
1

Quantum information theory (20110401)
Lecturer: Jens Eisert
Chapter 9: Quantum algorithms

2

Contents

9 Quantum algorithms 5
9.1 Deutsch and Deutsch-Jozsa algorithms 5

9.1.1 Deutsch algorithm . 5
9.1.2 Deutsch-Jozsa algorithm . 6
9.1.3 Bernstein-Vazirani algorithm 8
9.1.4 Simon’s algorithm . 8

9.2 Grover’s database search algorithm 10
9.3 Exponential speed-up in Shor’s factoring algorithm 11

9.3.1 Classical part . 12
9.3.2 Quantum Fourier transform 13
9.3.3 Joining the pieces . 14

9.4 Some thoughts on quantum algorithmic primitives 17
9.4.1 Quantum phase estimation 17
9.4.2 Other thoughts . 18

3

4 CONTENTS

Chapter 9

Quantum algorithms

9.1 Deutsch and Deutsch-Jozsa algorithms
In the same scientific paper in which David Deutsch introduced the notion of the uni-
versal quantum computer, he also presented the first quantum algorithm 1. The prob-
lem that this algorithm addresses, later referred to as Deutsch’s problem, is a very
simple one. Yet the Deutsch algorithm already exemplifies the advantages of a quan-
tum computer through skillfully exploiting quantum parallelism. Like the Deutsch
algorithm, all other elementary quantum algorithms in this section amount to decid-
ing which black box out of finitely many alternatives one has at hand. Such a black
box is often also referred to as oracle. An input may be given to the oracle, one may
read out or use the outcome in later steps of the quantum algorithm, and the objective
is to find out the functioning of the black box. It is assumed that this oracle operation
can be implemented with some sequence of quantum logic gates. The complexity of
the quantum algorithm is then quantified in terms of the number of queries to the
oracle.

9.1.1 Deutsch algorithm
With the help of this algorithm, it is possible to decidewhether a function has a certain
property with a single call of the function, instead of two calls that are necessary
classically. Let

f : {0, 1} −→ {0, 1} (9.1)

be a function that has both a one-bit domain and range. This function can be either
constant or balanced, which means that either f(0) ⊕ f(1) = 0 or f(0) ⊕ f(1) = 1
holds. The problem is to find out with the minimal number of function calls whether
this function f is constant or balanced. In colloquial terms, the problem under con-
sideration may be described as a procedure to test whether a coin is fake (has two
heads or two tails) or a genuine coin.

1Quantum Turing machines have first been considered by Benioff and developed by Deutsch.

5

6 CHAPTER 9. QUANTUM ALGORITHMS

Classically, it is obvious that two function calls are required to decide which of
the two allowed cases is realised, or, equivalently, what the value of f(0) ⊕ f(1) is.
A way to compute the function f on a quantum computer is to transform the state
vector of two qubits according to

|x, y⟩ 7→ Uf |x, y⟩ = |x, f(x)⊕ y⟩. (9.2)

In this manner, the evaluation can be realized unitarily. The above map is what is
called a standard quantum oracle (as opposed to a minimal quantum oracle, which
would be of the form |x⟩ 7→ |f(x)⟩). The claim now is that using such an oracle, a
single function call is sufficient for the evaluation of f(0) ⊕ f(1). In order to show
this, let us assume that we have prepared two qubits in the state with state vector

|Ψ⟩ = (H ⊗H)|0, 1⟩, (9.3)

whereH denotes the Hadamard gate. We now apply the unitaryUf once to this state,
and finally apply another Hadamard gate to the first qubit. The resulting state vector
hence reads as

|Ψ′⟩ = (H ⊗ 1)Uf (H ⊗H)|0, 1⟩. (9.4)

A short calculation shows that |Ψ′⟩ can be evaluated to

|Ψ′⟩ = ±|f(0)⊕ f(1)⟩H|1⟩. (9.5)

The second qubit is in the state corresponding to the vector H|1⟩, which is of no
relevance to our problem. The state of the first qubit, however, is quite remarkable:
encoded is |f(0)⊕ f(1)⟩, and both alternatives are decidable with unit probability in
a measurement in the computational basis, as the two state vectors are orthogonal2.
That is, with a single measurement of the state, and notably, with a single call of the
function f , of the first qubit we can decide whether f was constant or balanced.

