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1. Non-Interacting Identical Particles(2×2 points)
Consider a system of N non-interacting identical particles whose Hamiltonian has
the form

H0 =
N∑
i=1

H0(i). (1)

Assume the spectrum of H0(i) to be discrete, and let {ψaj(i)}|j be the normalized
single-particle eigenfunctions (i.e. the orbitals) corresponding to eigenstates of
H0(i) with eigenvalues {Eaj}|j, i.e.

H0(i)ψaj(i) = Eajψaj(i). (2)

(a) Consider a fermionic system with N = 3. Write down the wave function
ψajakal(1, 2, 3) - i.e. the wave function for a fermionic system with occupa-
tion numbers Nj = Nk = Nl = 1. By expanding this wave function, show
explicitly that ψajajal(1, 2, 3) = 0, i.e. that the wave function vanishes if the
occupation number of the orbital aj is Nj = 2.

(b) For a bosonic system with N particles, the basis wave functions are given by
totally symmetric wave functions of the form

ψSaj1aj2 ...ajN
(1, 2, . . . , N) = C

∑
P∈SN

ψaj1 (P1)ψaj2 (P2) . . . ψajN (PN) (3)

prove that the correct normalization factor is

C =

[
1

N !N1!N2! . . .

]1/2

(4)

where Nj is the occupation number of orbital aj.

2. Identical Particles: Perfect Gas(2 × 2 points)
A perfect gas is system with N identical non-interacting particles. In thermal
equilibrium, the properties of these gases can be derived from the thermodynamic
potential:

Ω =
∑
i

Ωi, (5)

Ωi = −kBT log
∑
Ni

[
e(µ−Ei)/kBT )

]Ni
, (6)

with kB the Boltzmann constant, T the absolute temperature, µ the chemical
potential per particle, and Ωi the thermodynamic potential of the orbital ai with
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energy Ei. The sum
∑

Ni
runs over all the possible occupation numbers of the

orbital ai. The average number of particles in the orbital ai is given by N̄i = −∂Ωi

∂µ
.

Calculate N̄i for:

(a) An ideal fermionic gas.

(b) An ideal bosonic gas.

3. Many-particle ground states (2 × 3 points)
Consider spin-1/2 fermions of mass m subject to the potential

V (r) =
1

2
mω2(x2 + y2 + z2)− µ. (7)

If the particle number N = 1, the ground state is twofold degenerate and the
ground-state energy is E1 = (3/2)~ω − µ. The two ground state wavefunctions
are.

ψ↑(r, σ) =
1

(l
√
π)3/2

e−(x2+y2+z2)/2l2δσ,↑, (8)

ψ↓(r, σ) =
1

(l
√
π)3/2

e−(x2+y2+z2)/2l2δσ,↓. (9)

with l =
√
~/mω.

(a) The ground state for N = 2 is non-degenerate. What is its energy? Give
an explicit expression for the ground state wavefunction ψ(r1, σ1; r2, σ2). If
you prefer, you may use the bra/ket notation for the spin degree of freedom
instead of the notation used above.

(b) The particle number N = 2 is called “magic”, because the ground state is
non-degenerate at that particle number. What is the magic particle number
that comes next after N = 2. Explain your answer.

(c) What is the ground state energy and the ground state degeneracy if N = 2
and the particles are spin-0 Bosons instead of spin-1/2 fermions?

4. Four particles in one dimension (2 × 3 points)
Four one-dimensional non-interacting particles of mass m are confined to a length
L with periodic boundary conditions. The Hamiltonian Ĥ for one particle reads:

Ĥ =
p̂2

2m
. (10)

The single particle states have wavefunctions:

ψn(x) =
1√
L
e2πinx/L, with n = 0,±1,±2... (11)

The creation operator for a particle in a state with wavefunction ψn(x) is denoted
â†n for bosons and â†n,σ for spin 1/2 fermions with spin σ =↑, ↓.

2



(a) What are the ground state energy and the ground state degeneracy if the
four particles are distinguishable?

(b) What are the ground state energy and the ground state degeneracy if the four
particles are indistinguishable spin-0 bosons? Express the ground state(s) in
terms of the vacuum state |0〉 and the creation operators â†n.

(c) What are the ground state energy and the ground state degeneracy if the
four particles are indistinguishable spin-1/2 fermions? Express the ground
state(s) in terms of the vacuum state |0〉 and the creation operators â†n,σ.
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