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1. Bosonic and Fermionic commutation relations(3x2 points)

(a) Recalling the quantum harmonic oscillator, it is now apparent that the ladder

operators,
1 , 1 .
a=—=(x+ip), o =—=(zr—ip (1)

V2h V2h

Derive the original form of Heisenbergs uncertainty principle which states
that the standard deviation product of position and momentum measure-
ments is lower bounded as,

Arrp> b (2)

From lectures we know that the product of the standard deviation of two
Hermitian observables is lower bounded by,

Arap = 31061z, o]l )

Substituting from (1) gives,

x:V§m+ML sz@Wﬁ—@

and hence
0] = Platal)al ~ )~ (ol ~a)(a+a)
— %i[aaT —a*+ (a")? —a'a — a'a — (a)? + a* + aal
iha, a]
ih (4)
Thus,
1
AxAp > 3 [ (Y liR|y)|
h
= 3 (5)

(b) Starting from the fermionic anti-commutation relations

{fj)fl;r}:(swka {f]?fk}:{fjafli}zo (6)



derive the action of the fermionic creation and annihilation operators on the
occupation number basis states,

~ j—1
fj|N1,...,Nj,...> = (—1) klekNj|N1,...,]_—Nj,...> (7)
~ Gj—1
fJT|N1,...,Nj,...> = (-1) klek( —N]>|N1,,]_—NJ> (8)
First recall the fermionic commutation relations
{ﬁafj}:{ﬁT’ﬂT}:O’ {ﬁ,fj}:é” (9)
which imply

Be(i) =0 Bily=-flufe Bi=1-ff 0

Let {|\,)} be the eigenstates satisfying ni|A,) = f1f|A.) = An|An). We can
see right away that

al—n) = fifQ—f1H=f7ff =0 (11)

which implies that the only eigenvalues of 7 must be 0 or 1. Now consider
the state f1|\,),

FEFTIAD) = F1I =) = (1= X)) (12)
which says that fT maps |A,) to |1 — A,). This means that
flin) = call = n) (13)
and to find the normalisation use that,

leal? = (nlf fln) = (nl(1 = R)ln) = (1 - n) (14)

Since a global complex phase is unobservable in quantum mechanics! we can

choose ¢ to be real and since 12 = 1 and 02 = 0 we can set ¢, = 1 —n,
meaning overall that ff|n) = (1 — n)|1 —n). Turning to f we can write,

fiffiny = (1 =Ff1)fln) = (1 =n)fln) (15)
which means that we also have,
fln) = eall = n) (16)
Again we have,
el = (nlfTfln) =n (17)
and again we can set ¢ € R and use that 12 = 1 and 0> = 0 to set ¢, = n so
that
fln) = nl1 —n) (18)

1For any observable A, state |¢) and complex phase e'® then (i|e™*® Ae'®|¢)) = (1| A|4)) so the phase factor
cannot be observed.



The final step is to consider a multi-orbital state in the occupation represen-
tation f;|N1, No,..N;,..) where (since these are fermions) we now know that
N; € {0,1} and we can write

NN = 5 (D) () () e

All we need to do is commute fj through the creation operators until we get
to the j** orbital where we already know it’s action from above. Since by
definition for all of the orbitals & to the left of j we have k < j that means
{f, f,I } = 0 and so we will simply pick up a minus sign for each time that
N, =1 from this we derive our final expression

FINL N, ) = (DS NN NG, TN, L) (20)

and a similar argument applies to fj :

Consider the single particle Hamiltonian H, with eigenstates {|\)} - i.e.
Ho|A) = AA). Let |Aq, ... AN)B(F) be the corresponding bosonic (fermionic)
N particle basis state in a first quantization representation. We define the
number operator as ny, = &T\dA. Now, by using the second quantization re-
presentation of |A1,... An)p(r), and the appropriate commutation relations

for d;, ay, prove that the number operator n, simply counts the number of
particles in state |A) - i.e. show explicitly that for both bosonic and fermionic
N particle states

N
AL, AN B = Y Sl AN Bee) (21)
=1

In the previous question you derived the action of the fermionic creation and
annihilation operators on eigenstates of n, = a; Aa;\. We call this the number
operator because when acted on a multi-particle state it counts the number
of particles in mode 5. We are now going to prove this property, since the
RHS of (21) is precisely counting how many times \; = A and returning that
many copies of the state. First recall that we can write a many particle state
using creation operators in the first quantisation picture as

