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Chapter 2

Identical particles

2.1 Permutation group
In this section, we make a first contact with quantum many-body systems. We consider
a physical system composed ofN identical particles. “Identical” means that there is no
observable that could distinguish between them. In such a situation, the Hamiltonian
operator and in fact any other observable must be symmetric in the coordinates (that
is, in the position and spin degrees of freedom). In other words, if A is an arbitrary
observable, and P an arbitrary permutation from SN – so the permutation group with
N elements – then we will say that the particles are identical if

[A,P ] = 0 (2.1)

for all P ∈ SN . We will use the same symbol for the permutation and its representation
in Hilbert space. This is a very natural definition: If we could generate an observable
effect by simply permuting particles, then we could not call the particles indistinguish-
able, as we have found a way to distinguish them. For the moment being, this is only
a constraint to the involved Hilbert spaces and to their Hamiltonians (as H is also an
observable), but we will see in a minute what the consequences are. We will now more
closely consider this operator in Hilbert space.

Let ξj be the coordinates of the j-th particle, of N particles in total. Say, the state
vector of such a particle is from some Hilbert space H. This could in particular be the
position of the particle, a situation for which then H = L2(R). Or, for a particle with
spin, the position and the third component of the spin, with Hilbert space

H = L2(R)⊗ C2. (2.2)

A wave function is then simply a function with values

ψ(ξ) = ψ(x, σ), (2.3)

where x ∈ R3 and σ = {0, 1}. How does the entire Hilbert space then look like? Well,
we know that this is given by

H⊗ · · · ⊗ H = H⊗N . (2.4)
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6 CHAPTER 2. IDENTICAL PARTICLES

We will now investigate what happens to the wave function when we start permuting
particles.

If ψ(ξ1, . . . , ξN ) is the wave function of the system, then the permutation operator
acts as

(Pψ)(ξ1, . . . , ξN ) = ψ(ξP (1), . . . , ξP (N)). (2.5)

It is clear that this really gives rise to a representation of the permutation group, as for
two permutations P1, P2 we have that

((P2P1)ψ)(ξ1, . . . , ξN ) = (P2(P1ψ))(ξ1, . . . , ξN ). (2.6)

If the function ψ(ξ1, . . . , ξN ) is a solution of the time independent Schrödinger equa-
tion,

(Hψ)(ξ1, . . . , ξN ) = Eψ(ξ1, . . . , ξN ), (2.7)

so is (Pψ)(ξ1, . . . , ξN ) a solution with the same energy E, if

[H,P ] = 0. (2.8)

This is a consequence of the definition. Since for N particles, there exist N ! different
permutations (this is the cardinality of the symmetric group), we get in this way N !
different wave functions. Not all of them will be linearly independent, but usually we
will obtain a number of linearly independent solutions of the same energy. That is
to say, the energy values of Hamilton operators of identical particles will typically be
highly degenerate. This degeneracy is referred to as exchange degeneracy.

For an arbitrary observable A, we get

〈ψ|A|ψ〉 = 〈Pψ|A|Pψ〉. (2.9)

If ψ(ξ1, . . . , ξN ; t0) is the wave function at time t0 and U(t− t0) is the time evolution
operator that for all permutations P satisfies

[U(t− t0), P ] = 0 (2.10)

(for obvious reasons, since the Hamiltonian P commutes with H)

U(t− t0) = e−i(t−t0)H (2.11)

setting ~ = 1, then also

(PU(t− t0)ψ)(ξ1, . . . , ξN ; t0) = (U(t− t0)Pψ)(ξ1, . . . , ξN ; t0). (2.12)

This means that the permuted time evolved wave function is the same as the time
evolved permuted wave function. This means no less than that two wave functions
that are different only by a permutation, cannot be distinguished by any even sophis-
ticatedly chosen observable. This is hence a property that is preserved under time
evolution.
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2.2 Completely symmetric and antisymmetric wave func-
tions

It makes a lot of sense to elucidate the situation for a small number of particles. For
one particle, the issue is void. Two particles are still quite boring in this respect, as
there are only completely symmetric and antisymmetric functions. Or, more precisely,
the Hilbert space decomposes int a direct sum of those components. Hence, the most
natural first good example is the case of N = 3: In fact, for this we see all features we
need to know. In order to simplify the notation, we will write j for the coordinates ξj .
But it is important to stress that this is no number, but just a shortcut for a coordinate.
We have the wave function ψ(i, j, k), where i 6= j 6= l can take the values 1, 2, 3. From
these wave functions, one can construct the following functions,