9.1.2 Deutsch-Jozsa algorithm
The Deutsch algorithm has not yet any implication on superiority of a quantum com-
puter as compared to a classical as far as the query complexity is concerned. After
all, it is merely one function call instead of two. The situation is different in case of
the extension of the Deutsch algorithm known as Deutsch-Jozsa algorithm. Here, the

2Note that the presented algorithm is not quite the one in the original paper by Deutsch, which allowed
for an inconclusive outcome in the measurement. This deterministic version of the Deutsch algorithm is
due to Cleve, Ekert, Macchiavello, and Mosca.

9.1. DEUTSCH AND DEUTSCH-JOZSA ALGORITHMS 7

task is again to find out whether a function is constant or balanced, but f is now a
function

f : {0, 1}N −→ {0, 1}, (9.6)

where N is some natural number. It is promised that the function is either constant,
which now means that either f(i) = 0 for all i = 0, . . . , 2N − 1 or f(i) = 1 for all
i, or balanced. It is said to be balanced if the image under f takes as many times the
value 1 as the value 0. The property to be balanced or constant can be said to be a
global property of several function values. It is a promised property of the function,
which is why the Deutsch-Jozsa algorithm is being classified as a promise algorithm.
There are only two possible black boxes to the disposal, and the tasks is to find out
which one is realised.

It is clear how many times one needs to call the function on a classical computer:
the worst case scenario is that after 2N/2 function calls, the answer has been always
0 or always 1. Hence, 2N/2 + 1 function calls are required to know with certainty
whether the function is balanced or constant (a result that can be significantly im-
proved to polynomial time if probabilistic algorithms are allowed for). Quantum me-
chanically, again a single function call is sufficient. Similarly to the above situation,
one may prepare N + 1 qubits in the state with state vector

|Ψ⟩ = H⊗(N+1)|0, . . . , 0, 1⟩, (9.7)

and apply the unitary Uf as in Eq. (9.2) to it, acting as an oracle, and applyH⊗N ⊗ 1

to the resulting state, to obtain

|Ψ′⟩ = (H⊗N ⊗ 1)UfH
⊗(N+1)|0, . . . , 0, 1⟩. (9.8)

In the last step, one performs a measurement on the first N qubits in the computa-
tional basis. In effect, one observes that exactly if the function f is constant, one ob-
tains the measurement outcome corresponding to |0, 0, . . . , 0⟩with certainty. For any
other output the function was balanced. So again, the test for the promised property
can be performed with a single query, instead of 2N/2+ 1 classically. The Hadamard
gates ensure that all computational basis states are being fed into the quantum algo-
rithm in superposition, giving rise to what could be called an instance of “quantum
parallelism”.

After all, the performance of the Deutsch-Jozsa algorithm is quite impressive. If
there is a drawback to this, yet, it is that unfortunately, the Deutsch-Jozsa algorithm is
to some extent artificial in nature, and it lacks an actual practical application emerg-
ing in a natural context. The astonishing difference in the number of queries in the
quantum and classical case also disappears if classically probabilistic algorithms are
allowed for: in fact, using a probabilistic algorithm, a polynomial number of queries
achieves an exponentially good success probability. A polynomial speed-up remains,
though.

