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Chapter 10

Quantum computational
models

10.1 Adiabatic quantum computing

So far, we have encountered the circuit model for quantum computing, and have made

it look as if it was the only model for quantum computing. It is not. There is a large

class of models for quantum computing. At the end, all a model for quantum com-

puting needs to be able to produce is an efficient simulation of any other model for

quantum computation. And the latter holds true in particular for the circuit model for

quantum computation. A particularly intriguing other model for quantum comput-

ing is the so-called model of adiabatic quantum computing. In 2000, Farhi, Goldstone,

Gutmann, and Sipser introduced a new concept to the study of quantum algorithms,

based on the adiabatic theorem of quantum mechanics. The idea is the following: let

f : {0, 1}N −→ R be a cost function of which we would like to find the global mini-

mum, assumed in x ∈ {0, 1}N . In fact, any local combinatorial search problem can be

formulated in this form. For simplicity, suppose that this global minimum is unique.

Introducing the problem Hamiltonian

HT =
∑

z∈{0,1}N

f(z)|z⟩⟨z|, (10.1)

the problem of finding the x ∈ {0, 1}N where f attains its minimum amounts to iden-

tifying the eigenvector |x⟩ ofHT corresponding to the smallest eigenvalue f(x), i.e.,
the ground state energy associated withHT . But how does one find the ground state in

the first place? The key idea is to consider another HamiltonianH0, with the property

that the system can easily be prepared in its ground state, which is again assumed to

be unique. One then interpolates between the two Hamiltonians, for example linearly

H(t) =
t

T
HT +

(
1− t

T

)
H0, (10.2)
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with t ∈ [0, T ], where T is the run time of the adiabatic quantum algorithm. This

Hamiltonian governs the time evolution of the quantum state of the system from

time t = 0 until t = T . According to the Schrödinger equation, the state vector

evolves as i∂t|ψ(t)⟩ = H(t)|ψ(t)⟩. In a last step one performs a measurement in

the computational basis. If one obtains the outcome associated with |x⟩, then the

measurement result is just x, the minimal value of the function f . In this case the

probabilistic algorithm is successful, which happens with the success probability p =
|⟨x|ψ(T )⟩|2.

What are the requirements for such an algorithm to work, i.e., to result in x with

a large success probability? The answer to this question is provided by the quantum
adiabatic theorem: If the Hamiltonian H(t) exhibits a non-zero spectral gap between

the smallest and the second-to-smallest eigenvalue for all t ∈ [0, T ], then the final

state vector |ψ(T )⟩ will be close to the state vector |x⟩ corresponding to the ground

state of HT , if the interpolation happens sufficiently slowly, meaning that T is suffi-

ciently large. The initial state is then said to be adiabatically transferred to arbitrary

accuracy into the desired ground state of the problem Hamiltonian, which encodes

the solution to the problem. The typical problem of encountering local minima that

are distinct from the global minimum can in principle not even occur. This kind of

quantum algorithm is referred to as an adiabatic algorithm.

Needless to say, the question is how large the time T has to be chosen. Let us

denote with

∆ = min
t∈[0,T ]

(E
(0)
t − E

(1)
t ) (10.3)

the minimal spectral gap over the time interval [0, T ] between the smallest E
(0)
t and

the second-to-smallest eigenvalue E
(1)
t of H(t), associated with eigenvectors |ψ(0)

t ⟩
and |ψ(1)

t ⟩, respectively, and with

Θ = T max
t∈[0,T ]

|⟨ψ(1)
t |∂tH(t)|ψ(0)

t ⟩| = max
t∈[0,T ]

|⟨ψ(1)
t |(HT −H0)|ψ(0)

t ⟩. (10.4)

Then, according to the quantum adiabatic theorem, the success probability satisfies

p = |⟨ψ(0)
T |ψ(T )⟩|2 ≥ 1− ε2 (10.5)

if

Tε ≥ Θ

∆2
. (10.6)