1
N | TR
XA

where operators are either fermionic or bosonic, the product is over all or-
bitals A and n, is the number of instances where \; = A\ Now, our plan is
to commute the n, operator through the &i\i operators until it reaches the
vacuum state, (where it will vanish since a,|2) = 0|Q2)¥A. For bosons we
have,

ceal [9) = A des s Ay) (22)

= Snal = dal,
staat = so.at +alata
= ayanay, ANy, Gy ayay (23)



where the last equality is simply because given the action of the § function
we are free to change the index on the creation operator in the first term.
Now we can write,

1
5 _ A NS P RPY,
n>\|>‘17“')‘N>B - \/m((;/\,ANG’)\N—i_a’)\NaAa)\)aA _ CL>\1|Q>
1 .
S AL, AN g+ —=—=a] alalal | ..al |@p4)

VILna!

[terating this through the other N — 1 creation operators we will arrive at,

L
(Z)\N °
\/ H)\ n/\!

where the last term vanishes to give the desired result.

ArlAL, - AN BE) = Av)s + -l 7| (25)

For fermions we now have an anti-commutation relation so that
(B AY = RAA + AN
IS, = R
= AAS = A6 = AR
= 2f{Afl - o f] (26)
Equating the first and last lines of the above expression and subtracting
fi fa fi from both sides gives,
RO = oa+ AL =au Sl + AL (27)
which is the same as (23) for bosons so the rest of the proof follows.

2. Observables in second quantisation(2 x 2 points)

(a) Consider a system of N particles, and a one-body operator O, = Z;VZI 0;,
where 0; is an ordinary single particle operator acting on the j’th particle.
Furthermore, using the same notation as (1lc), assume that O, is diagonal
in the {|\)} basis, i.e. 6 = >, 0x|\)(A|. Show that a second quantization
representation of Oy, with respect to the {|\)} basis, is given by

O1=> oxin =Y _(Mo|A\)akax (28)
A=0 A=0

Writing a one body operator in the form O; = ZJ 1 0; might seem a bit
strange at first in the sense that any two quantum particles are indistin-
guishable. But this is already taken care of by the (anti-)symmetrisation
of the (fermionic) bosonic state. For example, for a two particle state we
would have Ol =0, +0, = 0® 1+ 1® 2. Consider acting this on a
state with one particle in mode A; and another in mode A,. This would be



A1, A2) () = \/Lﬁ (IA1)1]A2)2 & [A2)1|A1)2) where the subscripts on the kets
are labelling the particle, so then

1

OAl’)\la)\2>B(F) = (61+1I®0) (IA1)1]A2)2 £ [A2)1|A1)2)

Sl

2
1
= E[OAJ/\1>1|>\2 o OAQ‘)\2>1‘)\1>2

+ onlA)1[A2)2 £ ox [ A2)1|Ar)2]
= (oa; +0x) A1, A2) B (29)
For N particles we will simply find that

~

N
O1| A1, Mg, s An) = ZOAi AL, A2y AN) (30)
i=1
But the sum of the eigenvalue o0y, over of the \;’s for all particles in a parti-
cular state, each of which are in one of the orbitals labelled by A, is the same
as asking how many particles are in orbital A, multiplying by the eigenva-
lue for that orbital and summing over all the orbitals. In other words, it is

necessarily true that Zf\il 0x A1, A2, o, AN) = D0y 0| A1, Ag, o, Ay). Thus,

N
(N5 Xy MO AL A Aw) = (N A A on A, e, Aw)

i=1

= (AL AL Nyl D a0l A Az, Aw)
A

Since this holds true for all basis states |\, Ag, .., An) and (N}, Ay, .., Ny it
follows that Oy = ), nyo,.

What is the second quantized representation of O; in a different basis {|p)},
in which O; is not diagonal?
Any set of orbitals forms a basis for the single-particle Hilbert space so
SO, AN (A] = T and using the definitions @} |Q) = |A) and al|Q) = | u) we can
see

) = X)) =Dl (ulh) =D (uNake)

p p
=al = Y (uNal,  a=) (Awa, (31)
p p

Remember we can also think of these inner products between basis elements

as elements of the unitary matrix that transforms between the bases, i.e.
Uy, = (Alp). Now rewriting,

O1 = Y (NoNalan

A

= SOOI (N il (A,

Ay

= D WINGIN) (Al aba,

Ay

= Y holwala, (32

n



where we again used ), |A\)(A| = L. For continuous degrees of freedom the
sums are replaced by integrals.

