1) are the extreme points of this set. Probabilistic mixtures take values in the interior of
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the set.

For quantum systems, we basically need to know that the state space is much bigger. �is is the heart

of the ma�er why quantum systems are more powerful than classical systems when it comes to appli-

cations in information processing. �e equivalent of the bit is the quantum bit, in short qubit. Its state

space is no longer a straight line segment, but can be represented as a ball, the Bloch ball. It generalizes

probability distributions to matrices

ρ =

[
p0 c

c∗ p1

]
∈ C2×2. (4)

Eq. (2) is being replaced by the constraint that ρ is positive semi-de�nite,

ρ ≥ 0, (5)

that it is normalized as

tr(ρ) = 1. (6)

Such a matrix ρ is called density matrix or simply the quantum state of the qubit. Since this density

matrix is obviously Hermitian, its main diagonal elements are clearly real, and they are positive by

virtue of Eq. (5). In fact, due to Eq. (6), they can be identi�ed with a classical probability distribution

(p0, p1). In fact, diagonal density operators can be identi�ed with �nite probability distributions.

But there is more to a quantum state: �ere is now an o�-diagonal element c ∈ C of ρ. �is may

be innocent looking, but makes a big di�erence. One can no longer interpret a quantum state as a

classical alternative. It is not in a probabilistic mixture of 0 or 1. In fact, the o�-diagonal blocks signify

a superposition, the qubit can be in “0 and 1 at the same time”. It is common for quantum systems to

be in such superpositions, even if our everyday intuition may �nd this alien or strange.

�is becomes even more manifest when looking at the extreme points of the state space of a qubit. It

is no longer a simplex. Extreme points can be wri�en as complex vectors (“state vectors”)

|ψ〉 = α|0〉+ β|1〉 (7)

with α,β ∈ C satisfying |α|2 + |β|2 = 1. |0〉 and |1〉 are basic vectors of C2, wri�en as “kets”. �ese

vectors form the basis of a vector space C2. �at is to say, the pure states, the extreme points, of qubits

are elements of a vector space, and any linear superposition gives rise to a legitimate pure state. �e

corresponding dual vectors are commonly wri�en as 〈0| and 〈1|, and referred to as “bras”. Standard

scalar product hence become “bra-kets”, so brackets. �e respective rank-1 projections onto |0〉 and |1〉
are then given by |0〉〈0| and |1〉〈1|. �ese basis vectors are isomorphic to density operators as

|0〉 h |0〉〈0| h
[
1 0

0 0

]
, |1〉 h |1〉〈1| h

[
0 0

0 1

]
. (8)

It is both common to use the vector notation for pure states (i.e., extreme points of the set) as well as

density matrices. It will depend on the context what is more natural to use. So far, we have already

learned that a qubit has a larger state space than a simple bit, re�ecting the superposition principle that

is not present classically in the same fashion. For those students with a quantum mechanics background,

this looks all very basic, for those with no quantum background this may require some digestion.
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Figure 1: �e state space of qubits can be represented by the so-called Bloch sphere: Eq. 7 can be

rewri�en as |ψ〉 = eiϕ0 cos
θ
2 |0〉+ e

iϕ1
sin

θ
2 |1〉. Since global phases do not have any observable e�ect

in quantum mechanics we write w.l.o.g. |ψ〉 = cos
θ
2 |0〉+ e

iϕ
sin

θ
2 |1〉 with ϕ = ϕ1 −ϕ0.

2.2 �antum state vectors of composite quantum systems

So far, we have learned what the state space of a single qubit is. We will not delve into general state

spaces in quantum mechanics. For our purposes we only need to know what happens if we have many

qubits at hand. �e mathematical structure re�ecting a composition of quantum systems is that of

a tensor product.1 �e pure states, the expreme points of n qubits constitute the vector space H :=

C2 ⊗ · · · ⊗ C2 = (C2)⊗n, re�ecting the fact that an arbitrary state vector can be wri�en as

|ψ〉 = α0,...,0,0|0〉⊗ · · · ⊗ |0〉⊗ |0〉+α0,...,0,1|0〉⊗ · · · ⊗ |0〉⊗ |1〉+ . . . α1,...,1,1|1〉⊗ · · · ⊗ |1〉⊗ |1〉. (12)

�e new basis ofH is hence

B := {|i1〉 ⊗ · · · ⊗ |in−1〉 ⊗ |in〉, i1, . . . , in ∈ {0, 1}} . (13)

Since the many tensor products can be clumsy, one o�en writes |0, . . . , 0, 0〉 instead of |0〉 ⊗ · · · ⊗
|0〉 ⊗ |0〉. Again, an arbitrary superposition of basis vectors as in Eq. (12) is a legitimate state vector

corresponding to a pure state. �is re�ects the situation that a collection of qubits can – in a sense –

be in “all classical alternatives at once”. �is idea is also at the heart of quantum computing, in that a

register is simultaneously manipulated in a superposition state re�ecting several inputs “at once”. �e

precise functioning is subtle and more complicated than that, but this statement already creates the

right mental image to see what this is about. We come back to this at the end of this section.

1

Basic linear algebraic properties of the tensor product are taken for granted in this course. E.g., tensor products satisfy

|ψ〉 ⊗ |ω〉 + |φ〉 ⊗ |ω〉 = (|ψ〉 + |φ〉)⊗ |ω〉, (9)

|ω〉 ⊗ |ψ〉 + |ω〉 ⊗ |φ〉 = |ω〉 ⊗ (|ψ〉 + |φ〉), (10)

α|ψ〉 ⊗ |φ〉 = (α|ψ〉)⊗ |φ〉 = |ψ〉 ⊗ (α|φ〉) (11)

for α ∈ C and |ψ〉, φ〉, |ω〉 being state vector of their respective vector spaces.
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2.3 �antum state spaces as convex sets of positive semi-de�nite operators

In the same way, general density operators or quantum states are positive semi-de�nite matrices over

this vectors space of dimension dim(H) = 2n =: d.

De�nition 1 (�antum states of n qubits) A general quantum state of a system of n qubits is
given by a bounded operator ρ over the vector space H = (C2)⊗n that is positive semi-de�nite and
normalized as

ρ ≥ 0, tr(ρ) = 1. (14)

�e convex set of such operators is referred to as the state space S(H) ⊂ Cd×d. �e extreme points
satisfy tr(ρ2) = 1 and correspond to vectors re�ecting “pure states”, they can be wri�en as vectors
|ψ〉 ∈ H in that vector space, normalized as 〈ψ|ψ〉 = 1.

�e set S(H) is indeed a convex set: If ρ1 ∈ S(H) and ρ2 ∈ S(H), then the straight line segment

λρ1 + (1− λ)ρ2 ∈ S(H) (15)

is again contained in state space. �at is to say, themixing (i.e., the convex combination) of two quantum

states ρ1 and ρ2 gives again rise to a valid quantum state. �e interpretation of mixing is basically the

same as that of convex combinations of probability distributions.

2.4 Projective measurements

We will turn to general measurements in the next section. For now, we will discuss projective selective

so-called von-Neumann measurements only. Measurement in quantum mechanics are intrinsically ran-
dom. �is is another key feature of quantum mechanics. Upon performing a measurement, the theory

only gives an indication on the probability of ge�ing a certain outcome. But it is u�erly silent about the

speci�c outcome that is being obtained. �is may be a bit of an odd feature of quantum mechanics, but

it runs deep. In a way, one can say that the randomness of quantum mechanics is absolute, a statement

that can be made precise by resorting to Bell’s theorem. Any measurement prescription in quantum

mechanics should presumably say what property is measured, but surely has to assign the probability
of ge�ing the respective outcome. Let us assume that before the measurement, the quantum state is

given by ρ ∈ S(H), and call d = dim(H).