The quantity Θ is typically polynomially bounded in N for the problems one is

interested in, so the crucial issue is the behaviour of the minimal gap ∆. Time com-

plexity is now quantified in terms of the run time T of the adiabatic algorithm. If

one knew the spectrum of H(t) at all times, then one could immediately see how

fast the algorithm can be performed. Roughly speaking, the larger the gap, the faster

the algorithm can be implemented. The problem is that the spectrum of H(t), which
can be represented as a 2N × 2N matrix, is in general unknown. Even to find lower

bounds for the minimal spectral gap is extraordinarily difficult, unless a certain sym-

metry highly simplifies the problem of finding the spectrum. After all, in order for the
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Hamiltonian to be ‘reasonable’, it is required that it is local, i.e., it is a sum of operators

that act only on a bounded number of qubits inN . This is a very natural restriction, as

it means that the physical interactions involve always only a finite number of quan-

tum systems. Note that an indication whether the chosen run time T for an adiabatic

algorithm was appropriate, one may start with the initial Hamiltonian and prepare

the system in its ground state, interpolate to the problem Hamiltonian and – using

the same interpolation – back to the original Hamiltonian. A necessary condition for

the algorithm to have been successful is that finally, the system is to a good approxi-

mation in the ground state of the initial Hamiltonian. This is a method that should be

accessible to an experimental implementation.

Adiabatic algorithms are known to reproduce the quadratic speedup in the Grover

algorithm for unstructured search problems. But adiabatic algorithms can also be ap-

plied to other instances of search problems: Adiabatic algorithms have been compared

with simulated annealing algorithms, finding settings in which the quantum adiabatic

algorithm succeeded in polynomial time, but for simulated annealing exponential time

was necessary. There is after all some numerical evidence that for structured NP hard

problems like MAX CLIQUE and 3-SAT, it may well be that adiabatic algorithms of-

fer an exponential speedup over the best classical algorithm, again, assuming that

P ̸= NP . In fact, it can be shown that adiabatic algorithms can be efficiently sim-

ulated on a quantum computer based on the quantum circuit model, provided that

the Hamiltonian is local in the above sense (see also the subsequent section). Hence,

whenever an efficient adiabatic algorithm can be found for a specific problem, this

implies an efficient quantum algorithm. The concept of adiabatic algorithms may be

a key tool to establish new algorithms beyond the hidden subgroup problem frame-

work.

10.2 Measurement-based quantum computing
This section is taken fromM. A. Nielsen, quant-ph/0504097, with small modifications.

Mike holds the copyright for this explanation, but it is quite beautiful.

10.2.1 Cluster states
A cluster-state computation begins with the preparation of a special entangled many-

qubit quantum state, known as a cluster state, followed by an adaptive sequence of

single-qubit measurements, which process the cluster, and finally read-out of the com-

putation’s result from the remaining qubits. We now discuss each of these steps in

detail.

The term “cluster state” refers not to a single quantum state, but rather to a family

of quantum states. The idea is that to any graph G on n vertices we can define an

associated n-qubit cluster state, by first associating to each vertex a corresponding

qubit, and then applying a graph-dependent preparation procedure to the qubits, as

described below. As an example, the following graph represents a six-qubit cluster

state, The cluster state associated to the graphmay be defined as the result of applying

the following preparation procedure.
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Cluster states:

1. Prepare each of the n qubits in the state vector |+⟩ = (|0⟩+ |1⟩)/
√
2.

2. Apply controlled-phase gates between qubits whose corresponding graph

vertices are connected.

Note that controlled-phase gates commute with one another, so we do not need

to specify the order in which the gates are applied. Also, although we have described

the preparation of the cluster in terms of applying quantum gates, later in the paper

we briefly describe how to prepare clusters using measurements alone, and so the

cluster-state model may be regarded as a truly measurement-only model of quantum

computation.

Note that the states we have called cluster states are sometimes also known as

graph states. Originally, the term “cluster state” was introduced by Raussendorf and

Briegel to refer to the case where the graphG is a two-dimensional square lattice. This

was the class of states which they showed could be used as a substrate for quantum

computation. The term “graph state” originally referred to the family of states associ-

ated with more general graphsG. This distinction was blurred by the introduction of

schemes for quantum computing based on Raussendorf and Briegel’s ideas, but using

different graphs.

Once the cluster state is prepared, the next step in the computation is to perform

a sequence of processing measurements on the state. These measurements satisfy: (1)

they are single-qubit measurements; (2) the choice of measurement basis may depend

on the outcomes of earlier measurements, i.e., feedforward of classical measurement

results is allowed; and (3) measurement results may be processed by a classical com-

puter to assist in the feedforward, so the choice of basis may be a complicated function

of earlier measurement results. Note that for the cluster-state computation to be effi-
cient we must constrain the classical computation to be of polynomial size.