8 CHAPTER 9. QUANTUM ALGORITHMS

9.1.3 Bernstein-Vazirani algorithm

There are a number of related problems that showvery similar features. In the Bernstein-
Vazirani algorithm again a function f : {0, 1}N −→ {0, 1} is given, promised to be
of the form

f(x) = a · x. (9.9)

for a, x ∈ {0, 1}N for some natural number N . a · x in this expression denotes the
scalar product

a · x = a0x0 ⊕ · · · ⊕ aN−1xN−1. (9.10)

How many measurements are required to find the vector a of zeros and ones? Classi-
cally, one can feed in indicator functions and then learn the vector a withN function
calls. With the standard oracle

|x, y⟩ 7→ |x, f(x)⊕ y⟩ (9.11)

at hand, in its quantum version in the Bernstein-Vazirani algorithm only a single call
of the oracle is required. This cannot be randomized, in contrast to the classical al-
gorithm solving the problem of the Deutsch Jozsa algorithm. The Bernstein-Vazirani
algorithm has been designed to prove an oracle separation between complexity classes
that we later encounter as BQP and BPP. Although it has been convincingly argued
that one does not have to evoke the metaphor of quantum parallelism to interpret the
functioning of the quantum computer in the Bernstein-Vazirani problem – the dif-
ference from quantum to classical lies rather in the ability to reverse the action of a
CNOT gate by means of local operations on the control and target qubits – the sur-
prisingly superior performance of the quantum algorithm to its classical counterpart
is manifest.

9.1.4 Simon’s algorithm

Simon’s problem is an instance of an oracle problem which is classically hard, even for
probabilistic algorithms, but tractable for quantum computers. This can be formulated
as a decision problem to see whether a function f is 2-to-1 or 1-to-1. To keep things

9.1. DEUTSCH AND DEUTSCH-JOZSA ALGORITHMS 9

simple, let us formulate it as a problemwhere the task is to find the period p ∈ {0, 1}N
of a certain function f : {0, 1}N −→ {0, 1}N , which has the property that

f(x) = f(y) (9.12)

if and only if y = x ⊕ p. Here, x and y denote binary words of length N , where ⊕
once again means bitwise addition modulo 2.

Classically the problem is hard, since the probability of having found two identical
elements x and y after 2N/4 queries is still less than 2−N/2. Simon’s quantum solution
is now the following: Start with a state vector (H|0⟩)⊗N |0⟩⊗N and run the oracle once
yielding the state vector 2−N/2

∑
x |x⟩|f(x)⟩. Then measure the second register3. If

the measurement outcome is f(x0), then the state vector of the first register will be

1√
2

(
|x0⟩+ |x0 ⊕ p⟩

)
. (9.13)

Out of the exponentially many terms, these two are the only ones remaining: The first
one is obvious, while the second one is obtained because of the property of p being a
period. This is a fresh element, in that some registers are being measured, while the
quantum algorithm is further pursued on other qubits. Applying a Hadamard gate to
each of the N remaining qubits leads to

1

2(N+1)/2

∑
y

(
(−1)x0·y + (−1)(x0⊕p)·y

)
|y⟩ (9.14)

=
1

2(N−1)/2

∑
p·y=0

(−1)x0·y|y⟩.

In the last step, a change of variables has been made use of. If we finally measure the
first register in computational basis, we obtain a value y which is such that y · p = 0
modulo 2. Repeating this procedure in order to getN−1 linearly independent vectors
y1, . . . , yN−1 we can determine p from the set of equations

{yi · p = 0}. (9.15)

To this end we have to query the oracle O(N) times4. Hence, we get an exponential
speed up compared to any classical algorithm. And in contrast to the Deutsch-Jozsa
algorithm this exponential gap remains if we allow for probabilistic classical algo-
rithms5. Simon’s algorithm has much in common with Shor’s algorithm: they both
try to find the period of a function6, both yield an exponential speed-up, and both
make use of classical algorithms in a post processing step. Actually, Shor’s work was
inspired by Simon’s result.

3Note that this step is not even necessary – it is merely a pedagogical one. One can also set up a unitary
circuit that solves the same problem without actually performing measurements along the way.

4This symbol is the “big-O” Landau symbol for the asymptotic upper bound. In the rest of the chapter,
this notation will be used even if the asymptotic behavior could be specified more precisely.

