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1. Holstein-Primakoff transform (2+2+3+3 = 10 points)
In this exercise we construct representations of the spin-S algebra in terms of
bosons. The state of a spin-S system is typically written |S,m〉 where m is the Sz

spin component which can take values−S,−(S−1), ...S−1, S. For spin-1
2

particles

the only allowed values are ±1
2
, while in general there are 2S + 1 possible values

for m. This state must be an eigenstate of Sz and also the total spin operator
defined as S2 := (Sx)2 + (Sy)2 + (Sz)2 satisfying,

Sz|S,m〉 = m|S,m〉, S2|S,m〉 = S(S + 1)|S,m〉 (1)

(a) Using the bosonic commutation relations1 show that the representation

Ŝ− = a†
(
2S − a†a

)1/2
, Ŝ+ =

(
Ŝ−
)†
, Ŝz = S − a†a ,

where a and a† are bosonic creation and annihilation operators fulfills

[S+, S−] = 2Sz .

(Hint: you can prove this without explicitly expanding the square root!)

(b) We now investigate another representation where one spin system is repre-
sented by two bosonic modes (or orbitals) defined by operators (a, a†) and
(b, b†) via the mapping

Ŝ+ = a†b, Ŝ− =
(
Ŝ+
)†

and Ŝz =
1

2

(
a†a− b†b

)
.

Show via the bosonic commutation relations that,

|S,m〉 =

(
a†
)S+m√

(S +m)!

(
b†
)S−m√

(S −m)!
|∅〉 ,

satisfy the definitions in equation (1), where |∅〉 is the bosonic vacuum state.

(c) Consider the operators given by the following linear combination of the bo-
sonic operators from the previous question

a1 =
√
Ta+

√
Rb, b1 =

√
Tb−

√
Ra ,

with T,R ∈ R. Find the conditions on T and R such that a1 and b1 also
satisfy the bosonic commutation relations. The above transformations des-
cribe many physical processes, for example the combination of two spatially
distinct beams of light (represented by the modes a and b) being combined
(or interfered) on a particular kind of glass cube that transmits or reflects
each mode in a manner described by the coefficients T (transmission) and R
(reflection).

1[aj , a
†
k] = δjk, [aj , ak] = [a†j , a

†
k] = 0
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(d) Suppose we did interfere two bosons resulting in the above transformation.

Calculate the boson number difference a†1a1 − b
†
1b1 in terms of a spin mea-

surement. Based upon your answer, how do we interpret the interference
transformation in the spin picture?

2. Jordan-Wigner transform (2+2+2+2+2+4 = 14 points)
In this exercise we will explore how fermionic systems can be mapped onto spin-1

2
systems. Let us define the spin operators

Sx =
1

2
σx Sy =

1

2
σy Sz =

1

2
σz ,

These operators satisfy the canonical commutation relations

[Si, Sj] = iεijkS
k ,

where εijk is the Levi-Civita symbol which is 0 if any two indices are the same and
(−1)π(P ) where π(P ) is the parity of any permutation away from the order i, j, k =
x, y, z. These commutation relations define the algebra of spin-1

2
observables in a

similar manner to the bosonic and fermionic case.

Furthermore, we define spin ladder operators as

S± = Sx ± iSy .

(a) Justify the term spin ladder operators by finding the action of S± on the
states | ↑〉 and | ↓〉.

(b) Show that
{S+, S−} = 1 ,

and
[S+, S−] = 2Sz ,

which is another canonical way of defining the spin algebra.

The anti-commutation relations above and the suggestive names might prompt us
to propose a representation of the spin system in terms of fermions by associating
the state | ↑〉 with an occupied fermionic particle state f †|0〉 := |1〉 and the
state | ↓〉 with the vacuum f |1〉 := |0〉. In this representation the spin raising
and lowering operators would identified with fermionic creation and annihilation
operators via

S+ = f †, S− = f and Sz = f †f − 1

2
.

(c) This time explicitly using the fermionic anti-commutation relations2 show
(again) that [S+, S−] = 2Sz.

Consider a one dimensional chain of spins with sites labelled j = 1, 2, ..., N where
the N -site states live in the Hilbert space H =

⊗N
j=1C

2
j . A spin ladder operator

for just one lattice site, j, is given by the corresponding operator defined above
(namely the original definition in terms of Pauli matrices) on the Hilbert space,
C

2
j , tensored with the identity on all the others, e.g. S+

2 = 1⊗ S+ ⊗ 1⊗ ...⊗.

2{fj , f†
k} = δjk, {fj , fk} = {f†

j , f
†
k} = 0
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Given the above results, we might be tempted to represent the spin raising and
lowering operators on a site j with with fermionic creation and annihilation ope-
rators for orbitals j = 1, 2, ..., N via S+

j = f †j , S−j = fj and Szj = f †j fj − 1
2
.

(d) Explain why the representation breaks down in this case. (Hint: consider the
commutator [S+

1 , S
+
2 ])

To obtain a faithful spin representation, it is necessary cancel this unwanted sign.
Although a general procedure is hard to formulate, in one dimension, this can be
achieved by a non-linear transformation

S+
m = f †m(−1)

∑
l<m nm , S−m = (−1)

∑
l<m nmfm and Szm = f †mfm −

1

2
.

(e) Use the transformation defined above to show that

S+
mS
−
m+1 = f †mfm+1 .

(f) Finally, show that the anisotropic Heisenberg spin chain

H = −
∑
n

(
JzS

z
nS

z
n+1 +

J⊥
2

(
S+
n S
−
n+1 + S−n S

+
n+1

))
can be mapped to the fermionic Hubbard model (when setting Jz = 0 this
model should be familiar to you from previous exercises. You can start from
this case and add in the interaction term later).

3. Time evolution of the field operators (3+3+0 = 6 points)

In lectures you saw that the Hamiltonian for interacting particles in a potential
in terms of the field operators was given by,

H = H(1) +H(2),

H(1) =

∫
dξ′Ψ†(ξ′)

(
−~2∆

2M
+ V1(ξ

′)

)
Ψ(ξ′)

H(2) =
1

2

∫
dξ′dξ′′Ψ† (ξ′′) Ψ†(ξ′)V2 (ξ′, ξ′′) Ψ(ξ′)Ψ (ξ′′)

The field operator commutation relations are

[Ψ(ξ),Ψ (ξ′)] =
[
Ψ†(ξ),Ψ† (ξ′)

]
= 0,[

Ψ(ξ),Ψ† (ξ′)
]

= δ (ξ − ξ′) ,

and a useful identity for commutators is [AB,C] = A[B,C] + [A,C]B.

(a) Using the above tools, show that

[H(1),Ψ(ξ)] =

(
−~2∆

2M
+ V1(ξ)

)
Ψ(ξ).

(b) Show that

[H(2),Ψ(ξ)] = −
∫
dξ′Ψ†(ξ′)V2(ξ

′, ξ)Ψ(ξ′)Ψ(ξ).
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c) Using the Heisenberg equation of motion which simplify in this case to

i~
∂

∂t
Ψ(ξ, t) = −[H,Ψ(ξ, t)],

show that the equation above has the structure of a nonlinear Schrödinger equa-
tion, namely

i~
∂

∂t
Ψ(ξ, t) =

(
−~2∆

2M
+ V1(ξ)

)
Ψ(ξ, t)

+

∫
dξ′Ψ† (ξ′, t)V2 (ξ, ξ′) Ψ (ξ′, t) Ψ(ξ, t)
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