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1. Bosonic and Fermionic commutation relations(3×2 points)

(a) Recalling the quantum harmonic oscillator, it is now apparent that the ladder
operators,

a =
1√
2~

(x+ ip), a† =
1√
2~

(x− ip) (1)

Derive the original form of Heisenbergs uncertainty principle which states
that the standard deviation product of position and momentum measure-
ments is lower bounded as,

∆x∆p ≥ ~
2

(2)

From lectures we know that the product of the standard deviation of two
Hermitian observables is lower bounded by,

∆x∆p ≥ 1

2
|〈ψ|[x, p]|ψ〉| (3)

Substituting from (1) gives,

x =

√
~
2

(a+ a†), p =

√
~
2
i(a† − a)

and hence

[x, p] =
i~
2

[(a+ a†)(a† − a)− (a† − a)(a+ a†)]

=
i~
2

[aa† − a2 + (a†)2 − a†a− a†a− (a†)2 + a2 + aa†]

= i~[a, a†]

= i~ (4)

Thus,

∆x∆p ≥ 1

2
|〈ψ|i~|ψ〉|

=
~
2

(5)

(b) Starting from the fermionic anti-commutation relations

{f̂j, f †k} = δj,k, {f̂j, fk} = {f̂ †j , f̂
†
k} = 0 (6)
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derive the action of the fermionic creation and annihilation operators on the
occupation number basis states,

f̂j|N1, . . . , Nj, . . .〉 = (−1)
∑j−1
k=1NkNj|N1, . . . , 1−Nj, . . . 〉 (7)

f̂ †j |N1, . . . , Nj, . . .〉 = (−1)
∑j−1
k=1Nk (1−Nj) |N1, . . . , 1−Nj . . .〉 (8)

First recall the fermionic commutation relations

{f̂i, f̂j} = {f̂ †i , f̂
†
j } = 0, {f̂i, f̂ †j } = δij (9)

which imply

f̂ 2
j =

(
f̂ †j

)2
= 0, f̂j f̂

†
k 6=j = −f̂ †k 6=j f̂j, f̂j f̂

†
j = 1− f̂ †j f̂j (10)

Let {|λn〉} be the eigenstates satisfying n̂|λn〉 = f̂ †f |λn〉 = λn|λn〉. We can
see right away that

n̂(1− n̂) = f̂ †f̂(1− f̂ †f̂) = f̂ †f̂ f̂ f̂ † = 0 (11)

which implies that the only eigenvalues of n̂ must be 0 or 1. Now consider
the state f̂ †|λn〉,

f̂ †f(f̂ †|λn〉) = f̂ †(1− f̂ †f)|λn〉 = (1− λn)f̂ †|λn〉 (12)

which says that f̂ † maps |λn〉 to |1− λn〉. This means that

f̂ †|n〉 = cn|1− n〉 (13)

and to find the normalisation use that,

|cn|2 = 〈n|f̂ f̂ †|n〉 = 〈n|(1− n̂)|n〉 = (1− n) (14)

Since a global complex phase is unobservable in quantum mechanics1 we can
choose c to be real and since 12 = 1 and 02 = 0 we can set cn = 1 − n,
meaning overall that f̂ †|n〉 = (1− n)|1− n〉. Turning to f̂ we can write,

f̂ †f̂ f̂ |n〉 = (1− f̂ f̂ †)f̂ |n〉 = (1− n)f̂ |n〉 (15)

which means that we also have,

f̂ |n〉 = cn|1− n〉 (16)

Again we have,

|cn|2 = 〈n|f̂ †f̂ |n〉 = n (17)

and again we can set c ∈ R and use that 12 = 1 and 02 = 0 to set cn = n so
that

f |n〉 = n|1− n〉 (18)

1For any observable Â, state |ψ〉 and complex phase eiφ then 〈ψ|e−iφÂeiφ|ψ〉 = 〈ψ|Â|ψ〉 so the phase factor
cannot be observed.

2



The final step is to consider a multi-orbital state in the occupation represen-
tation f̂j|N1, N2, ..Nj, ..〉 where (since these are fermions) we now know that
Ni ∈ {0, 1} and we can write

f̂j|N1, N2, ..Nj, ..〉 = f̂j

(
f̂ †1

)N1
(
f̂ †2

)N2

..
(
f̂ †j

)Nj
...|Ω〉 (19)

All we need to do is commute f̂j through the creation operators until we get
to the jth orbital where we already know it’s action from above. Since by
definition for all of the orbitals k to the left of j we have k < j that means
{f̂j, f̂ †k} = 0 and so we will simply pick up a minus sign for each time that
Nk = 1 from this we derive our final expression

f̂j|N1, . . . , Nj, . . .〉 = (−1)
∑j−1
k=1NkNj|N1, . . . , 1−Nj, . . . 〉 (20)

and a similar argument applies to f̂ †j .