In the simplest possible measurement, a von-Neumann measurement, one measures as a property

a so-called observable, a Hermitian operator A = A†.

�e outcomes of the measurement are associated with a basis B = {|ψj〉, j = 0, . . . , d − 1} of

eigenvectors inH.

�e probability of ge�ing the outcome labeled j = 0, . . . , d− 1 is given by P(j) = 〈ψj|ρ|ψj〉.
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Let us make this a de�nition.

De�nition 2 (Von-Neumann measurements) A von-Neumann measurement of an observable
A = A† featuring a non-degenerate spectrum of a quantum system equipped with a vector space
H receives the outcomes labeled j = 0, . . . , d− 1 with probability

P(j) = 〈ψj|ρ|ψj〉, (16)

where B = {|ψj〉, j = 0, . . . , d − 1} is an orthonormal basis of eigenvectors in H. Immediately a�er
the measurement, the system is in the state corresponding to the state vector |ψj〉.

In case the state ρ = |ψ〉〈ψ| is pure (i.e., is a rank one projection and an extreme point of state space)

one obtains

P(j) = |〈ψj|ψ〉|2. (17)

Let us have a look at two simple examples. �e most prominent observable for a simple qubit is the

measurement of a Pauli operator (or a Pauli matrix, if represented in a given basis). In fact, in a multi-

qubit se�ing, they are again very important, where they give rise to a group, the Pauli group [44].

De�nition 3 (Pauli matrices) �e Pauli matrices are given by

X =

[
0 1

1 0

]
, Y =

[
0 −i

i 0

]
, Z =

[
1 0

0 −1

]
, I =

[
1 0

0 1

]
. (18)

�ey are unitary and Hermitian, and constitute an operator basis of the set of Hermitian matrices in
C2×2.

�ey are Hilbert-Schmidt orthogonal,
2

as can easily be veri�ed. �ese matrices are not only mathe-

matically important, but also on physical grounds. �e eigenbasis of Z is given by {|0〉, |1〉} (taking this

basis as the reference basis). �e eigenbasis of X, in contrast, is given by

{|+〉 := (|0〉+ |1〉)/
√
2, |−〉 := (|0〉− |1〉)/

√
2}. (19)

If one performs a Z measurement and the state is initially in the state vector |0〉, then the probability

of obtaining the outcome labeled 0 is unity, P(0) = |〈0|0〉| = 1 and the outcome labeled 1 is P(1) =

|〈1|0〉| = 0, so that one would receive the same outcome over and over again. However, if one performs

on the same state an X measurement, one gets

P(0) = |〈+|0〉|2 = 1

2
, P(1) = |〈−|0〉|2 = 1

2
. (20)

�at is to say, if the state vector was initially in an eigenstate of Z (with eigenvectors |0〉, |1〉) and one

performs a measurement of the observable X (with eigenvectors |+〉, |−〉), both outcomes are equally

probable. A repeated measurement of the observable Xwill then yield the same outcome over and over

again.

2

�e Hilbert-Schmidt scalar product of A and B is given by (A,B) := tr(A†B).
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2.5 BB84 quantum key distribution scheme as an example

We now turn to our �rst cryptographic application. �is scheme, the famous BB84 scheme for quantum
key distribution [5], was the historically �rst scheme for quantum key distribution, featuring in its name

the initial le�ers of Benne� and Brassard, the names of its inventors. It is built on earlier work by

Wiesner on quantum money and conjugate coding [65]. It is both an ingenious scheme that lives up to

the expectations of a modern quantum key distribution scheme and it also serves as a nice example of

the quantum formalism laid out above.
3

It is based on the iterated use of single qubits only, so the state

spaces we need to consider are merely S(C2). Interestingly, rigorous security proofs were only found

more than a decade later [39, 57].

In the BB84 protocol, Alice sends a string of qubits to Bob, prepared one by one, and hence in a product

state. She prepares either states that are eigenstates of Pauli Z or she prepares eigenstates of Pauli X.

�at is to say, she prepares orthogonal states taken from two non-orthogonal bases. Speci�cally, the

protocol proceeds as follows.

Alice picks an i.i.d. random bit string a ∈ {0, 1}n.

Alice picks a second i.i.d. random bit string b ∈ {0, 1}n. At this point, she does not reveal either

of the two bit strings.

Alice now prepares quantum states of single qubits that she sends to Bob. �e basis picked will

depend on b: If bi = 0, she prepares the i-th state in the Z basis with eigenvectors {|0〉, |1〉},
if bi = 1, she prepares states in the X basis with eigenvectors {|+〉, |−〉}. �at is to say, for the

following values (bj, aj) she prepares

(0, 0) : |0〉, (21)

(0, 1) : |1〉, (22)

(1, 0) : |+〉, (23)

(1, 1) : |−〉. (24)

Note that |0〉, |1〉 ∈ C2 are orthogonal, and so are |+〉, |−〉 ∈ C2, but the respective bases are not

orthogonal to each other.

�ese states are sent to Bob via a quantum channel.

Bob picks an i.i.d. random bit string c ∈ {0, 1}n.

Depending on the value cj, Bob measures in the Z basis (cj = 0) or the X basis (cj = 1).

If the basis picked by Bob is the same one as the one Alice picked, so if for a value j one has cj = bj,

then the outcome of the measurement will be deterministic: Bob will receive the measurement

outcome dj. If no eavesdropper is present, dj = aj with certainty, following the above rule for

quantum measurements.

3

�e recollection of how the BB84 scheme came about is an interesting story in its own right. Note also that Benne�, a

theoretical physicist, actually implemented a �rst experimental demonstration of the scheme himself, using a setup that is

still standing on his desk in his o�ce at the IBM Watson Center.
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If in contrast the basis picked is di�erent, so if for a value j one has cj 6= bj, then he will receive

an i.i.d. random number, not correlated with aj. At this point, Bob cannot judge, however, which

is the case, since at this point, Bob has not received any classical information from Alice yet.

Alice and Bob communicate classically over the bases used, so they reveal the bit strings b and

c. �e string a is not revealed at any time, however.

Alice and Bob discard all cases j for which cj 6= bj. �is will happen in expectation in half the

cases. �ey end up with a bit string I of expected length n/2.

�ey take the measurement outcomes and values aj, j ∈ I.

In order to determine the presence of an eavesdropper, Alice and Bob now compare a predeter-

mined subset J ⊂ I of the bit string I established. According to the quantum mechanical rules,

the values dj = aj should follow, if no third party (an “eavesdropper”, commonly referred to as

Eve) was present. If an eavesdropper has gained any information about the quantum states sent,

this must introduce errors in Bob’s measurements. Other environmental conditions can give rise

to errors of the same type. If the rate of bits di�ering in J is p > p0, they will abort the key

and try again, possibly with a di�erent quantum channel, as the security of the key can not be

guaranteed under these circumstances. �e threshold value p0 is chosen so that the number of

bits available to the eavesdropper Eve is less than this number, privacy ampli�cation can be used

to reduce Eve’s knowledge of the key to an arbitrarily small amount at the cost of reducing the

length of the key.