ψS(1, 2, 3) =
1

61/2
(ψ(1, 2, 3) + ψ(1, 3, 2) + ψ(2, 3, 1) + ψ(2, 1, 3)

+ ψ(3, 1, 2) + ψ(3, 2, 1)), (2.13)

ψA(1, 2, 3) =
1

61/2
(ψ(1, 2, 3)− ψ(1, 3, 2) + ψ(2, 3, 1)− ψ(2, 1, 3)

+ ψ(3, 1, 2)− ψ(3, 2, 1)), (2.14)

as well as

ψM1
(1, 2, 3) =

1

231/2
(2ψ(1, 2, 3)− ψ(1, 3, 2) + 2ψ(2, 1, 3)− ψ(2, 3, 1)

− ψ(3, 1, 2)− ψ(3, 2, 1)), (2.15)

ψM2(1, 2, 3) =
1

2
(ψ(1, 3, 2)− ψ(2, 3, 1) + ψ(3, 1, 2)− ψ(3, 2, 1)), (2.16)

ψM ′
1
(1, 2, 3) =

1

231/2
(2ψ(1, 2, 3)− ψ(1, 3, 2)− 2ψ(2, 1, 3)− ψ(2, 3, 1)

− ψ(3, 1, 2) + ψ(3, 2, 1)), (2.17)

ψM ′
2
(1, 2, 3) =

1

2
(ψ(1, 3, 2) + ψ(2, 3, 1)− ψ(3, 1, 2)− ψ(3, 2, 1)). (2.18)

The span of these six new wave functions is identical with that of the original functions,
needless to say. If ψ(1, 2, 3) already was completely symmetric, then only ψS(1, 2, 3)
would be non-vanishing. The pre-factors are only normalization constants. It is not
difficult to verify that

(PψS)(1, 2, 3) = ψS(1, 2, 3) (2.19)

and
(PψA)(1, 2, 3) = ±ψA(1, 2, 3), (2.20)

depending on whether the permutation P is even or odd (so can be generated from
an even or odd number of two-entry exchanges). Therefore, as the index indicates,
the functions ψS and ψA are completely symmetric or antisymmetric. There are also
the two two-dimensional subspaces spanned by Eqs. (2.15,2.16) and Eqs. (2.17,2.18),
respectively. They are again invariant under any permutation P ∈ S3.
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That is to say, the Hilbert space decomposes into a direct sum of four subspaces

H3 = HS ⊕HA ⊕HM ⊕HM ′ . (2.21)

This corresponds to a classification of the wave function according to complete sym-
metry in HS , antisymmetry HA, and mixed symmetry in HM ⊕HM ′ . What is more,
the representations HM und HM ′ are equivalent. In this language, we also see why
N = 2 is a somewhat boring case: Here we simply have

H2 = HS ⊕HA. (2.22)

The general case of N particles is now clear from basic group theoretic considera-
tions. The Hilbert space decomposes as

HN = HS ⊕HA ⊕HS1 ⊕HS2 ⊕ . . . (2.23)

each of which is invariant under any permutation P ∈ SN . In physical system, only
the completely symmetric and antisymmetric wave functions can be realized. Why is
this so? An argument can be formulated as follows: Let {A1, . . . , Ak} be a complete
set of compatible observables (that is, a complete set of observables that are mutually
commuting) and {a1, . . . , ak} the corresponding eigenvalues of A1, . . . , Ak. Then the
state vector |a1, . . . , ak〉 is unique, up to a phase. But if |a1, . . . , ak〉 ∈ HSi , then one
can find a permutation P so that

P |a1, . . . , ak〉 6= eiα|a1, . . . , ak〉 (2.24)

for all α ∈ R, and still P |a1, . . . , ak〉 is an eigenvector of A1, . . . , Ak with eigen-
values a1, . . . , ak. This leads to a contradiction, however, as the subspaces are not
one-dimensional. This is the point: The invariant subspaces must be one-dimensional.
And, as a representation theoretic consideration shows (which we will not discuss here
in detail), this is true only for the completely symmetric and antisymmetric wave func-
tions. All other invariant subspaces are of higher dimension. This leads to an important
principle.

Symmetry principle: A state vector of a pure quantum state of a system of identi-
cal particles is eigner completely symmetric or antisymmetric under the exchange
of two particles.