(c) Consider the single particle Hamiltonian Ĥ0 with eigenstates {|λ〉} - i.e.

Ĥ0|λ〉 = λ|λ〉. Let |λ1, . . . λN〉B(F ) be the corresponding bosonic (fermionic)
N particle basis state in a first quantization representation. We define the
number operator as n̂λ = â†λâλ. Now, by using the second quantization re-
presentation of |λ1, . . . λN〉B(F ), and the appropriate commutation relations

for â†λ, âλ, prove that the number operator n̂λ simply counts the number of
particles in state |λ〉 - i.e. show explicitly that for both bosonic and fermionic
N particle states

n̂λ|λ1, . . . λN〉B(F ) =
N∑
i=1

δλλi |λ1, . . . λN〉B(F ) (21)

In the previous question you derived the action of the fermionic creation and
annihilation operators on eigenstates of n̂λ = a†jλajλ. We call this the number
operator because when acted on a multi-particle state it counts the number
of particles in mode j. We are now going to prove this property, since the
RHS of (21) is precisely counting how many times λi = λ and returning that
many copies of the state. First recall that we can write a many particle state
using creation operators in the first quantisation picture as

|λ1, . . . λN〉B(F ) =
1√∏
λ nλ!

a†λN · · · a
†
λ1
|Ω〉 = |λ1, λ2, . . . λN〉 (22)

where operators are either fermionic or bosonic, the product is over all or-
bitals λ and nλ is the number of instances where λi = λ Now, our plan is
to commute the n̂λ operator through the â†λi operators until it reaches the
vacuum state, (where it will vanish since aλ|Ω〉 = 0|Ω〉∀λ. For bosons we
have,

[â†λâλ, â
†
λi

] = â†λ[âλ, â
†
λi

] + [â†λ, â
†
λi

]âλi

= δλ,λi â
†
λ = δλ,λi â

†
λi

⇒ â†λâλâ
†
λi

= δλ,λi â
†
λi

+ â†λi â
†
λâλ (23)
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where the last equality is simply because given the action of the δ function
we are free to change the index on the creation operator in the first term.
Now we can write,

n̂λ|λ1, . . . λN〉B =
1√∏
λ nλ!

(δλ,λN â
†
λN

+ â†λN â
†
λâ
†
λ)â
†
λN−1

...â†λ1 |Ω〉

= δλ,λN |λ1, . . . λN〉B +
1√∏
λ nλ!

â†λN â
†
λâ
†
λâ
†
λN−1

...â†λ1|Ω〉(24)

Iterating this through the other N − 1 creation operators we will arrive at,

n̂λ|λ1, . . . λN〉B(F ) =
N∑
i=1

δλλi |λ1, . . . λN〉B +
1√∏
λ nλ!

a†λN · · · a
†
λ1
n̂λ|Ω〉 (25)

where the last term vanishes to give the desired result.

For fermions we now have an anti-commutation relation so that

{f̂ †λf̂λ, f̂
†
λi
} = f̂ †λf̂λf̂

†
λi

+ f̂ †λi f̂
†
λf̂λ

= f̂ †λf̂λf̂
†
λi
− f̂ †λf̂

†
λi
f̂λ

= f̂ †λf̂λf̂
†
λi
− f̂ †λ(δλ,λi − f̂λf̂

†
λi

)

= 2f̂ †λf̂λf̂
†
λi
− δλ,λi f̂

†
λ (26)

Equating the first and last lines of the above expression and subtracting
f̂ †λf̂λf̂

†
λi

from both sides gives,

f̂ †λf̂λf̂
†
λi

= δλ,λi f̂
†
λ + f̂ †λi f̂

†
λf̂λ = δλ,λi f̂

†
λi

+ f̂ †λi f̂
†
λf̂λ (27)

which is the same as (23) for bosons so the rest of the proof follows.

2. Observables in second quantisation(2 × 2 points)

(a) Consider a system of N particles, and a one-body operator Ô1 =
∑N

j=1 ôj,
where ôj is an ordinary single particle operator acting on the j’th particle.