�e remaining bit string I\J is the raw key. Why does this give rise to a secure key? We will look

at security proofs later. �e point is that by the time the quantum systems are being sent, Eve has

no chance to guess the correct basis any be�er than making random choices. In this way, she has to

introduce errors to the quantum state with high probability. In case she guessed right, she will get the

right outcome, as |〈0|0〉| = |〈1|1〉| = 1. In the other cases, however, she will get uniformly random

outcomes, as |〈+|0〉| = |〈−|1〉| = 1/2. Of course, she is not forced to precisely do such measurements,

as she is free in her choices. However, this will not help her. �is is a consequence of a very basic
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theorem we will encounter later. By the time the measurement bases are revealed, it is too late, and she

cannot make use of that information any more. It is the key point of quantum key distribution that this

idea does not only work if Eve sticks to performing von-Neumann measurements in the given basis. It

works if Eve performs arbitrary measurements, even ones that are entangled over all invocations of the

preparations, and making unrealistic assumptions about her. She might even have a quantum computer

at her disposal, allowing for arbitrary coherent manipulation of all qubits sent. Still, asymptotically, she

will not gain information about the key.

2.6 Entangled and separable quantum states

We will end this section by discussing entangled states. �ey would more naturally belong to the dis-

cussion of quantum state spaces, but for didactical reasons we have moved this subsection here. Entan-

glement is a property of bi-partite or multi-partite quantum systems. It re�ects quantum correlations
that are in a sense stronger than classical correlations in probability distributions. We label here the

tensor factors A and B, in some connotation to Alice and Bob, as such states are usually considered in

spatially distributed se�ings.

De�nition 4 (Entangled and separable quantum states) A state vector |ψ〉 ∈ CdA ⊗ CdB is
called entangled i� it is not a product, i.e., if it cannot be wri�en in the form

|ψ〉 = |ψA〉 ⊗ |ψB〉 (25)

with |φA〉 ∈ CdA and |ψB〉 ∈ CdB . A general quantum state is called entangled [64], i� it is not
classically correlated or separable, i.e., contained in the convex hull of products, i.e., if it cannot be
wri�en as

ρ =
∑
j

pj(ρ
j
A)⊗ (ρjB), (26)

with ρjA ∈ S(C
dA) and ρjB ∈ S(C

dB), and p is a classical probability distribution. �e set of separable

states SSep(CdA ⊗CdB) ⊂ S(CdA ⊗CdB) is a convex subset of the set of separable states with a �nite
volume [35].

An example of a product state vector of two qubits is

|ψ〉 = |0, 0〉. (27)

�en each qubit is associated the state vector |0〉. A measurement on the respective subsystems will

show no correlations whatsoever. �e situation is entirely di�erent for the state vector

|ψ〉 = (|0, 0〉+ |1, 1〉)/
√
2. (28)

In fact, a Zmeasurement in both tensor factorsA and B would lead to maximally correlated outcomes.

�e only outcomes one obtains are (0, 0) and (1, 1), but never (0, 1) or (1, 0). How can one �nd out
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that a given state vector is not a product? �e partial trace is the key.

De�nition 5 (Partial trace) �e reduced quantum state of a quantum state ρ ∈ S(CdA⊗CdB)with
respect to the �rst tensor factor is the unique quantum state ρA ∈ S(CdA) that satis�es

tr(ρ(A⊗ I)) = tr(ρAA), (29)

for all A = A† acting on CdA . �e linear map ρ 7→ ρA is called the partial trace.

It is easy to see that a partial trace is indeed this, a “partial” trace, in that one picks a basis BB of CdB
and then performs the trace over this basis. Since it is not a complete basis of the full vector space

H = CdA ⊗CdB , the remaining object is not a real number but a quantum state. It is not di�cult to see

(making use of the eigenvalue decomposition) that the choice of basis in CdB is irrelevant for the partial

trace. �e interpretation of the reduced quantum state is basically that of the marginal of a classical

probability distribution.

�ere is something remarkable about the partial trace of quantum states, however. (|0, 0〉+ |1, 1〉)/
√
2

is a state vector and hence

ρ =
1

2
(|0, 0〉+ |1, 1〉)(〈0, 0|+ 〈1, 1|) (30)

a pure state, an extreme point of state space. Its reduced state ρA obtained upon performing the partial

trace

ρA =
1

2
(|0〉〈0|+ |1〉〈1|) (31)

is not only not pure: Is it maximally mixed, in matrix form

ρA =
1

2

[
1 0

0 1

]
. (32)

A quantum state is maximally mixed i� it is proportional to the identity. It re�ects a uniform mixture

in classical probability theory. So the marginal of a pure state is in general no longer pure.

2.7 Computational complexity of the separability problem

How can one determine whether a mixed quantum state is entangled or not? Slightly more formally,

the problem at hand is the following membership problem. To make this a li�le bit more precise, let us

de�ne the following two sets: Let us �rst write S := S(CdA ⊗ CdB) and SSep := SSep(CdA ⊗ CdB) for

brevity. We de�ne

S(SSep, δ) :=
{
ρ ∈ S : ∃σ ∈ SSep with ‖ρ− σ‖2 < δ

}
(33)

as the “deeply separable states” up to an accuracy δ > 0 and

S(SSep,−δ) :=
{
ρ ∈ SSep : S(ρ, δ) ⊂ SSep

}
. (34)
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�en the separability problem becomes what is called a weak membership problem:

De�nition 6 (Separability problem [36]) Let ρ ∈ S(CdA ⊗CdB) = S and δ > 0 be a a precision
parameter.

If ρ ∈ S(SSep,−δ) output YES, (35)

if ρ /∈ S(SSep, δ) output NO. (36)

Here ‖.‖2 is the Frobenius norm, de�ned as

‖A‖2 = tr(A2) = (A,A) (37)

for matrices A. However, from the perspective of computational complexity, this turns out to be a

computationally hard problem.

�eorem 7 (Hardness of the separability problem [27]) �e separability problem is NP-hard, if
δ scales inversely exponentially with respect to the dimensions dA, dB.

�e proof, laid out in Ref. [27], makes use of a polynomial-time reduction to Edmonds’ problem. �e

original proof shows that this problem is NP-hard if ρ is located within an inverse exponential (with

respect to dimension) distance from the border of the set of separable quantum states. In Ref. [25] the

proof of NP-hardness is extended to an inverse polynomial distance from the separable set.

�is does not mean, however, that one cannot �nd e�cient one-sided tests. In particular, there exist

entanglement witnesses, so observablesW =W† with the property that

tr(Wρ) ≥ 1 ∀ρ ∈ SSep. (38)

and there exists an entangled state σ ∈ S\SSep with

tr(Wσ) < 1. (39)

From the perspective of convex analysis, this is a separating hyperplane [11] of the convex set of sepa-

rable states SSep. It is an optimal entanglement witness [38] if it is a tangent hyperplane. Finding optimal

witnesses translates to shi�ing a given entanglement witness to become an optimal entanglement wit-

ness and is again an NP-hard problem. In practice, entanglement witnesses are important: tr(Wρ) are

expectation values of W that are accessible in experiments. Whenever one �nds a value tr(Wσ) < 1

one can unambiguously argue that the unknown quantum state must have been entangled.

3 �antum channels

3.1 �antum channels and complete positivity

We have hinted at quantum key distribution schemes being secure against general strategies of eaves-

dropping, but have not clari�ed yet what such general strategies amount to. �is relates to the ques-

tion what the most general transformation is that one can apply to quantum states. �is is given by

the notion of a quantum channel. Mathematically speaking, quantum channels capture the legitimate
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transformations that quantum states can undergo. �ey directly generalize the concept of a stochastic
matrix that maps probability vectors onto probability vectors. A stochastic matrix is a matrix P ∈ Rd×d+

with the property that

d∑
k=1

Pj,k = 1, (40)

so that probability vectors p ∈ Rd+ with

∑d
j=1 pj = 1 are mapped to probability vectors.

