Freie Universität Berlin **Tutorials for Advanced Quantum Mechanics** Wintersemester 2018/19 Sheet 2

Due date: 10:15 02/11/2018

J. Eisert

1. Basic Quantum Mechanics Recap Continued (16 points) Consider the two-particle Hilbert space $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$, and the Hamiltonian H = $X \otimes Z$, for Pauli operators X and Z. Suppose we prepare the states

$$|\psi_1\rangle = |00\rangle \tag{1}$$

$$|\psi_2\rangle = |11\rangle \tag{2}$$

$$|\psi_3\rangle = (1/\sqrt{3})|01\rangle + (\sqrt{2}/3)|10\rangle,$$
(3)

with probabilities $p_1 = 1/2$, $p_2 = 1/8$ and $p_3 = 3/8$ respectively.

- (a) Write down the density operator ρ for this ensemble, both in bra-ket notation and explicitly a matrix, with respect to the basis for \mathcal{H} built from the computational basis for a single particle, i.e. the basis $\{|0\rangle = (1,0)^T, |1\rangle = (0,1)^T\}$ for \mathbb{C}^2 (2 points).
- (b) Write down the unitary operator, both in bra-ket notation, and explicitly as a matrix, for a basis transformation from the computational basis for \mathcal{H} to the basis built from the single particle basis $\{|+\rangle, |-\rangle\}$, where $|\pm\rangle =$ $(1/\sqrt{2})(|0\rangle \pm |1\rangle)$ (2 points).
- (c) Write down the density operator ρ for the above ensemble, again both in braket notation and explicitly as a matrix, but with respect to the $\{|+\rangle, |-\rangle\}$ basis (2 points).
- (d) If $\rho(0) = \rho$ from (a), calculate $\rho(t)$ in the Schrödinger picture, using any basis (6 points).
- (e) Define $Y_1 = Y \otimes \mathbb{1}$. Working in the Heisenberg picture, what is $Y_1(t)$ if $Y_1(0) = Y_1$. (2 points)
- (f) Calculate $\langle Y_1(t) \rangle$ in both the Heisenberg and Schrödinger picture. (2 points)
- 2. Identical Particles and Permutations 1 (8 points) Consider the single particle Hilbert space $\mathcal{H}_s = \mathbb{C}^2$.
 - (a) For both the two particle and three particle Hilbert spaces i.e. $\mathcal{H}_s^{\otimes 2}$ and $\mathcal{H}_{s}^{\otimes 3}$ respectively - Write down an explicit basis for both the symmetric and anti-symmetric subspaces, if such a subspace exists. $(4 \times 2 \text{ points})$

3. Identical Particles and Permutations 2 (14 points)

Consider a system formed by three identical particles, with wave functions $\psi(ijk)$, where $i \neq j \neq k$ take the values 1, 2, 3. We denote the permutation group on 3 elements as S_3 . Now consider the following three states:

$$\psi_a(123) = \frac{1}{\sqrt{6}} [\psi(123) + \psi(132) + \psi(231) + \psi(213) + \psi(312) + \psi(321)]$$

$$\psi_b(123) = \frac{1}{\sqrt{6}} [\psi(123) - \psi(132) + \psi(231) - \psi(213) + \psi(312) - \psi(321)]$$

$$\psi_c(123) = \frac{1}{2\sqrt{3}} [2\psi(123) + \psi(132) + 2\psi(213) - \psi(231) - \psi(312) - \psi(321)]$$

- (a) Identify which of the above states are (i) fully symmetric, (ii) fully antisymmetric (iii) of mixed symmetry, under the action of S_3 . (2 points)
- (b) Show explicitly that for the state of mixed symmetry, which we denote as ψ_m , there exists some permutation $P \in S_3$ such that $P\psi_m \neq \lambda \psi_m$. What are the physical implications of this? (2 points)
- (c) Write down explicitly the relevant symmetrization and anti-symmetrization operator, S and A respectively. (2 points)
- (d) Obtain $S\psi_x$ and $A\psi_x$ for all $x \in \{a, b, c\}$. (6 points)
- (e) Given a Hamiltonian H, show that if [H, P] = 0 for all $P \in S_3$, then [U(t), P] = 0 for all $P \in S_3$, where U(t) is the time evolution operator under H. (2 points)