5Simon’s problem is an instance of an oracle problem relative to which BPP ̸=BQP, as we will see
later. That is, classical and quantum polynomial-time complexity classes for bounded error probabilistic
algorithms differ relative to Simon’s problem.

6Whereas Simon’s problem is to find a period in (Z2)N , Shor’s algorithm searches for one in Z2N . A
moment of thought reveals that the row of Hadamards can also be seen as a Fourier transform.

10 CHAPTER 9. QUANTUM ALGORITHMS

9.2 Grover’s database search algorithm
The speed-up of the presented quantum algorithms for the Deutsch-Jozsa and Simon’s
problem is enormous. However, the oracle functions are constrained to comply with
certain promises and the considered tasks hardly appear in practical applications.
In contrast to that, Grover’s algorithm deals with a frequently appearing problem:
database search.

Assume we have an unsorted list and want to know the largest element, the mean,
whether there is an element with certain properties or the number of such elements
– all these are common problems or necessary subroutines for more complex pro-
grams and due to Grover’s algorithm all these problems in principle admit a typically
quadratic speed-up compared to classical solutions. Such an improvement of the per-
formance might not appear very spectacular, however, the problems to which it is
applicable are quite numerous7 and the progress from the ordinary Fourier transform
to the FFT already demonstrated how a quadratic speed-up in an elementary routine
can boost many applications.

Consider the problem of searching a marked element x0 ∈ {1, . . . , N} within
an unsorted database of length N = 2n. Whereas classically we have to query our
databaseO(N) times in order to identify the sought element, Grover’s algorithm will
require only O(

√
N) trials. Let the database be represented by a unitary8

Ux0
= 1− 2|x0⟩⟨x0|, (9.16)

which flips the sign of |x0⟩ but preserves all vectors orthogonal to |x0⟩. The first step
of the algorithm is to prepare an equally weighted superposition of all basis states
|Ψ⟩ =

∑
x |x⟩/

√
N . As we have already seen previously this can be achieved by

applying nHadamard gates to the state vector |0⟩. Next, we apply the Grover operator

G = UΨUx0 , UΨ = 2|Ψ⟩⟨Ψ| − 1 (9.17)

to the quantum state . Note that |Ψ⟩ here is a known and fixed state vector. Geomet-
rically, the action of G is to rotate the state vector |Ψ⟩ towards |x0⟩ by an angle 2φ
where sinφ = |⟨Ψ|x0⟩| = 1/

√
N . The idea is now to iterate this rotation k-times

until the initial state is close to |x0⟩, i.e.,

Gk|Ψ⟩ ≈ |x0⟩. (9.18)

Measuring the system (in computational basis) will then reveal the value of x0 with
high probability.

So, how many iterations do we need? Each step is a 2φ-rotation and the initial
angle between |Ψ⟩ and |x0⟩ is π/2 − φ.9 Using that for large N sinφ ≈ φ we see
that k ≈ π

√
N/4 rotations will do the job and the probability of obtaining a mea-

surement outcome different from x0 will decrease asO(1/N). Since every step in the
7For instance, the standard solution to all NP-complete problems is doing an exhaustive search. Hence,

Grover’s algorithm would speed-up finding a solution to the travelling salesman, the Hamiltonian cycle
and certain coloring problems.

8|x0⟩⟨x0| means the projector onto the state vector |x0⟩. That is Ux0 |x⟩ = (−1)δx,x0 |x⟩.
9This clarifies why we start with the state vector |Ψ⟩: The overlap |⟨Ψ|x0⟩| does not depend on x0.

9.3. EXPONENTIAL SPEED-UP IN SHOR’S FACTORING ALGORITHM 11

Grover iteration queries the database once, we need indeed only O(
√
N) trials com-

pared to O(N) in classical algorithms. To exploit this speed-up we need of course an
efficient implementation not only of the database-oracle Ux0

, but also of the unitary
UΨ. Fortunately, the latter can be constructed out of O(logN) elementary gates.