One can also derive from considerations in relativistic quantum field theory (which
we will not go into at this point), the following important spin statistics theorem.

Spin statistics theorem: The pure states of a system of identical particles is com-
pletely symmetric, if the spin is integer-values (bosons) and completely antisym-
metric, if the spin takes a half-integer value.

Their names originate from the boson and fermion statistics, to which we will come
to in a minute. It may be worth stressing – and this is a topic we will get to later – that
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there are situations of a non-trivial topology that also allow for frationalized statistics.
Such a situation is encountered, for example, when charged quasi-particles with charge
q can strictly move in two spatial dimensions only, in a field of magnetic flux Φ. In
this case, the exchange of such quasi-particles leads to a phase factor eiφ, where now
φ = qΦ/(~c). Only for φ = 0 and φ = π one arrives at the standard statistics.

Important examples of fermions are the usual suspects: Electrons, nuclei 3He are
particles with spin 1/2 are hence fermions. Important examples for bosons are pho-
tons in the theory of quantized light, phonons in a body, as quantized excitations of
mechanical motion, and 4He. They are all particles with spin 0 or 1. The fermionic
Pauli principle can be reduced to the antisymmetry of the wave function. It is a cute
observation that there are, by the way, additional constraints arising from the antisym-
metry of the wave function, except having at most one fermion per mode. In fact, the
single-body density operator is constrained to be contained in a polytope. We will later
understand what this means. 1

1At this point, we have all reason in the world to be confused, and presumably this was an origin of
confusion even ealier. The universe consists of countless particles, in particular a large number of electrons.
If it was necessary, in the light of the previous considerations, to take them all into account and think of
completely antisymmetric wave functions, physics was doomed to failure: Physics is concerned with sys-
tems, not with describing the entire universe (which would be practically impossible anyway). If we could
ever only meaningfully talk about the entire universe, we would not get anywhere, if it was impossible to
meaningfully talk about subsystems. Fortunately, one can overcome this dilemma. In fact, to a very good
approximation, one can avoid such a radical description of the entire collection of electrons. Let us be more
specific: Let us assume we have two electrons that are sufficiently far from each other, so that the overlap
of the position part and their interaction can be neglected. If ψ1 and ψ2 are the respective normalized wave
functions, the approximately normalized antisymmetric wave function is given by

ψ(ξ1, ξ2) =
1
√
2
(ψ1(ξ1)ψ2(ξ2)− ψ1(ξ2)ψ2(ξ1)) (2.25)

(it is not strictly normalized for obvious reasons). We can now ask for the particle density in a point ξ =
(x, σ), that is, in a position in space and a spin component. This density is given by

ρ(ξ) =

∫
dξ2|ψ(ξ, ξ2)|2 +

∫
dξ1|ψ(ξ1, ξ)|2, (2.26)

where the integral is to be seen as an ordinary integral in space and a sum over the spin components. This
gives

ρ(ξ) = |ψ1(ξ)|2 + |ψ2(ξ)|2 − 2re
(
ψ∗
1(ξ)ψ2(ξ)

∫
dξ1ψ

∗
2(ξ1)ψ1(ξ1)

)
. (2.27)

Since ψ1 and ψ2 are highly localized in spatially disjoint regionsR1 undR2, the last term can be neglected,
and if ξ ∈ R1 ist, then

ρ(ξ) ≈ |ψ1(ξ)|2. (2.28)

The very same result we would have obtained if we had ignored the second electron altogether. Of course,
a similar reasoning holds in generality. The symmetrization and antisymmetrization has to be applied only
for particles that are relevant for a physical system. We do not have to include all other particles that do
not interact with a given particle. In the classical limit, particles are also highly localized in space, and the
influence from symmetry can eb entirely neglected. Hence, we can feel safe again and continue with our
argument.
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2.3 Non-interacting identical particles
Let us now again turn to systems of N identical particles. But now we do not consider
the structure of the underlying Hilbert space, but describe their Hamilton operator. This
Hamiltonian – assuming that the particles do not interact – takes the simple form

H0 =

N∑
j=1

hj =

N∑
j=1

(
1

2M
p2j + Vj

)
. (2.29)

Here, all hj are the same, but act on the j-th particle only. For simplicity of notation,
we will assume that the spectrum of all hj is discrete, in order to avoid mathematical
fine print that is needed for continuous spectra. Let ψ1, ψ2, . . . be the normalized one
particle wave functions (or “orbitals”) of hj with eigenvalues E1, E2, . . . , that is, we
have

hjψj(ξj) = Ejψj(ξj). (2.30)

The wave function
ψ(ξ1, . . . , ξN ) = ψ1(ξ1) . . . ψN (ξN ) (2.31)

is then an eigenfunction of H0 with eigenvalue

E = E1 + · · ·+ EN . (2.32)

In the light of the above considerations, the wave function can only be completely
antisymmetric or symmetric, depending on whether we are encountering bosons or
fermions.

