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1. Bosonic and Fermionic commutation relations (4+2+4+4 = 14 points)
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(a) Convince yourself of the fact, that the variance of an operator A can be
written as

o4 = (A = (A)W[|(A - (A)w)
Use this identity to prove that
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(b) Combining the result from (a) and the ladder operators for the quantum
harmonic oscillator given by
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derive the original form of Heisenbergs uncertainty principle, which states
that the standard deviation product of position and momentum measure-
ments is lower bounded as 5
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(c) Starting from the fermionic anti-commutation relations
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derive the action of the fermionic creation and annihilation operators on the
occupation number basis states,
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(d) Consider the single particle Hamiltonian H, with eigenstates {|\)} - i.e.
Ho|A\) = AN). Let |y, ... AN)B(F) be the corresponding bosonic (fermionic)
N particle basis state in a first quantization representation. We define the
number operator as ny, = d;dA. Now, by using the second quantization re-
presentation of [A1,... An)p(r), and the appropriate commutation relations

for d;, ay, prove that the number operator n, simply counts the number of
particles in state |A) - i.e. show explicitly that for both bosonic and fermionic
N particle states
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2. Observables in second quantization (2+2+2+4+46 = 16 points)

(a)

Consider a system of N particles, and a one-body operator O, = Zjvzl 0j,

where 0; is an ordinary single particle operator acting on the j’th particle.

Furthermore, using the same notation as (1lc), assume that O, is diagonal
in the {|\)} basis, i.e. 6 = >, 0x|A\)(A|. Show that a second quantization

representation of Oy, with respect to the {|A)} basis, is given by
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What is the second quantized representation of Oy in a different basis {|u)},
in which O, is not diagonal?
Consider a single particle in a one-dimensional infinite square well of length L.

Write down the basis transformations between a, and a(x) - i.e. the operators
which annihilate a particle at a fixed momentum or position.

Now consider a many-particle finite one-dimensional system of length L -
i.e a system with infinite square well potential. The single particle kinetic
energy operator is given by T = Z p]2 /2m. Show that the second quantized
representation of this operator is given by
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[Hint: Use the strategy developed in (a) and (b), with the tools from (c) - ie.
first express the kinetic energy operator in the basis in which it is diagonal,
obtain the second quantized representation in this basis, and then transform
into the co-ordinate basis carefully.]

Consider a bosonic Hamiltonian H = Z Dy ]blb with bT b the usual bo-
sonic creation and annihilation operators. Prove that the Helsenberg picture
evolved creation and annihilation operators are given by:
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[Hint: Again it helps to consider a basis in which the Hamiltonian is diagonal.]