Consider a single particle in one-dimensional system of length L with periodic

boundary conditions. Write down the basis transformations between a, and

a(x) - i.e. the operators which annihilate a particle at a fixed momentum or

position.

You have seen previously that the position wavefunction for a 1D system
e 'xpP

with periodic boundary conditions, namely ,(z) = o = (x|p), where p
takes only discree values. So we have,

Ld eipT ; Ld efipz ;
a, = x a(x), al = T a'(x), 33
= A i) a = [ i@, e
e—ipa: eipx
a(r) = Y —=ay, al(z) =) —=al (34)
P VL P VL

Now consider a many-particle finite one-dimensional system of length L with
periodic boundary conditions. The single particle kinetic energy operator is
given by T'= )" i p;%/2m. Show that the second quantized representation of
this operator is given by

R L ]32
T = dzal (z)—a(z 35
| s @) i) (3)

[Hint: Use the strategy developed in (a) and (b), with the tools from (c) - ie.
first express the kinetic energy operator in the basis in which it is diagonal,
obtain the second quantized representation in this basis, and then transform
into the co-ordinate basis carefully.]
Since the operator is a sum of one-body terms diagonal in the p-basis it can
be conveniently re-written as we saw above as ) opata, or

2
- . p
T = 3 0l 2mlp)aja, = 3 2 dla, (36)
p p

Transforming the second operator to the position basis we have,
~ 1 t L p2 .
T=— a dr —e™a(x 37
o | e gemato (37)

Recall that the momentum operator can be written (we have here set h = 1)
D= —z‘% hence we have,

52 2
D ipz _ __18_61'1% - p_eipx (38)
2m 2m 0z? 2m

So we may write

T 1 r 0 ipx
T= \/EQmZa;/o dx @ep a(x) (39)
p




Now using the product rule? we have,

L 0* L 0 .0 0 g
ipx - ipx
/0 d 022" alz) /o da 8x6 &v alz) + oz alz) 0
Lo Lo P o, r
— ipr ipx
/0 d e a2 af@) + ¥ 8x ale ) * oz (@) 0

where the last two terms will vanish due to the periodic boundary conditions
(i.e. a(0) = a(L)). Substituting back gives,

R 1 o2
T = \/_Z / dr e’ 2m8x2&<x)
= / dx Z\/j Pom a(x)
= /0 dx aT(x)ﬁa(x) (40)

2m

where we again used the Fourier relation between position and momentum
in the last line.

Consider a bosonic Hamiltonian H = Z Dy ]bzb with bT b the usual bo-
sonic creation and annihilation operators. Prove that the Helsenberg picture
evolved creation and annihilation operators are given by:

bi(t) = S (e ™)ish, (41)
() = S (™), b (42)

J
[Hint: Again it helps to consider a basis in which the Hamiltonian is diagonal.]

Begin by writing the Hamiltonian in a basis in which it is diagonal, say,
H =" Aaclco which are related to the initial operators via,

cazz Unjbj —b; —ZanTaca
cgzz Ulbt —b; =3 Uy

Jar]

(43)

where we have applied the transformation equations (31) writing the coeffi-
cients as elements of the transformation unitary. Now the time evolution of
a specific annihilation operator from that basis set can be calculated either
via the Heisenberg equations of motion,

d
o) = ilH, cs(t)]
= ethi[Z)\aCLCa7Cﬁ —HIt = eIt [cﬁ05,05] i
———
~
= —idges(t)
= cs(t) = e Ml (44)

Qfabdm

b
Gg=—["dx %29+ fgl,



where we used the fact that operators in different orbitals commute and that
c3(0) = c. The calculation can also be done in the Schrodinger picture via

iH

ca(t) = el et

) t . t
_ ezt 28 Aﬁ0605cae—zt 2o Ayeyey

— eitkacfacac e—itkac];ca

= Co+ 1ty [clca, ca] + (it)\a)z % [clca, [clca, ca]] +...
T & g >

= Z (_W];?m (Zt)\a>m] Co = efit)\aca <45)

where in the penultimate line we used the identity (that follows from the
Baker-Campbell-Hausdorff Lemma) e*Be™* = B+ [A, B+ 3:[A, [A, B]| + ...
Now, we can find the time evolution of the b; operators simply via basis
transformations

bit) = Ya Ulyealt) = Yo Ue e,
= Yoy Ut Uaghy = 525 () by

This equation says that an operator non in the diagonalising basis of the
Hamiltonian will in general evolve into a combination of operators of different
orbitals in it’s own basis over time (i.e. the initial b; operator evolves into a
sum over all the b;).

(46)