The output of the cluster-state computation may be defined in two different ways,

both useful. The first is to regard the computation as having a quantum state as output,
namely, the quantum state of the qubits which remain when the sequence of process-

ing measurements has terminated. The second definition is to add a set of read-out
measurements, a sequence of single-qubit measurements applied to the qubits which

remain when the processing measurements are complete. In this case the output of

the computation is a classical bit string.

A concrete example of these ideas is the following cluster-state computation:

Labels indicate qubits on which processing measurements occur, while unlabeled

qubits are those which remain as the output of the computation when the process-
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ing measurements are complete. Note that the qubits are labeled by a positive in-

teger n and a single-qubit unitary, which we refer to generically as U ; here U =
HZ±αj

, HZ±βj
. The n label indicates the time-ordering of the processing measure-

ments, with qubits having the same label capable of being measured in either order,

or simultaneously. The time order is important, because it determines which mea-

surement results can be fedforward to control later measurement bases. The U label

indicates the basis in which the qubit is measured, denoting a rotation by the uni-

tary U , followed by a computational basis measurement. Equivalently, a single-qubit

measurement in the basis {U†|0⟩, U†|1⟩} is performed. The ± notation in HZ±α2

andHZ±β2
indicates that the choice of sign depends on the outcomes of earlier mea-

surements, in a manner to be specified separately. We’ll give an example of how this

works later.

10.2.2 Simulating quantum circuits in the cluster-state model
We now explain how quantum circuits can be simulated using a cluster-state compu-

tation. The key idea underlying the simulation is a simple circuit identity, sometimes

known as one-bit teleportation,

|ψ⟩ • H

|+⟩ • XmH|ψ⟩

(10.7)

Here,m is the outcome (zero or one) of the computational basis measurement on the

first qubit. This identity may be verified by expanding |ψ⟩ = α|0⟩+β|1⟩, so the state
vector after the controlled-phase and Hadamard gates is α|+,+⟩ + β|−,−⟩, by the

gate definitions given earlier. This state may be re-expressed as (|0⟩ ⊗H|ψ⟩+ |1⟩ ⊗
XH|ψ⟩)/

√
2, from which the result follows.

The identity of (10.7) is easily generalized to the following identity

|ψ⟩ • HZθ

|+⟩ • XmHZθ|ψ⟩

(10.8)

The proof is to note that Zθ commutes with the controlled-phase gate, and thus the

output of the circuit is the same as would have been output from the circuit in Equa-

tion (10.7) had Zθ|ψ⟩ been input, instead of |ψ⟩.
The proof of (10.8) is elementary, but the result is nonetheless remarkable. Ob-

serve that although the first qubit is measured, no quantum information is lost, for no

matter what the measurement outcome, the posterior state vector of the second qubit

is related by a known unitary transformation to the original input, |ψ⟩.
It is tempting to regard this as unsurprising. After all, suppose we replaced the

controlled-phase gate by a swap gate, which merely interchanges the state of the two

qubits. Then we would not expect a measurement on the first qubit to destroy any

quantum information, since all the quantum information would have been transferred

from qubit one to qubit two before the measurement on qubit one.
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However, this is not what happens, as can be seen from the fact that by varying

the basis in which the first qubit is measured, i.e., by varying θ, we can vary the

unitary transformation effected on the second qubit, without destroying any quantum

information. This may be regarded as a generalization of the EPR effect, and may also

be viewed as an instance of a quantum error-correcting code.

We can use (10.8) to explain how cluster-state computation can simulate quantum

circuits. We begin by explaining how to simulate a single-qubit circuit of the form

|+⟩ HZα1
HZα2 (10.9)

This apparently trivial case contains themost important ideas used in the general case.

Note that we assume the qubit starts in the |+⟩ state vector, and that single-qubit gates
are of the formHZα. These assumptions are made for convenience, and do not cause

any loss of generality, since it is clear that an arbitrary single-qubit circuit can be

simulated using the ability to simulate these operations.