2.3.1 Wave functions of fermions

Wave functions of fermions: The wave functions of fermionic systems are linear
combinations of antisymmetric functions of the form

ψN (ξ1, . . . , ξN ) =
1

(N !)1/2

∑
P∈SN

(−1)π(P )ψ1(ξP (1)) . . . ψN (ξP (N)). (2.33)

This expression can also be written as a determinant, as a so-called Slater determi-
nant of an N ×N -matrix,

ψN (ξ1, . . . , ξN ) =
1

(N !)1/2

∣∣∣∣∣∣∣∣
ψ1(ξ1) . . . ψ1(ξN )
ψ2(ξ1) . . . ψ2(ξN )
. . . . . . . . .

ψN (ξ1) . . . ψN (ξN )

∣∣∣∣∣∣∣∣ . (2.34)

The exchange of two coordinates is reflected by an exchange of two rows, leading
to a sign change of the determinant, concomitant with the desired antisymmetry. The
exchange of two orbitals correponds to the exchange of two columns, which again leads
to a sign change.
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2.3.2 Wave functions of bosons
For bosons we arrive at a similar expression. In the sum (2.35), not all terms are
necessarily different. Instead, each term is shown N1!N2! . . . many times.

Wave functions of bosons: The wave function of bosonic systems are linear com-
binations of symmetric functions of the form

ψN (ξ1, . . . , ξN ) =
1

(N !N1!N2 . . . )1/2

∑
P∈SN

ψ1(ξP (1)) . . . ψN (ξP (N)), (2.35)

where N1, N2, . . . is the number of particles in the orbitals labeled 1, 2, . . . , with
N1 +N2 + · · · = N .

It should be clear at this point that for both fermions and bosons, it is possible to
label the basis states merely by stating the occupation numbers (N1, N2, . . . ), where

N1 +N2 + · · · = N. (2.36)

For fermions these occupation numbers can be 0 or 1. For bosons, in contrast, any
non-negative integer is possible. The total energy of such a basis state is given by

E = N1E1 +N2E2 + . . . . (2.37)

Again, unsurprisingly, it depends only on the occupation numbers.

2.4 The non-interacting gas of fermions and bosons
A system of N identical particles, for which mutual interactions can be neglected, is
called ideal gas. We will briefly discuss the situation here, assuming that in statistical
mechanics, this type of system will be discussed in more detail. For fermions, we know
that the occupation numbers Nj can only take the values 0 and 1. We assume that the
concepts of grand canonical ensembles are roughly clear. It is an equilibrium state in
quantum statistical mechanics under certain boundary conditions.

In the thermodynamic equilibrium state, the average occupation number of the or-
bital labeled j is for fermions given by

N̄j =
1

exp(−(µ− Ej)/(kBT )) + 1
, (2.38)

which is the distribution function in the Fermi-Dirac-statistics. Here kB is the Boltz-
mann constant. The chemical potential µ, a real number, depends on the temperature
T and the total particle number N via

N =
∑
j

(exp(−(µ− Ej)/(kBT )) + 1)−1. (2.39)
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Formally, µ takes the role of a Lagrange multiplier.
For bosons we obtain a very similar expression, only that now the occupation num-

bers are no longer constrained to be 0 or 1. It turns out that one only finds an equi-
librium value if exp((µ − Ej)/(kBT )) < 1 for all energies Ej . For this reason, the
chemical potential mu cannot be positive. One finds for the occupation numbers in
thermal equilibrium

N̄j =
1

exp((Ej − µ)/(kBT ))− 1
. (2.40)

This is the distribution function of the ideal bosonic quantum gas, corresponding to the
Bose-Einstein-statistics The chemical potential, once again, it determined by

N =
∑
j

(exp((Ej − µ)/(kBT ))− 1)−1. (2.41)

From this, other statistical properties can be derived. Planck’s radiation formula, for
example, is an immediate consequence thereof. We will briefly come back to it, without
anticipating too many topics of quantum statistical physics, which is a course in its own
right.