A quantum channel captures two things: First, it is the most general valid operation that one can

perform on a quantum system. Second, it describes real communication channels as a special case.

From the perspective of a mathematical characterization, what de�nes a quantum channel T? Surely,

such channels must be linear maps, so that if T1 and T2 are quantum channels, then

T = αT1 + βT2 (41)

with α,β ≥ 0 and α+β = 1 is a quantum channel. A quantum channel T must also be a positive map,

T ≥ 0, mapping positive operators ρ ≥ 0 onto positive operators, such that

σ = T(ρ) ≥ 0 (42)

must again be a valid positive operator. Interestingly, this turns out not to be enough: One needs a

stronger form of positivity, referred to as complete positivity.

De�nition 8 (Complete positivity and quantum channels) Linear maps T onH are called com-
pletely positive i�

T ⊗ id ≥ 0, (43)

where T⊗id is a linearmap onH⊗HwithH = Cd. �antum channels are trace-preserving completely
positive maps satisfying

tr(T(ρ)) = 1 (44)

for all ρ satisfying tr(ρ) = 1.

It turns out that it is su�cient to take d having the same dimension as the dimension of the �rst

tensor factor. Why is that? Because T could act on a part of a larger system, and then the operator

(T ⊗ id)(ρ) must again be a valid quantum state. �is is a feature of quantum mechanics absent in

classical mechanics: Although the map acts only on a part of the system and “does nothing” to the

second tensor factor, the joint map still needs to be a positive map. �e best known example of a

positive but not completely positive map is the transposition t, mapping

t : ρ 7→ ρT = ρ∗. (45)

Note that
T

denotes the element-wise transposition and
∗

the element-wise complex conjugation. Her-

mitian conjugation will be denoted by
†
. Physically, this map re�ects a time reversal. It is easy to see that

this is a positive map, so whenever ρ ≥ 0 then also ρT ≥ 0. But partial transposition is not completely
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positive. �ink of the quantum state of two qubits in S(C2 ⊗ C2), given by

ρ =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 (46)

with eigenvalues {1, 0, 0, 0}. Its partial transposition is then

ρ =
1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (47)

clearly not a positive matrix since it has eigenvalues

{
− 1
2 ,
1
2 ,
1
2 ,
1
2

}
. In fact, for single qubits, this is

basically already all there is for positive matrices. We do not o�er a proof of this statement.

�eorem 9 (Structure theorem for positive maps on qubits) An arbitrary positive linear map
T acting on C2 can be wri�en as

T = αT1 ◦ t+ βT2 (48)

with α,β ≥ 0, t is the transposition and T1, T2 are completely positive linear maps.

3.2 Choi-Jamiolkowski isomorphism and quantum channels as convex sets

More important is the following: �e above de�nition of complete positivity does not give rise to a

criterion that can be e�ciently checked. Fortunately, the following statement provides such a criterion:

It is necessary and su�cient for complete positivity to apply the linear map to a certain single reference

state.

�eorem 10 (Criterion for complete positivity) A linear map T onH is completely positive i�

(T ⊗ id)(Ω) ≥ 0 (49)

whereΩ ∈ H ⊗H is a maximally entangled state.

Proof: We will brie�y prove this statement. We will need the following tiny Lemma for this: For any

Cd×d 3 P ≥ 0 and any A ∈ Cd×d, we have that

APA† ≥ 0. (50)

�is is an immediate consequence of the fact that for every |ψ〉 ∈ Cd,

〈ψ|APA†|ψ〉 = (〈ψ|A)P(A†|ψ〉) ≥ 0. (51)

Let us assume that Eq. (49) holds true. We will now show that

(T ⊗ id)(ρ) ≥ 0 (52)
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for all ρ ∈ S(H⊗H). We make use of the spectral decomposition

ρ =

d2∑
j=1

pj|ψj〉〈ψj|. (53)

From linearity, we have

(T ⊗ id)(ρ) =

d2∑
j=1

pj(T ⊗ id)(|ψj〉〈ψj|), (54)

so it is su�cient to show the statement for single state vectors |ψ〉 ∈ H. Now every such state vector

can be wri�en as

|ψ〉 = (I⊗ X)|Ω〉 (55)

for a suitable X ∈ Cd×d. But then we have

(T ⊗ id)(|ψ〉〈ψ|) = (T ⊗ id)
(
(I⊗ X)|Ω〉〈Ω|(I⊗ X†)

)
(I⊗ X)(T ⊗ id)(|Ω〉〈Ω|)(I⊗ X†) ≥ 0 (56)

from which the statement follows. In fact, it turns out that (T ⊗ id)(|Ω〉〈Ω|) completely speci�es the

channel.

�eorem 11 (Choi-Jamiolkowski isomorphism) �antum channels as completely positive, trace pre-
serving maps T onH are isomorphic to the quantum states

(T ⊗ id)(|Ω〉〈Ω|). (57)

�e proof is le� as an exercise. In fact, one direction of the proof of the isomorphism we have already

elaborated upon. �is may not be a particularly deep statement, but it has profound implications.

Channels can be viewed as quantum states on a larger Hilbert space. �at also comes along with the

insight that the set of quantum channels is again a convex set. In fact, any kind of optimization of linear

functionals over quantum channels can be cast into the form of a convex optimization problem. We will

see that in fact semi-de�nite programming [11] is at the heart of the optimization of many quantum

protocols.
4

In fact, many optimal success probabilities of protocols can readily be captured as semi-

4

Semi-de�nite programming [11] generalizes linear programming and is a form of a convex optimization problem for

which the theory is very much developed, and for which interior point methods provide an e�cient solution. �ey are

optimization problems of the form, for vectors c ∈ Rd and matrices F0, . . . , Fd ∈ RD×D

minimize cTx, (58)

subject to F0 +

d∑
j=1

xjFj ≥ 0. (59)

�e Lagrange dual is again a semi-de�nite problem of the form

maximize − tr(ZF0), (60)

subject to tr(ZFj) = cj∀j = 1, . . . , d, (61)

Z ≥ 0. (62)

Any solution to the Lagrange dual provides a lower bound to any solution to the original, the primal, problem, which is a

property most useful when using semi-de�nite programming in proofs.
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de�nite programs of this form [3]. In a bigger picture, ideas of convex [4] and non-convex programming

[19, 21] feature strongly in quantum mechanics. In fact, the la�er works provide hierarchies of semi-

de�nite programs to decide the above separability problem, where each level of the hierarchy can be

solved in polynomial time.

3.3 Kraus’ theorem and Stinespring dilations

We have understood what a completely positive map is, but not how it can be parametrized and what

speci�c form it takes. �is is given by Kraus’ theorem.

�eorem 12 (Kraus’ theorem) A linear map T on H is completely positive and trace-preserving
exactly if it can be wri�en as

T(ρ) =

r∑
j=1

KjρK
†
j (63)

satisfying

T(ρ) =

r∑
j=1

K
†
jKj = I. (64)

�e smallest number r that can be achieved in such a decomposition is called the Kraus rank.

We do not have the time to present the full proof of this. But we sketch the idea. One direction of

the proof is trivial: T is linear by construction. Also, applying (71) to (49) immediately gives rise to a

positive operator. �e more technical direction is to show that such a form can always be achieved.