What if there are more than one, say M , marked elements? Using the equally
weighted superposition of all the respective states instead of |x0⟩ we can essentially
repeat the above argumentation and obtain that O(

√
N/M) queries are required in

order to find one out of theM elements with high probability. However, performing
further Grover iterations would be overshooting the mark: we would rotate the initial
state beyond the sought target and the probability for finding amarked element would
rapidly decrease again. If we initially do not know the numberM of marked elements
this is, however, not a serious problem. As long as M ≪ N we can still gain a
quadratic speed-up by simply choosing the number of iterations randomly between
0 and π

√
N/4. The probability of finding a marked element will then be close to 1/2

for every M . Notably, Grover’s algorithm is optimal in the sense that any quantum
algorithm for this problem will necessarily require O(

√
N/M) queries.

9.3 Exponential speed-up in Shor’s factoring algo-
rithm

Shor’s algorithm is without doubt not only one of the cornerstones of quantum in-
formation theory but also one of the most surprising advances in the theory of com-
putation itself: a problem, which is widely believed to be hard becomes tractable by
refereing to (quantum) physics – an approach completely atypical for the theory of
computation, which usually abstracts away from any physical realization.

The problem Shor’s algorithm deals with is factorization, a typical NP problem.
Consider for instance the task of finding the prime factors of 421301. With pencil and
paper it might probably take more than an hour to find them. The inverse problem,
the multiplication 601 × 701, can, however, be solved in a few seconds even with-
out having pencil and paper at hand10. The crucial difference between the two tasks
multiplication and factoring is, however, how the degree of difficulty increases with
the length of the numbers. Whereas multiplication belongs to the class of “tractable”
problems for which the required number of elementary computing steps increases
polynomially with the size of the input, every known classical factoring algorithm
requires an exponentially increasing number of steps. This is what is meant by say-
ing that factoring is an “intractable” or “hard” problem. In fact, it is this discrepancy
between the complexity of the factoring problem and its inverse which is exploited in
the most popular public key encryption scheme based on RSA – its security heavily
relies on the assumed difficulty of factoring. In a nutshell the idea of Shor’s factoring
algorithm is the following:

(i) Classical part: Using some elementary number theory one can show that the

10Actually, it takes eleven seconds for a randomly chosen Munich schoolboy at the age of twelve (the
sample size was one).

12 CHAPTER 9. QUANTUM ALGORITHMS

problem of finding a factor of a given integer is essentially equivalent to deter-
mining the period of a certain function.

(ii) QFT for period-finding: Implement the function from step (i) in a quantum cir-
cuit and apply it to a superposition of all classical input states. Then perform a
discrete quantum Fourier transform (QFT) andmeasure the output. Themeasure-
ment outcomes will be probabilistically distributed according to the inverse of
the sought period. The latter can thus be determined (with certain probability)
by repeating the procedure.

(iii) Efficient implementation: The crucial point of the algorithm is that the QFT as
well as the function from step (i) can be efficiently implemented, i.e., the number
of required elementary operations grows only polynomially with the size of
the input. Moreover, the probability of success of the algorithm can be made
arbitrary close to one without exponentially increasing effort.

Clearly, the heart of the algorithm is an efficient implementation of the QFT. Since
Fourier transforms enter in many mathematical and physical problems one might
naively expect an exponential speedup for all these problems as well. However, the
outcome of the QFT is not explicitly available but “hidden” in the amplitudes of the
output state, which can not be measured efficiently. Only global properties of the
function, like its period, can in some cases be determined efficiently.

Nevertheless, a couple of other applications are known for which the QFT leads
again to an exponential speed up compared to the known classical algorithms. The
abstract problem, which encompasses all these applications is known as the “hidden
subgroup problem” and another rather prominent representative of this type is the
discrete logarithm problem. Let us now have a more detailed look at the ingredients
for Shor’s algorithm.

