Freie Universität Berlin Advanced Quantum Mechanics Wintersemester 2018/19

Exercise sheet 1

Due: 25.10.2019 10:15

1. Wave function basics [2+2+2+2=8 Points]A particle of mass *m* has as a wave function given by:

$$\Psi(x,t) = Ae^{-a(mx^2/\hbar + it)},\tag{1}$$

where the constants A and a are positive and real.

- (a) Find A such that $\Psi(x,t)$ is normalized.
- (b) Consider a Hamiltonian of the form $\hat{H} = \frac{\hat{p}^2}{2m} + V(x)$. Find the potential energy function V(x) for which $\Psi(x,t)$ satisfies the Schrödinger equation, i.e. is an eigenstate of \hat{H} .
- (c) Calculate the expectation values $\langle x \rangle_{\Psi}$, $\langle x^2 \rangle_{\Psi}$, $\langle p \rangle_{\Psi}$, and $\langle p^2 \rangle_{\Psi}$.
- (d) Find σ_x and σ_p . Is their product consistent with the uncertainty principle?

2. Quantum Harmonic Oscillator $\left[\sum_{a}^{f} 2 = 12 \text{ Points}\right]$

Consider the one dimensional quantum harmonic oscillator Hamiltonian given by:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2,$$
(2)

with \hat{p} and \hat{x} are the momentum and position operators. The *ladder* operators a and a^{\dagger} are defined as:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} + \frac{i}{m\omega} \hat{p}), \tag{3}$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} - \frac{i}{m\omega} \hat{p}).$$
(4)

In the subsequent we drop the hat (^) notation to denote operators.

(a) Find the commutator $[a, a^{\dagger}]$ and write the Hamiltonian in terms of the number operator $N = a^{\dagger}a$.

The number operator is hermitian (convince yourself). This means it can be diagonalized and has real eigenvalues. Let us denote the eigenvectors of N as $|n\rangle$, with the corresponding eigenvalue n, i.e. $N |n\rangle = n |n\rangle$.

(b) Find how the Hamiltonian H acts on the states $a^{\dagger} |n\rangle$ and $a |n\rangle$. From this result, deduce to which eigenstates $|n'\rangle$ the previous states are proportional to:

$$a^{\dagger} \left| n \right\rangle = c_{+} \left| n_{1}^{\prime} \right\rangle \tag{5}$$

$$a \left| n \right\rangle = c_{-} \left| n_{2}^{\prime} \right\rangle \,, \tag{6}$$

where c_+ and c_- are constants.

J. Eisert

- (c) Find c_+ and c_- .
- (d) So far we have not made any assumption about the numbers n apart from being real. Show that n must be positive or 0. (Hint: consider the norm of $a |n\rangle$).
- (e) The ground state of the harmonic oscillator Hamiltonian corresponds to the eigenvector $|0\rangle$. Previously we (should have) found $a |0\rangle = 0$. Rewriting this equation in the space representation we can find the form of the ground state wave function:

$$a\psi_0(x) = 0. \tag{7}$$

Find $\psi_0(x)$.

- (f) Find $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, $\langle p^2 \rangle$, $\langle V \rangle$ and $\langle T \rangle$ for the $|n\rangle$ state of the harmonic oscillator. T and V are the kinetic and potential energy respectively. Check that the uncertainty principle is satisfied. (Hint: there is no need to do integrals)
- 3. Entropy and entanglement [2+3+2+3=10 Points]

The entropy of a quantum state is an important quantity, often used to study entanglement in many-body quantum systems. Given a density matrix ρ , it is defined as

$$S(\rho) := -\mathrm{tr}(\rho \ln \rho). \tag{8}$$

A useful fact to note is that $0 \leq S(\rho) \leq \ln(d)$, where d is the dimension of the system.

- (a) When are the above inequalities saturated?
- (b) Let $|\Phi\rangle_{AB} = \frac{1}{\sqrt{2}}[|01\rangle_{AB} |10\rangle_{AB}]$. This is known as the singlet state. What is $S(|\Phi\rangle \langle \Phi|_{AB})$? What is $S(\rho_A)$ and $S(\rho_B)$, where ρ_A and ρ_B are the reduced density matrices of $|\Phi\rangle \langle \Phi|_{AB}$ for A, B respectively?
- (c) Given a density matrix ρ , show that its transpose ρ^T is also a valid density matrix. This means that the transpose operation, namely $T(M) = M^T$ is a *positive* operation, i.e. it maps density matrices to density matrices. You may use the fact that $\det(A) = \det(A^T)$ for all matrices A.
- (d) The *partial transpose* is the operation that performs the transpose operation T, but only on part of the density matrix. More concretely, given the expression of ρ_{AB} as $\rho_{AB} = \sum_{ijkl} c_{ijkl} |i\rangle \langle j|_A \otimes |k\rangle \langle j|_B$, then

$$T_B(\rho_{AB}) = \sum_{ijkl} c_{ijkl} |i\rangle \langle j|_A \otimes T(|k\rangle \langle l|_B) = \sum_{ijkl} c_{ijkl} |i\rangle \langle j|_A \otimes |l\rangle \langle k|_B.$$
(9)

Use $|\Phi\rangle_{AB}$ to show that the partial transpose T_B is not positive, namely it does not map density matrices to density matrices. In fact, this operation is often used to check whether the system is entangled (as is $|\Phi_{AB}\rangle$)!