�e key steps are to start from the spectral decomposition

(T ⊗ id)(Ω) =
∑
i

pi|ei〉〈ei|. (65)

Now take an arbitrary state vector |ψ〉 ∈ H, and to extend it ontoH⊗H as |ψ∗〉 ⊗ |ψ〉. One can then

write

|ψ〉〈ψ| = d〈ψ∗|Ω〉〈Ω|ψ∗〉 = dtrA(|ψ
∗〉〈ψ∗|⊗ I)|Ω〉〈Ω|). (66)

�en applying T can be done on the second tensor factor. �e Kraus operators are then de�ned by

Kj|ψ〉 =
√
dpi〈ψ∗|ei〉. (67)

Note that the Kraus decomposition is not unique: Any set {lk} is again a set of Kraus operators if

lk =
∑
i

Uk,iKi (68)

for U being unitary is again a legitimate set of Kraus operators. It is also not di�cult to see that the

Kraus rank is exactly the standard rank of the Choi-Jamiolkowski isomorph (T⊗id)(|Ω〉〈Ω|), an insight

that is again le� to the reader as an exercise.

Any channel can be seen as a unitary map in a larger vector space, a statement captured by Stine-
spring’s theorem. We will spell it out in a slightly unusual and redundant form, yet one that is easier to

communicate. �is is a most important form: Its signi�cance stems from the observation that unitary
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operations originate from time evolution in quantum mechanics, the most important quantum channel.

De�nition 13 (Hamiltonian evolution) �e channel

ρ 7→ UρU† (69)

with U being a unitary on H captures Hamiltonian time evolution generated by a Hamiltonian H =

H† via U = exp(−itH). Such dynamics is referred to as Schrödinger dynamics.

In fact, most elementary courses on quantum mechanics elaborate on the consequences of such time

evolution generated by meaningful Hamiltonians capturing important physical systems: �e Schödinger

equation is one of the key equations and one of the axioms of quantum mechanics. �e point of the

Stinespring dilation is now to see that any channel can be seen as such a unitary channel on a larger

vector space.

�eorem 14 (Stinepring dilations) Any completely positive and trace-preserving map T on H =

Cd can be wri�en as
T(ρ) = tr2(U(ρ⊗ η)U†) (70)

where η is a quantum state on CD,U is a unitary de�ned on Cd⊗CD, and tr2 is the partial trace with
respect to the second tensor factor. D has at most be taken to be d.

3.4 Disturbance versus information gain

�is insight also clari�es what the most general a�ack in the above eavesdropping scheme is: Any

eavesdropper can take a further system initially in a state η and entangle it with the system at hand in

state ρ. �en she can perform measurements on her system. In fact, the labels of the Kraus’ theorem

exactly correspond to the labels in a von-Neumann measurement when the measurement postulate is

applied to the system initially in η.

�eorem 15 (Generalized measurement) �e Kraus decomposition can be realized as

KjρK
†
j = tr2((I⊗ πj)U(ρ⊗ η)U†) (71)

where ω is a quantum state on CD, U is a unitary de�ned on Cd ⊗ CD, tr2 is the partial trace with
respect to the second tensor factor, and πj = |ψj〉〈ψj| are unit rank projections from the measurement
postulate.

We will now go too much into detail here: But when captured in this form, it should be clear that the

information gain (the knowledge obtained via the statistics of measurement outcomes) and the distur-

bance (the alteration of ρ to the state conditioned on measurement outcomes) are in a close relationship

to one another. �e disturbance versus information gain has �rst been comprehensively studied in Ref.

[24].
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4 Channel capacities and qantum information transmission

�e notion of a channel capacity captures what rate of information can be transmi�ed via a given

communication channel, let this be quantum or classical. In the context of quantum communication,

naturally, quantum channels are in the focus of a�ention.

4.1 Diamond norms

When considering channel capacities for quantum channels, we �rst need to know in what sense we

can approximate a quantum channel. A starting point is the trace-norm distance for quantum states: It

is de�ned for two quantum states ρ, σ ∈ S(H) as

D(ρ, σ) :=
1

2
‖ρ− σ‖1 =

1

2
tr|ρ− σ|, (72)

where | · | denotes the operator absolute value (so the sum of the singular values of the argument).

A moment of thought reveals (by invoking the above Kraus theorem) that it quanti�es the statistical

distinguishability of ρ from σ. �is distance hence operationally captures how di�erent ρ is from σ.

More speci�cally,
1
2(1+D(ρ, σ)) is the maximal success probability when trying to distinguish ρ and

σ via measurement. Let us now move to meaningful distance measures for quantum channels. One

might think a good distance measure for two quantum channels T and S on H = Cd (i.e., completely

positive, trace-preserving maps) is

‖T − S‖1 = sup

‖A‖1=1
‖T(A) − S(A)‖1. (73)

However, there is a problem with this de�nition: �e norms of ‖T ⊗ idn‖1 may increase with n, even

though the channel does not even act non-trivially on the second tensor factor. For this reason, one

de�nes the diamond norm distance (the factor 1/2 has no signi�ance) as follows.

De�nition 16 (Diamond norm) For two channels T and S, the diamond norm is de�ned as

‖T − S‖� = sup

n
sup

‖A‖1=1
‖(T ⊗ idn)(A) − (S⊗ idn)(A)‖1. (74)

Given the clumsy de�nition as an unbounded supremum, one might be tempted to think that this norm

cannot be computed. In fact, it can, even e�ciently: It turns out to be the solution, once again, of a

semi-de�nite problem [63].

4.2 Capacities as asymptotic transmission rates

�e notion of a capacity asks at what rate information can be transmi�ed. Here, “rate” refers to an

asymptotic rate, invoking a communication channel more than once. �is makes a lot of sense, and

classical channel capacities are also de�ned in such a fashion. We can de�ne capacities of quantum

channels T based on the quantity

∆(S, T) = inf

D,E
‖S−D ◦ T ◦ E‖�, (75)
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as the in�mum over encoding channels E and decoding channels D . A�er all, we are only interested

in the optimal encoding and decoding. S here is the identity channel over a certain algebra. S is

seen as representing a word of the kind of message that is supposed to be sent, whereas T stands

for a single invocation of the channel. However, when de�ning a capacity, we are less interested in

single invocations, but rather in many invocations and long messages. �is refers to the situation of

considering T⊗n and S⊗n for large n, but encodings and decodings over many channels of this type.

De�nition 17 (Capacity) Let S and T be quantum channels. �en a number c ≥ 0 is called an
“achievable rate” for T with respect to S, if for any sequences nα,mα of integers withmα →∞ and

lim sup

α

(
nα

mα

)
< c (76)

we have
lim

α
∆(S⊗nα , T⊗mα) = 0. (77)

�e supremum of all achievable rates is called the capacity of T with respect to S and is denoted by
C(S, T).

4.3 Classical information capacity and additivity problems

�e classical information capacity Cc is de�ned as the rate at which classical bits can be sent via a

quantum channel. �e quantum capacity Cq in turn is the rate at which quantum bits, qubits, can be

transmi�ed. If the one-bit system is de�ned as C2 and the one qubit system asM2, then they are

Cc(T) = C(C2, T), (78)

Cq(T) = C(M2, T). (79)

It is clear that

Cq(T) ≤ Cc(T) (80)

for any quantum channel T , as quantum channels can be used to send classical bits. But it may be

true that some noisy channels only allow for the transmission of classical information, but no coher-

ent quantum information. �ese capacities are notoriously di�cult to compute. However, stringent

bounds can be found, and formulae do exist. �e most famous result is the expression of the classical

information capacity [33, 34, 52]. In order to state this, we need to de�ne the von-Neumann entropy of

a quantum state. It is the quantum analogon of the Shannon entropy and given by

S(ρ) = −tr(ρ log ρ), (81)
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in terms of a matrix logarithm (that is computed on the spectrum of ρ as a matrix function). �e classical

information capacity is then found to be the following expression.