9.3.1 Classical part
LetN be an odd number we would like to factor and a < N an integer which has no
non-trivial factor in common with N , i.e., gcd(N, a) = 1. The latter can efficiently
be checked by Euclid’s algorithm11. A factor of N can then be found indirectly by
determining the period p of the function f : Z −→ ZN defined as

f(x) = ax modN. (9.19)

Hence, we are looking for a solution of the equation ap − 1 = 0 modN. Assuming p
to be even (otherwise p/2 is not an integer), we can decompose

ap − 1 = (a
p
2 + 1)(a

p
2 − 1) = 0 modN, (9.20)

and therefore either one or both terms (a
p
2 ± 1) must have a factor in common with

N . Any non-trivial common divisor ofN with (a
p
2 ± 1), again calculated by Euclid’s

algorithm, yields thus a non-trivial factor of N .
11This is possible in O((logN)3) time. In fact, if the factors of the two numbers are not known, this is

the fastest known algorithm. And if the factors were known, we would not have to use Shor’s algorithm

9.3. EXPONENTIAL SPEED-UP IN SHOR’S FACTORING ALGORITHM 13

Obviously, the described procedure is only successful if p is even and the final
factor is a non-trivial one. Fortunately, if we choose a at random12, this case occurs
with probability larger than one half unless N is a power of a prime. The latter can,
however, be checked again efficiently by a known classical algorithm, which returns
the value of the prime. Altogether a polynomial time algorithm for determining the
period of the function in Eq. (9.19) leads to a probabilistic polynomial time algorithm
which either returns a factor of N or tells us that N is prime.

9.3.2 Quantum Fourier transform

The step from the ordinary discrete Fourier transform (based onmatrixmultiplication)
to the Fast Fourier Transform (FFT) has been of significant importance for signal and
image processing as well as for many other applications in scientific and engineering
computing13. Whereas the naive way of calculating the discrete Fourier transform

ĉy =
1√
n

n−1∑
x=0

cxe
2πi
n xy (9.21)

bymatrix multiplication takesO(n2) steps, the FFT requiresO(n log n). The quantum
Fourier transform (QFT) is in fact a straightforward quantum generalization of the FFT,
which can, however, be implemented using only O((log n)2) elementary operations
– an exponential speedup!

Let now the computational basis states of q qubits be characterized by the binary
representation of numbers x =

∑q
i=1 xi2

i−1 via

|x⟩ = |x1, . . . , xq⟩. (9.22)

That is, in this subsection x denotes from now on a natural number or zero and not a
binary word. Then, for n = 2q the QFT acts on a general state vector of q qubits as∑

x

cx|x⟩ 7→
∑
y

ĉy|y⟩. (9.23)

It is acting on the computational basis states hence exactly like the discrete Fourier
transform. This defines the unitary of the quantum Fourier transform. This unitary
can be implemented using only two types of gates: the Hadamard gate and conditional
phase gates Pd acting as

|a, b⟩ 7→ |a, b⟩eδa,bπi/2
d

. (9.24)

which rotate the relative phase conditionally by an angle π2−d, where d is the “dis-
tance” between the two involved qubits.

12For each randomly chosen a we have again to check whether gcd(N, a) = 1. The probability for this
can be shown to be larger than 1/ logN . The total probability of success is thus at least 1/(2 logN).

13Although FFT is often attributed to Cooley and Tukey in 1965, it is now known that around 1805 Gauss
used the algorithm already to interpolate the trajectories of asteroids.