Furthermore, using the same notation as (1c), assume that Ô1 is diagonal
in the {|λ〉} basis, i.e. ô =

∑
λ oλ|λ〉〈λ|. Show that a second quantization

representation of Ô1, with respect to the {|λ〉} basis, is given by

Ô1 =
∞∑
λ=0

oλn̂λ =
∞∑
λ=0

〈λ|ô|λ〉â†λâλ (28)

Writing a one body operator in the form Ô1 =
∑N

j=1 ôj might seem a bit
strange at first in the sense that any two quantum particles are indistin-
guishable. But this is already taken care of by the (anti-)symmetrisation
of the (fermionic) bosonic state. For example, for a two particle state we

would have Ô1 = ô1 + ô2 = ô ⊗ I + I ⊗ 2. Consider acting this on a
state with one particle in mode λ1 and another in mode λ2. This would be
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|λ1, λ2〉B(F ) = 1√
2

(|λ1〉1|λ2〉2 ± |λ2〉1|λ1〉2) where the subscripts on the kets

are labelling the particle, so then

Ô1|λ1, λ2〉B(F ) = (ô⊗ I + I⊗ ô) 1√
2

(|λ1〉1|λ2〉2 ± |λ2〉1|λ1〉2)

=
1√
2

[oλ1|λ1〉1|λ2〉2 ± oλ2|λ2〉1|λ1〉2

+ oλ2|λ1〉1|λ2〉2 ± oλ1 |λ2〉1|λ1〉2]
= (oλ1 + oλ2)|λ1, λ2〉B(F ) (29)

For N particles we will simply find that

Ô1|λ1, λ2, .., λN〉 =
N∑
i=1

oλi |λ1, λ2, .., λN〉 (30)

But the sum of the eigenvalue oλi over of the λi’s for all particles in a parti-
cular state, each of which are in one of the orbitals labelled by λ, is the same
as asking how many particles are in orbital λ, multiplying by the eigenva-
lue for that orbital and summing over all the orbitals. In other words, it is
necessarily true that

∑N
i=1 oλi|λ1, λ2, .., λN〉 =

∑
λ n̂λoλ|λ1, λ2, .., λN〉. Thus,

〈λ′1, λ′2, .., λ′N |Ô1|λ1, λ2, .., λN〉 = 〈λ′1, λ′2, .., λ′N |
N∑
i=1

oλi |λ1, λ2, .., λN〉

= 〈λ′1, λ′2, .., λ′N |
∑
λ

n̂λoλ|λ1, λ2, .., λN〉

Since this holds true for all basis states |λ1, λ2, .., λN〉 and 〈λ′1, λ′2, .., λ′N | it

follows that Ô1 =
∑

λ n̂λoλ.

(b) What is the second quantized representation of Ô1 in a different basis {|µ〉},
in which Ô1 is not diagonal?

Any set of orbitals forms a basis for the single-particle Hilbert space so∑
λ |λ〉〈λ| = I and using the definitions â†λ|Ω〉 = |λ〉 and â†µ|Ω〉 = | u〉 we can

see

â†λ|Ω〉 = |λ〉 =
∑
µ

|µ〉〈µ|λ〉 =
∑
µ

〈µ|λ〉â†µ|Ω〉

⇒ â†λ =
∑
µ

〈µ|λ〉â†µ, âλ =
∑
µ

〈λ|µ〉âµ (31)

Remember we can also think of these inner products between basis elements
as elements of the unitary matrix that transforms between the bases, i.e.
Uλµ = 〈λ|µ〉. Now rewriting,

Ô1 =
∑
λ

〈λ|ô|λ〉â†λâλ

=
∑
λµν

〈λ|ô|λ〉〈ν|λ〉â†ν〈λ|µ〉âµ

=
∑
λµν

〈ν|λ〉〈λ|ô|λ〉〈λ|µ〉â†ν âµ

=
∑
µν

〈ν|ô|µ〉â†ν âµ (32)
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where we again used
∑

λ |λ〉〈λ| = I. For continuous degrees of freedom the
sums are replaced by integrals.

(c) Consider a single particle in one-dimensional system of length L with periodic
boundary conditions. Write down the basis transformations between âp and
â(x) - i.e. the operators which annihilate a particle at a fixed momentum or
position.

You have seen previously that the position wavefunction for a 1D system
with periodic boundary conditions, namely ψp(x) = e−ixp√

L
= 〈x|p〉, where p

takes only discree values. So we have,

âp =

∫ L

0

dx
eipx√
L
â(x), â†p =

∫ L

0

dx
e−ipx√
L
â†(x), (33)

â(x) =
∑
p

e−ipx√
L
âp, â

†(x) =
∑
p

eipx√
L
â†p (34)

(d) Now consider a many-particle finite one-dimensional system of length L with
periodic boundary conditions. The single particle kinetic energy operator is
given by T̂ =

∑
j p̂j

2/2m. Show that the second quantized representation of
this operator is given by

T̂ =

∫ L

0

dxâ†(x)
p̂2

2m
â(x) (35)

[Hint: Use the strategy developed in (a) and (b), with the tools from (c) - ie.
first express the kinetic energy operator in the basis in which it is diagonal,
obtain the second quantized representation in this basis, and then transform
into the co-ordinate basis carefully.]