De�nition 18 (Classical information capacity) �e single-shot classical capacity is given by

Cc,1(T) := max

{pi,ρi}

(
S(
∑
i

piT(ρi)) −
∑
i

piS(T(ρi))

)
, (82)

where {pi} is a probability distribution and {ρi} is a set of quantum states. �e actual classical infor-
mation capacity is then regularized as

Cc(T) := sup

n

1

n
Cc,1(T

⊗n). (83)

�is expression seems puzzling: How can it be an advantage to send information coherently over many

channels, so why is not simply Cc(T) = Cc,1(T)? It turns out that it does help. It was an open problem

for a long time whether or not the classical information capacity was additive. Using ingenious ideas of

random coding, it was shown in large dimension to be bene�cial to use entangled inputs, even though

only classical information is to be transmi�ed. In fact, the additivity was a long-standing puzzle and

open question in the �eld: It could be shown that many additivity questions in quantum information

theory were equivalent [2, 56], until it was �nally se�led [29]. In fact, the la�er publication made use

of the proven equivalences and proved a counterexample for the additivity of the minimum output

entropy of a quantum channel, maybe the most puzzling of the known additivity problems. It was done

using random quantum coding, and it is still an open problem in the �eld to provide a constructive

counterexample.

4.4 �antum capacity and super-activation

How about the quantum capacity? For this, we de�ne the coherent information as

Cq,1(T) := sup

ρ
(S(ρB) − S(ρE)) , (84)

where in a Stinespring dilation we write the channel as T(ρ) = U(ρ⊗ω)U† and consider the output

state as a bi-partite state over B and E. �e genuine quantum capacity is again seen as an asymptotic

limit.

De�nition 19 (�antum information capacity) �e quantum capacity is given by

Cq(T) := sup

n

1

n
Cq,1(T

⊗n). (85)

Again, it is known that the “regularization” on the right hand side is needed. �is renders the quantum

capacity a quantity that in practice cannot be computed, but bounded.
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5 �antum repeaters for secure long-distance qantum key distri-

bution

5.1 Entanglement based key distribution schemes

In Section 2.5 we have encountered the BB84 scheme as a scheme for quantum key distribution in

which quantum systems are being prepared and then sent through a quantum channel. It is the most

important and still most practical scheme for quantum key distribution. Having said that, there are

many other schemes for quantum key distribution. One way of categorizing them is into prepare-and-
measure schemes (such as the original BB84 scheme) and into entanglement-based schemes. �e la�er

type of scheme at �rst sight seems quite distinctly di�erent: One �rst prepares an entangled state,

to then – once distributed – performs local measurements to establish a key. However, a moment of

thought reveals that this is something very similar: In fact, every prepare-and-measure scheme can be

seen as an equivalent to an entanglement based scheme. Take the maximally entangled state vector of

two qubits

|ψ〉 = 1√
2
(|0, 1〉− |1, 0〉). (86)

If Alice on one side performs aZmeasurement and obtains 0 as her outcome, Bob’s system will be in |1〉.
Similarly, upon a 1 outcome, Bob’s system will projected to be in |0〉. �at is to say, the measurement on

Alice’s side is e�ectively like a (non-deterministic) preparation of a quantum state on Bob’s side. Since

the state vector is UU-invariant, i.e., (U ⊗ U)|ψ〉 = |ψ〉 for all U ∈ U(2), the same holds true for X

measurements, and in fact any other measurement in the same basis on both sides. If Alice projects her

system into |+〉, Bob will see |−〉, and if she encounters |−〉, Bob will have |+〉. Again, this can be seen

as a probabilistic preparation. �is connection between prepare-and-measure schemes has long been

observed. In fact, a precondition for security in any scheme, including prepare-and-measure schemes,

is the presence of entanglement in the equivalent entanglement (or correlation) based scheme [13].

5.2 Entanglement swapping and distillation

However, there is an important conceptual di�erence: In prepare-and-measure schemes, there is li�le

one can do about losses when sending quantum systems through quantum channels. In entanglement

based schemes, one can do something about it. Accepting this, the key question is: How can one

establish a maximally entangled state between arbitrary distances in the �rst place? �is is possible by

means of quantum repeaters. �ey consist of two steps:

First, they involve entanglement distillation. Imagine two parties prepare maximally entangled

statesΩ and send one half through a quantum channel. Due to losses, they are being transformed

into states

ρ = (id⊗ T)(Ω), (87)

still entangled quantum states, but ones that are mixed and no longer maximally entangled. Upon

nα invocations of such preparations, the state prepared is ρ⊗nα , so nα “copies” of the state ρ.

One can now perform local operations, coordinated by classical communication, to transform

ρ⊗nα into m(n) copies of approximately maximally entangled states Ω. �ese local operations
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will involve Kraus operators of the form

{Aj ⊗ I} (88)

when implemented by Alice and

{I⊗ Bj} (89)

when implemented by Bob. �e measurement outcomes can in all instances be communicated in

protocols involving an arbitrary number of rounds. �is will at best be possible at a rate

lim sup

α→∞
nα

mα
< 1. (90)

In e�ect, both parties will end up with fewer, almost maximally entangled states. Entanglement

has been “distilled”, in a similar way as one can extract high percentage alcohol from a liquid

in which alcohol is only present in a dilute form. �ese maximally entangled states can be used

in subsequent steps. �is is a highly interesting procedure: Entanglement, so intrinsic quantum

correlations, are here manipulated like an interconvertible resource.

�en there are steps of entanglement swapping. �is step is maybe even more intricate and inter-

esting. �ink of two maximally entangled states shared by Alice and Bob on the one hand and

Bob and Charlie on the other hand. So let us start from

|ψ〉 = |Ω〉A,B1 ⊗ |Ω〉B2,C, (91)

with again

|Ω〉 = (|0, 0〉+ |1, 1〉)/
√
2. (92)

�at is to say, Bob holds two halves of maximally entangled states. �e two copies will not have

any shared history. Now Bob can perform a projective measurement, projecting the state vector

into

(IA ⊗ 〈Ω|B1,B2 ⊗ IC)|ψ〉 =
1√
2
|Ω〉A,C. (93)

�at is to say, a�er the projective measurement,A andC are in a maximally entangled state, even

though these particles have no joint history whatsoever. �e entanglement has been “swapped”.

Of course, in a projective measurement, this would only work in a probabilistic fashion. How-

ever, a moment of thought reveals that this can be made deterministic, in that for each outcome

of a joint measurement on B1 and B2, one can �nd a Pauli correction on A and C so that deter-

ministically, |Ω〉A,C is reached. �e reason for this is ultimately that

{(I⊗ I)|Ω〉, (X⊗ I)|Ω〉, (Y ⊗ I)|Ω〉, (Z⊗ I)|Ω〉} (94)

for Pauli operators X, Y, Z, I constitute a basis of the maximally entangled states on C2⊗C2. �e

details of this, also constituting the basis of the very much related scheme of quantum teleporta-
tion [6] (for a review, see Ref. [47]), will be explained in the project period.
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5.3 Full quantum repeater schemes

A quantum repeater now makes use of such such steps in a hierarchical, tree-like fashion. It involves

steps of entanglement distillation between neighbours, followed by entanglement swapping steps.