14 CHAPTER 9. QUANTUM ALGORITHMS

Thefigure shows the quantum circuit, which implements the QFT on q = 3 qubits.
The extension of the circuit to more than three qubits is rather obvious and since
q(q + 1)/2 gates are required its complexity is O(q2) = O((log n)2). Being only
interested in an approximate QFT we could reduce the number of gates even further
to O(log n) by dropping all phase gates Pd with d ≥ m. Naturally, the accuracy will
then depend onm.14

9.3.3 Joining the pieces

Let us now sketch how the QFT can be used to compute the period p of the function in
Eq. (9.19) efficiently. Consider two registers of q qubits each, where 2q = n ≥ N2 and
all the qubits are in the state vector |0⟩ initially. Applying a Hadamard gate to each
qubit in the first register yields

∑
x |x, 0⟩/

√
n. Now suppose we have implemented

the function in Eq. (9.19) in a quantum circuit which acts as |x, 0⟩ 7→ |x, f(x)⟩, where
x is taken from Zn. Applying this to the state vector and then performing a QFT on
the first register we obtain

1

n

n−1∑
x,y=0

e
2πi
n xy|y, f(x)⟩. (9.25)

How will the distribution of measurement outcomes look like if we now measure the
first register in computational basis? Roughly speaking, the sum over x will lead to
constructive interference whenever y/n is close to a multiple of the inverse of the
period p of f and it yields destructive interference otherwise. Hence, the probability
distribution for measuring y is sharply peaked around multiples of n/p and p itself
can be determined by repeating the whole procedure O(logN) times15. At the same
time the probability of success can be made arbitrary close to one. In the end we can
anyhow easily verify whether the result, the obtained factor of N , is valid or not.

14An ϵ-approximation of the QFT (in the 2-norm) would require O(q log(q/ϵ)) operations, i.e., m is of
the order log(q/ϵ).

15For the cost of more classical postprocessing it is even possible to reduce the expected number of
required trials to a constant.

9.3. EXPONENTIAL SPEED-UP IN SHOR’S FACTORING ALGORITHM 15

What remains to be shown is that the map

|x, 0⟩ 7→ |x, f(x)⟩ , f(x) = ax modN (9.26)

can be implemented efficiently. In fact, this can be done by repeatedly squaring in
order to get a2

j

mod N and then multiplying a subset of these numbers according to
the binary expansion of x. To be more specific, let us consider the function

ax modN (9.27)

more closely. We use the binary notation, as usual with |x⟩ = |x1, . . . , xq⟩,

x = x12
n−1 + x22

n−2 + · · ·+ xq2
0. (9.28)

Then we can expand the expression as

ax modN = (ax12
q−1

· ax22
q−2

· · · · · axq2
0

)modN (9.29)

= (ax12
q−1

modN) · (ax22
q−2

modN) · · · · · (axq2
0

modN).

Multiplication commutes with modulo division. There is a classical circuit for the
function

gr(x) = rxmodN. (9.30)

For this reason, there is an efficient quantum implementation for the function con-
trolled Ur , where Ur acts as

|z⟩ 7→ |rzmodN⟩. (9.31)

That is to say, the controlled unitary operation performs the modulo multiplication if
the control qubit is in |1⟩ and does not do so if it is in |0⟩.

16 CHAPTER 9. QUANTUM ALGORITHMS

This requires O(logN) squarings and multiplications of logN -bit numbers. For
each multiplication the “elementary-school algorithm” requires O((logN)2) steps.
Hence, implementing this simple classical algorithm on our quantum computer we
can compute f(x) with O((logN)3) elementary operations. In fact, this part of per-
forming a standard classical multiplication algorithm on a quantum computer is the
bottleneck in the quantum part of Shor’s algorithm. If there would be a more refined
quantum modular exponentiation algorithm we could improve the asymptotic perfor-
mance of the algorithm16.

Computational effort of Shor’s algorithm: The quantum part of Shor’s factor-
ing algorithm requires of the order (logN)3 elementary steps.

That is to say, the size of the circuit is cubic in the length of the input. As described
above, additional classical preprocessing and post-processing is necessary in order to
obtain a factor of N . The time required for the classical part of the algorithm is,
however, polynomial in logN as well, such that the entire algorithm does the job in
polynomial time.

16In fact, modular exponentiation can be done in O((logN)2 log logN log log logN) time by utiliz-
ing the Schönhagen-Strassen algorithm for multiplication. However, this is again a classical algorithm,
first made reversible and then run on a quantum computer. If there exists a faster quantum algorithm it
would even be possible that breaking RSA codes on a quantum computer is asymptotically faster than the
encryption on a classical computer.