Since the operator is a sum of one-body terms diagonal in the p-basis it can
be conveniently re-written as we saw above as

∑
p opa

†
pap or

T̂ =
∑
p

〈p|p̂2/2m|p〉a†pap =
∑
p

p2

2m
a†pap (36)

Transforming the second operator to the position basis we have,

T̂ =
1√
L

∑
p

a†p

∫ L

0

dx
p2

2m
eipxa(x) (37)

Recall that the momentum operator can be written (we have here set ~ = 1)
p̂ = −i ∂

∂x
hence we have,

p̂2

2m
eipx =

−1

2m

∂2

∂x2
eipx =

p2

2m
eipx (38)

So we may write

T̂ =
1√
L2m

∑
p

a†p

∫ L

0

dx
∂2

∂x2
eipxa(x) (39)
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Now using the product rule2 we have,∫ L

0

dx
∂2

∂x2
eipxa(x) = −

∫ L

0

dx
∂

∂x
eipx

∂

∂x
a(x) +

∂

∂x
eipxa(x)

∣∣∣∣L
0

=

∫ L

0

dx eipx
∂2

∂x2
a(x) + eipx

∂

∂x
a(x)

∣∣∣∣L
0

+
∂

∂x
eipxa(x)

∣∣∣∣L
0

where the last two terms will vanish due to the periodic boundary conditions
(i.e. a(0) = a(L)). Substituting back gives,

T̂ =
1√
L

∑
p

a†p

∫ L

0

dx eipx
1

2m

∂2

∂x2
a(x)

=

∫ L

0

dx
∑
p

eipx√
L
a†p

p̂

2m
a(x)

=

∫ L

0

dx a†(x)
p̂

2m
a(x) (40)

where we again used the Fourier relation between position and momentum
in the last line.

(e) Consider a bosonic Hamiltonian H =
∑

i,j hi,j b̂
†
i b̂j, with b̂†i , b̂j the usual bo-

sonic creation and annihilation operators. Prove that the Heisenberg picture
evolved creation and annihilation operators are given by:

b̂i(t) =
∑
j

(e−ith)i,j b̂j (41)

b̂†i (t) =
∑
j

(eith)i,j b̂
†
j (42)

[Hint: Again it helps to consider a basis in which the Hamiltonian is diagonal.]

Begin by writing the Hamiltonian in a basis in which it is diagonal, say,
H =

∑
α λαc

†
αcα which are related to the initial operators via,

cα =
∑

j Uαjbj → bj =
∑

α U
†
jαcα

c†α =
∑

j U
†
jαb
†
j → bj =

∑
α Uαjc

†
α

(43)

where we have applied the transformation equations (31) writing the coeffi-
cients as elements of the transformation unitary. Now the time evolution of
a specific annihilation operator from that basis set can be calculated either
via the Heisenberg equations of motion,

d

dt
cβ(t) = i[H, cβ(t)]

= eiHti[
∑
α

λαc
†
αcα, cβ]e−iHt = eiHtiλβ

[
c†βcβ, cβ

]
︸ ︷︷ ︸
−cβ

e−iHt

= −iλβcβ(t)

⇒ cβ(t) = e−iλβtcβ (44)

2
∫ b
a
dx ∂f

∂x
g = −

∫ b
a
dx ∂g

∂x
g + fg|ba
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where we used the fact that operators in different orbitals commute and that
cβ(0) = cβ. The calculation can also be done in the Schrödinger picture via

cα(t) = eiHtcαe
−iHt

= eit
∑
β λβc

†
βcβcαe

−it
∑
γ λγc

†
γcγ

= eitλαc
†
αcαcαe

−itλαc†αcα

= cα + itλα
[
c†αcα, cα

]︸ ︷︷ ︸
−cα

+ (itλα)2
1

2

[
c†αcα,

[
c†αcα, cα

]]
︸ ︷︷ ︸

cα

+ . . .

=

[∑
m

(−1)m

m!
(itλα)m

]
cα = e−itλαcα (45)

where in the penultimate line we used the identity (that follows from the
Baker-Campbell-Hausdorff Lemma) eABe−A = B+ [A,B] + 1

2!
[A, [A,B]] + ...

Now, we can find the time evolution of the bj operators simply via basis
transformations

bi(t) =
∑

α U
†
iαcα(t) =

∑
α U

†
iαe
−itλαcα

=
∑

αj U
†
iαe
−itλαUαjbj =

∑
j

(
e−itH

)
ij
bj

(46)

This equation says that an operator non in the diagonalising basis of the
Hamiltonian will in general evolve into a combination of operators of different
orbitals in it’s own basis over time (i.e. the initial bi operator evolves into a
sum over all the bj).
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