�ere are many variants of such quantum repeaters, as well as numerous suggestions for experimental

realizations thereof. In fact, the reliable realization of quantum repeaters is the key obstacle on the path

to secure quantum key distribution over arbitrary distances – while near-distance quantum key distri-

bution is perfectly feasible. �e trouble is that notions of entanglement distillation and entanglement

swapping are generally assumed to rely on quantummemories that store quantum information reliably.

Since quantum information has to be transmi�ed via light (other quantum systems are hardly feasible

for this task), and quantum information is stored in ma�er qubits, one needs coherent frequency con-

verters (to align the respective frequencies) and needs to map quantum states of light onto atoms, ions,

or atomic ensembles. �en, it has to be read out, but needless to say, all coherently again at negligible

losses. �is still constitutes a technological road block, even though progress is fast. In fact, surprising

as this may sound, each of the above mentioned components has already been achieved in experiments.

Once this road block is overcome, secure quantum communication over arbitrary distances is feasible.

6 �antum networks, graph theory, and routing

�antum repeaters, once realized, enable the establishment of close to maximally entangled states over

arbitrary distances. �is allows for point-to-point quantum key distribution. But how can one think of

multi-partite schemes and genuine quantum networks, involving a large number of nodes, and giving

rise to genuine multi-partite schemes? �is is what this section addresses, in a paradigmatic se�ing that

largely abstracts from aspects of implementation. Recent years have, however, seen important progress

in this respect []. Still, some aspects of genuine quantum networks can be captured in this manner.

6.1 Graph states

Any bi-partite state the reduction of which is maximally mixed is a maximally entangled state. �is is

true, e.g., for the pure state described on subsystems labeled 1 and 2 (and not A and B for reasons that

will become clear later) by the state vector

|ψ〉 = |0, 0〉1,2 + |0, 1〉1,2 + |1, 0〉1,2 − |1, 1〉1,2. (95)

One might think of this state being captured by two vertices connected by an edge that re�ects the

maximal entanglement. In fact, this state vector can be wri�en as

U(|+〉1 ⊗ |+〉2), (96)

with U being a controlled phase quantum gate

U = |0, 0〉〈0, 0|+ |0, 1〉〈0, 1|+ |1, 0〉〈1, 0|− |1, 1〉〈1, 1|. (97)

�is unitary can be seen as entangling the two quantum systems initially prepared in

|+〉 = (|0〉+ |1〉)/
√
2. (98)
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Such an idea makes sense, in fact, for a quantum system composed of an arbitrary number of con-

stituents. �e idea of a graph state [30, 31, 50] captures very natural classes of multipartite quantum

states [62].

We identify the nodes of a graph state with the vertices of a graph. An undirected, �nite graph is a

pair G = (V, E) of a �nite set V ⊂ N and a set E ⊂ [V ]2, the elements of which are subsets of V with

two elements each [31]. �e elements of V are vertices, the elements of E edges. When two vertices

a, b ∈ V are the endpoints of an edge, they are referred to as being adjacent. �e adjacency relation

gives rise to an adjacencymatrix ΓG associated with a graph. IfV = {a1, . . . , aN}, then ΓG is a symmetric

N×N-matrix, with elements

(ΓG)i,j =

{
1, if {ai, aj} ∈ E,

0 otherwise.
(99)

In what follows the neighbourhood of a given vertex a ∈ V is important. �is neighbourhoodNa ⊂ V
is de�ned as the set of vertices b for which {a, b} ∈ E. When the vertex a is deleted, together with the

edges that are incident with a, the new graph obtained is called G − {a}. We now turn to describing

how a given graph can be associated with a quantum state.

De�nition 20 (Graph states) For a given graphG = (V, E), an associated graph state vector is now
obtained by applying a sequence of controlled phase gatesU(a,b) to the state vector |+〉⊗|V | correspond-
ing to the empty graph,

|G〉 =
∏

(a,b)∈E

Ua,b |+〉⊗|V | , (100)

where E denotes the set of edges in G.

Certain maximally entangled states of two qubits are graph states. �en, the GHZ state (Greenberger-

Horne-Zeilinger-state) is also a graph state, in fact, one that is associated with the complete graph.

Graph states are instances of stabilizer states that play an important role in quantum error correction.

To every vertex a ∈ V of G = (V, E), one assigns the Hermitian operator

K
(a)
G = Xa

∏
b∈Na

Zb (101)

in terms of Pauli operators X and Z. �en the graph state vector |G〉 is the common eigenvector of the

K
(a)
G with unit eigenvalues, i.e.,

K
(a)
G |G〉 = |G〉, (102)

for all a ∈ V . �e theory of quantum error correction is largely based on stabilizer states, for good

reasons. It is also an e�ciently describable class of pure quantum states: Instead of having to specify

the coe�cients of a state vector in an exponentially large Hilbert space, one merely has to state the
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polynomially many Pauli operators of which the state is an eigenvalue.

De�nition 21 (Pauli group) �e Pauli group G1 on one qubit is the 16 element group de�ned by the
Pauli operators together with prefactors ±1 and ±i, i.e.,

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}, (103)

�e Pauli group on n qubits Gn is the group generated by the operators described above applied to each
of qubits inH = (C2)⊗n.

Related to the Pauli group is the normalizer of the Pauli group, the so-called Cli�ord group.

De�nition 22 (Cli�ord group) �e n-qubit Cli�ord group Cn is the normalizer (up to complex
phases) of the Pauli group Gn, i.e.,

Cn = {U : UGnU† ⊂ Gn}/U(1). (104)

Cli�ord operations, so the operations associated with Cli�ord unitaries, are extremely important in

quantum information theory. Since they map Pauli operators onto Pauli operators, they can be e�-

ciently described, even though they can be used to generate multipartite entanglement.

6.2 Local equivalence and local complementation

So far, the graph relation was rather a graphical representation than that graph theory really enters

here. However, the connection between multipartite quantum states as they are relevant for quantum

networks and graphs runs quite deep. Here we examine an important example of this type. If two graph

states are the same up to local basis changes, they should be treated as being equivalent. In particular,

local Cli�ord operations map graph states onto graph states. �e respective graphs will, however, be

di�erent. How are they precisely related? In what follows, by τa(G) we denote the graph that results

from locally complementing G with respect to the vertex a.

De�nition 23 (Local complementation) A graph G = (V, E) and vertex a ∈ V de�ne a graph
τa(G) having the adjacency matrix

Γτa(G) := ΓG +Θa mod 2, (105)

where Θa is the complete graph of the neighbourhood Na.

�e graph state that results from local complementation with respect to the vertex a of the graph state

vector |G〉 [30, 31], is de�ned by |τa(G)〉 = Uτa|G〉, where

Uτa := (iXa)
1/2(−iZNa)

1/2. (106)

Needless to say, one can think of entire sequences of such local Cli�ord operations, and consider the

entire orbit generated by such local graph complementations [59, 60]. Given that many graph problems

are NP-hard, one might be tempted to think that this is a computationally hard task. Indeed, even the

decision problem asking whether two graphs are equivalent up to a relabeling of the vertices is in NP.

However, interestingly, one can assess whether one graph state can be obtained from another with a
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sequence of local complementations in polynomial time.

�eorem 24 (Bouchet theorem [10, 59]) Given two graphs G = (V, E) and G ′ = (V, E ′), one
can determine in time polynomial in |V | whether G can be transformed into G ′ by a sequence of local
complementations.

As a corollary, one can determine in polynomial time whether two graph states are identical up to a

local Cli�ord basis change that is of li�le physical signi�cance [59].