9.4. SOME THOUGHTS ON QUANTUM ALGORITHMIC PRIMITIVES 17

Runtime of the best known algorithm for factoring: In contrast to that, the
running time of the number field sieve, which is currently the best classical fac-
toring algorithm, is exp[O((logN)

1
3 (log logN)

2
3)].

Moreover, it is widely believed that factoring is a classically hard problem, in the
sense that there exists no classical polynomial time algorithm. However, it is also
believed that proving the latter conjecture (if it is true) is extremely hard since it
would solve the notorious P ?

= NP problem.
Shor’s factoring algorithm falls into a certain class of quantum algorithms, to-

gether with many other important algorithms, such as the algorithm for computing
orders of solvable groups and the efficient quantum algorithm for finding solutions of
Pell’s equation: it is an instance of a hidden subgroup problem. In fact, Shor’s algo-
rithm can be largely generalized to provide a solution of the hidden sub-group problem.
Given a group G, a subgroup H ≤ G, and a set X , we say a function f : G → X
hides the subgroup H if for all g1, g2 ∈ G,

f(g1) = f(g2) (9.32)

holds true if and only if and only if g1H = g2H . Equivalently, the function f is
constant on the cosets of H , while it is different between the different cosets of H .
Again, this is a problem that can be efficiently solved on a quantum computer, while
no polynomial time algorithm is known for the classical solution.

Hidden subgroup problem: Let G be a group, X a finite set, and f : G → X
a function that hides a subgroup H ≤ G. The function f is given via an oracle,
which uses O(log |G|+ log |X|) bits. Using information gained from evaluations
of f via its oracle, determine a generating set for H .

9.4 Some thoughts on quantum algorithmic primi-
tives

9.4.1 Quantum phase estimation

How can one find good quantum algorithms? There are no recipes. One has to use
structure in a clever way. Each major quantum algorithm came along with a sig-
nificant new idea. That said, important primitives play an important role, and are a
part of many quantum algorithms. Among those primitives, it is the quantum phase
estimation algorithm that is particularly important. The task is as follows.

18 CHAPTER 9. QUANTUM ALGORITHMS

Phase estimation problem: Consider a unitary U that acts on m qubits with
an eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ|ψ⟩ for 0 ≤ θ < 1. We would like to
find the eigenvalue e2πiθ of |ψ⟩ which amounts to estimating the real phase θ, to
a finite level of precision.

We e2πiθ as the eigenvalues of a unitary all lie on the unit circle, and are hence
complex numbers with absolute value 1. The quantum phase estimation algorithm is
a subroutine of Shor’s algorithm, but of also many others.

9.4.2 Other thoughts
There are many other primitives that one has made use of algorithms based on quan-
tum random walks constitute important examples of this kind, although the problem
they solve do not appear in a particularly practical context. It has also been seen
that the exponentiation of structured matrices such as sparse or low-rank matrices are
a primitive that is often used. Using such a machinery, it has, e.g., in developing
quantum algorithm that solve some systems of linear equations in logarithmic time,
while the same problem takes polynomial time on a classical computer. To encounter
an exponential quantum advantage, one has to encode the problem in an appropriate
fashion into the quantum computer, and the matrix capturing the system of equations
has to be sparse: Otherwise, the read-in of the problem into the quantum computer
already requires polynomial effort. The HHL algorithm, as it is called after Aram Har-
row, Avinatan Hassidim, and Seth Lloyd, the linear system is assumed to be sparse
and to have a low condition number κ. The user is interested in the result of a scalar
measurement on the solution vector, instead of the values of the solution vector it-
self, as again, otherwise one obviously encounters a linear effort. The algorithm has
a runtime of O(log(N)κ2), where N is the number of variables in the linear system.
This offers an exponential speedup over the fastest known classical algorithm, which
runs in O(Nκ) time.