The cluster-state computation to simulate circuit (10.9) is

By definition, this cluster-state computation has an output equal to the output of

the following quantum circuit
1
:

|+⟩ • HZα1

|+⟩ • • HZ±α2

|+⟩ •

(10.10)

Equivalently, we can delay the operations on the second and third qubits until after
the measurement on the first qubit is complete:

|+⟩ • HZα1

|+⟩ • • HZ±α2

|+⟩ •

(10.11)

To determine the output, observe that the two highlighted boxes are both of the form

of (10.8), and thus the output of the circuit is Xm2HZ±α2
Xm1HZα1|+⟩, where

1
Note that the double vertical lines emanating from the meter on the top qubit indicate classical feed-

forward and control of later operations. We use this and similar notations often later in the paper.
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m1 and m2 are the outputs of the measurements on the first and second qubits,

respectively. Observe that feedforward can be used to choose the sign of ±α2 so

that Z±α2
Xm1 = Xm1Zα2

. We also have HXm1 = Zm1H , and thus the output

may be rewritten as Xm2Zm1HZα2
HZα1

|+⟩, which, up to the known Pauli ma-

trix Xm2Zm1
, is identical to the output of the conventional single-qubit quantum

circuit (10.9).

This example generalizes easily to larger single-qubit circuits containing gates of

the formHZα. The general proof strategy is: (1) rewrite the cluster-state computation

in terms of an equivalent quantum circuit; (2) reinterpret the quantum circuit as a

sequence of circuits of the form (10.8); (3) in the resulting expression for the output

state, commute operators of the formXm
all the way to the left, using feedforward to

choose signs on the terms of the form Z±α to ensure that after commutation they are

of the form Zα. The result is a state which, up to a known Pauli matrix, is equivalent

to the output of the single-qubit quantum circuit.

These ideas generalize also to multi-qubit quantum circuits. For example, the cir-

cuit: can be simulated using the above cluster-state computation. The proof of this

equivalence follows exactly the same lines as in the single-qubit case, and is only no-

tationally more complicated. We omit the details, and suggest the interested reader

fill them in.

Summing up, we have shown how the cluster-state model of computation can be

used to efficiently simulate any quantum circuit whose inputs are all |+⟩ state vectors,
and whose gates are either controlled-phase gates, or gates of the formHZα. This set

of resources is universal for quantum computation, and thus the cluster-state model

is capable of efficiently simulating any quantum circuit. Conversely, it is straightfor-

ward to see that any cluster-state computation may be efficiently simulated in the

quantum circuit model, and thus the two models are computationally equivalent.

10.2.3 A few final words
For many years, the cluster state based model was the only model for measurement-

based quantum computing known. This is for good reason, as it is not quite obvious

how to devise a model that is not based on commuting quantum gates. That said, later,

many models have been found, including ones based on ground states of gapped local

Hamiltonians. One can even find full computational phases of matter so that within

every point in a phase of matter, one can do measurement-based quantum computing.

10.3 Other models of quantum computing

10.3.1 Quantum computing by Hamiltonian evolution
There are other models of quantum computing, other than adiabatic quantum com-

puting and measurement-based quantum computing. One only has to be able to ef-

ficiently simulate the circuit model of quantum computing. There is the Hamiltonian



12 CHAPTER 10. QUANTUM COMPUTATIONAL MODELS

model of quantum computing, where one measures a qubit after performing a unitary

time evolution, with O acting on a single qubit only,

p = tr(e−itHρeitH(O ⊗ I)), (10.12)

for a suitable t > 0, where
H =

∑
j

hj (10.13)

is a local Hamiltonian, i.e., a sum of terms each of which acts on a small number of

qubits only.

10.3.2 Dissipative quantum computing
Even more compelling could be the dissipative model for quantum computing in which
one performs a suitable dissipative map and estimates for a suitable t > 0

p = tr(etL(ρ)(O ⊗ I)), (10.14)

where the Liouvillian is given by

L(ρ) = −i[H, ρ] +
∑
j

(
L†
jρL

†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLjρ

)
. (10.15)

Here, again, each of the terms {Lj}, referred to as Lindblad operators, are local and act
on a small number of qubits only. The first part is the familiar part of the Schrödinger

time evolution. The latter is a Markovian master equation capturing dissipative dy-

namics. This is interesting, as dissipation is usually seen as an enemy of coherent

quantum evolution, and not a friend. So even with controlled dissipative dynamics

alone, one can in principle realize a quantum computer.