6.3 Vertex minors of graphs and the quantum routing problem

Imagine that some source probabilistically prepares certain resource states. In some level of abstrac-

tion, these resource states can be seen as being maximally entangled a�er entanglement distillation

steps. Given that the routing problem for quantum networks is still largely open, it seems reasonably

to make use of that level of abstraction to make progress. Let us assume we would like to arrive at

some desired target state. How can this target state be reached by means of a sequence of meaningful

transformations? Let us assume that the initial state is given as a graph state vector |G〉. Can we bring

this resource into the form, say, of a GHZ state, which is again a graph state? Meaningful operations are

local Cli�ord basis changes and deletions of vertices as well as all edges that are incident to the deleted

vertices. Physically, this corresponds to Pauli Z measurements on vertices. Mathematically, this gives
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rise to the vertex minor problem.

�eorem 25 (Vertex minor problem) For a graph state associated with G, decide whether a graph
H with |H| < |G| can be extracted following a sequence of (i) local complementations and (ii) deletions
of vertices. A graph H that can be obtained in this fashion is called a vertex-minor of G.

Interestingly, the general vertex minor problem is a computationally hard problem.

�eorem 26 (Hardness of the vertex minor problem [16, 28]) �e vertex minor problem isNP-
hard.

For graphs with �nite rank-width
5
, one can, however, decide the routing problem in polynomial time.

�eorem 27 (Extraction of graph states from graph states with bounded rank-width) For
a graph state vector |G〉 with an underlying graph of bounded rank-width, there exists a poly-time
algorithm that decides if a graph state vector |H〉 can be extracted from |G〉 using local Cli�ord
operations and Z-measurements, and gives the sequence of operations to be applied.

For important classes of target states, such as tripartite GHZ states, one can do the routing e�ciently.

�eorem 28 (Extraction of tripartite GHZ states) One can always extract a tri-partite GHZ state
between arbitrary vertices a, b, c ∈ V of a graph state vector |G〉 associated with a connected graph in
polynomial time.

Such tripartite GHZ states can be used in instances of quantum cryptographic protocols, speci�cally

ones that go beyond bipartite quantum key distribution.

6.4 �antum secret sharing as a multipartite cryptographic primitive

Multipartite states can be practically useful, for example, in quantum secret sharing schemes. �is

is a scheme for spli�ing a message into several parts so that no subset of parts is su�cient to read

the message, but the entire set is. In classical secret sharing [53], one divides a secret into n shares

such that at least t of those shares can be used to reconstruct the secret, while any t − 1 or fewer

shares have no information about the secret at all. Such a scheme is called an (t, n) threshold scheme.

�antum analogs of this idea are quantum secret sharing protocols [12, 32]. For brevity, we only give

a particularly simple example of a (2, 3) quantum threshold scheme, in which the constituents are not

qubits, but qutrits, so thatH = C3. �e encoding maps the secret qutrit for α,β, γ ∈ C to three qutrits

as

α|0〉+ β|1〉+ γ|2〉 7→ α(|0, 0, 0〉+ |1, 1, 1〉+ |2, 2, 2〉)
+ β(|0, 1, 2〉+ |1, 2, 0〉+ |2, 0, 1〉)
+ γ(|0, 2, 1〉+ |1, 0, 2〉+ |2, 1, 0〉). (107)

5

Rank width footnote. �e rank-width k of a graph G is the minimum width of all its rank decompositions. �is amounts

to k being the smallest integer such that G can be related to a tree-like structure by recursively spli�ing its vertex set so that

each cut induces a matrix of rank at most k. �e rank-width is bounded i� the clique-width is bounded [46]. Graphs with

rank-width at most one are those where all connected induced subgraphs preserve distance [45].
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It is easy to see that no party alone can learn anything about the secret: Each reduced state is the

maximally mixed state. But any two parties together can fully recover the state: Say, for the �rst two

parties, one has to add the value of the �rst share to the second (modulo three), and then add the

value of the second share to the �rst. �antum secret sharing is a cryptographic primitive based on

multi-partite states beyond bipartite se�ings.

7 Security proofs

7.1 Notions of a�acks in quantum key distribution

�antum key distribution o�ers the claim of secure key distribution in the presence of an eavesdropped

that is a�ributed unlimited, even unrealistic, resources. Historically, however, before full security

proofs were available, particular kinds of a�acks were considered.

Intercept-resend a�ack: �e simplest type of a possible a�ack is the intercept-resend a�ack, in

which Eve performs projective measurements, makes use of the measurement outcome, and pre-

pares a new quantum system in a suitable state. It is easy to see that the BB84 scheme is secure

against such intercept-resend a�acks.

Individual a�acks: In this type of a�ack, Eve performs generalized measurements as laid out

above, but interacts with each qubit (or other quantum system) in the channel separately and

independently. Invoking the above Stinespring dilation, physically, this means Eve lets the quan-

tum system transmi�ed interact with an auxiliary system each which is subsequently measured

in a von-Neumann measurement. �e intercept-resend a�ack is an instance of such an a�ack.

Generally, individual a�acks are the most realistic ones given present technology. Photon number
spli�ing a�acks in quantum optical schemes in which weak pulses are being sent are speci�cally

important instances of such individual a�acks.

Collective a�acks: �is is a yet more general kind of a�ack. Here, Eve again performs general-

ized measurement. Again, she prepares independent auxiliary systems which interact with the

quantum systems transmi�ed. But now she can perform a joint measurement on the collection

of auxiliary systems.

Coherent a�acks: �is is an a�ack that is in no way limited in what Even is allowed to do.

Any a�ack will give rise to errors in the transmission. �is the quantum bit error rate Q ≥ 0 captures

the rate of errors in transmission. A key quantity used in security proofs is that of the quantum mutual
information between Alice and Bob, as well as Alice and Eve and Bob and Eve. �e quantum mutual

information of a bipartite state de�ned onH = HA ⊗HB is given by

I(A : B) = S(ρA ⊗ ρB) − S(ρ). (108)

�is quantity captures correlations in quantum states (both classical and quantum correlations, i.e.,

entanglement), taking a zero value for product states.
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7.2 General strategies of security proofs

Historically, the discussion of security of quantum key distribution protocols centred around the dis-

cussion of speci�c a�acks. While this is instructive, it falls short of the actual promise of quantum key

distribution. �e �rst security proofs that considered an unbounded adversary (and hence coherent

a�acks) were given more than a decade a�er the introduction of the �rst schemes [7, 40, 41, 57]. Ref.

[57] is noteworthy in this respect, in that it takes a very physical approach and links the theory of

security of quantum key distribution to that of quantum error correction and entanglement distillation

explained above.

Only again much later, it was noticed that the security criterion used so far may well be insu�cient [37]:

It does guarantees that an eavesdropper cannot guess the key, so in this sense the scheme is secure. But

this is only true of the key is not used subsequently. If part of the key is ultimately to an eavesdropper

(e.g., when it is used to encrypt a message that is known to her), the rest may become insecure. Based

on these insights, a more stringent security criterion for quantum key distribution has been introduced,

concomitant with new security proofs [51]. If ρK,E is he joint state of the �nal key generated and the

quantum information gathered by an eavesdropper Eve, then this state must be close to an ideal key

τK which is perfectly uniform and is independent from the adversary’s information ρE, as

(1− pabort)D(ρK,E, τK ⊗ ρE) ≤ ε (109)

where pabort is the probability that the protocol aborts,D(., .) is again the trace-norm distance de�ned

in Eq. (72) and ε ∈ [0, 1] is a small real number. A very readable account of this development can be

found in Ref. [48].
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