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Chapter 6

Bosonic systems and
superfluidity

6.1 Densities and correlations

6.1.1 Density distribution for free bosons

Before coming to these exciting insights, we will, however, start from pretty dry basics.
We consider a system of N non-interacting bosons in the state vector

|ψN 〉 = |Np0 , Np1 , . . . 〉. (6.1)

The particle number density as a function of position x is

〈ψN |Ψ†(x)Ψ(x)|ψN 〉 =
1

V

∑
k,k′

e−i(kx+k′x)〈ψN |b†kbk|ψN 〉

=
N

V
. (6.2)

This expression is manifestly independent of position, but this is no surprise in a system
that is translationally invariant.

6.1.2 Pair distribution function for non-interacting bosons

We can, in analogy to the fermionic case, again define a pair distribution function, now
in the bosonic reading, without a spin. It is defined as follows.
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6 CHAPTER 6. BOSONIC SYSTEMS AND SUPERFLUIDITY

Bosonic pair distribution function: For spinless bosons, it is defined as

N2

V 2
g(x− x′) = 〈ψN |Ψ†(x)Ψ†(x)Ψ(x′)Ψ(x′)|ψN 〉. (6.3)

We also have

N2

V 2
g(x− x′) =

1

V 2

∑
k,k′,q,q′

e−ikx−iqx
′+iq′x′+ik′x

× 〈ψN |b†kb
†
qbq′bk′ |ψN 〉. (6.4)

The expectation value gives a value different from zero only if k = k′ and q = q′, or if
k = q′ and q = k′. The case of k = q that has been impossible for fermions but that is
now possible, has to be considered separately. Hence, we have

〈ψN |b†kb
†
qbq′bk′ |ψN 〉 = (1− δk,q)

×
(
δk,k′δq,q′〈ψN |b†kb

†
qbqbk|ψN 〉+ δk,qδq,k′〈ψN |b†kb

†
qbkbq|ψN 〉

)
+ δk,qδk,k′δq,q′〈ψN |b†kb

†
kbkbk|ψN 〉

= (1− δk,q)

× (δk,k′δq,q′ + δk,q′δq,k′)nknq + δk,qδk,k′δq,q′nk(nk − 1). (6.5)

We therefore arrive at the somewhat complicated looking expression

〈ψN |Ψ†(x)Ψ†(x′)Ψ(x′)Ψ(x)|ψN 〉

=
1

V 2

∑
k,q

(1− δk,q)(1 + e−i(k−q)(x−x′))nknq +
∑
k

nk(nk − 1)


=

1

V 2

(∑
k,q

nknq −
∑
k

n2
k +

∣∣∣∣∣∑
k

e−ik(x−x′)nk

∣∣∣∣∣
2

−
∑
k

n2
k

+
∑
k

n2
k −

∑
k

nk

)

=
N2

V 2
+

1

V

∣∣∣∣∣∑
k

e−ik(x−x′)nk

∣∣∣∣∣
2

− 1

V 2

∑
k

nk(nk + 1). (6.6)

There is a positive second term, reminiscent of the fermionic situation. For the last
term, however, there is no fermionic equivalent, simply because one cannot have a
double occupation for fermions.

Let us now look at a couple of examples. If all bosons are taking the same momen-
tum state p0, then (6.6) becomes

N2

V 2
g(x− x′) =

N(N − 1)

V 2
. (6.7)
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Now the pair distribution function is also constant. There are simply no correlations
The right hand side can be interpreted in a way that the probability to find the first
particle N/V ist, that to find the second (N − 1)/V and so on.

The situation changes significantly if particles are distributed over momentum val-
ues, say, following a Gaussian distribution

nk =
(2π)3N

V (
√
π∆)3)

e−(k−k0)2/∆2

(6.8)

with normalization ∫
dp

(2π)3
nk =

N

V
. (6.9)

Then the second term in the above expression becomes∫
dk

(2π)3
e−ik(x−x′)nk =

N

V
e−∆2(x−x′)2/4e−ik0(x−x′), (6.10)

up to a small error originating from the discrete integration, and for the third term

1

V

∫
dk

(2π)3
n3
k =

1

V

(
(2π)3N

V (
√
π∆)3

)2 ∫
dk

(2π)3
e−2(k−k0)2/∆2

≈ N2

V 3∆3
. (6.11)

Holding the density N/V and the width of the distribution ∆ fixed, then the third term
vanishes in the limit of large volumes V in (6.6) as 1/V . The pair distribution function
then becomes

N2

V 2
g(x− x′) =

N2

V 2

(
1 + e−∆2(x−x′)/2

)
. (6.12)

The probability to find bosons nearby, closer than a distance ∆−1, is increased. This
is an interesting phenomenon. Because of the symmetry alone, but not due to genuine
interactions, bosons tend to stick together, to cluster or to “bunch”. The probability
to find two bosons at exactly the same position is precisely twice as large as for large
distances. This is no contradiction to what has been said before. The density can
very well be constant, and at the same time the pair correlation functions indicates a
clustering.

6.2 Photon correlations

Photons constitute the prototypical example of non-interacting bosons. They are indeed
non-interacting to an extraordinarily good approximation. Making use of methods of
quantum optics, one can prepare sophisticated states of light modes. One can also mea-
sure photon correlations in Hanbury-Brown Twiss experiments, as we briefly discuss
in the lecture, but not in this script.
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6.3 Weakly interacting dilute Bose gases

6.3.1 Quantum fluids and Bose Einstein condensation
Quantum degenerate Bose gases are physical systems that are still enjoying enormous
attention in present-day research. An important bosonic fluid is He4, exhibiting S = 0,
a kind of Bose gas that features little interaction compared to other Bose gases made
from heavier atoms. He4 is fluid down to T = 0, turning to a superflud state at T =
2.18K we come to later. The interaction of such Helium atoms is indeed small, but
non-negligible. It can be well described by a Lennard-Jones potential,

V (r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
, (6.13)

where ε = 1.411× 10−15erg und σ = 2.556× 10−10m. It captures a strong repulsion
at short distances and a mild attraction at large distances.

In relatively recent years, Bose Einstein condensation has moved into the focus
of significant attention both in experimental as well as in theoretical work, starting
with the successful demonstration of Bose-Einstein-condensation of about 2000 87Rb
atoms, followed by an experiment with 100000 7Li atoms and several millions 23Na
atoms. Today, the field of ultra-cold atomic quantum gases is one of the fastest growing
research fields, giving rise to a number of exciting applications. We will later turn to
a specific one, that of ultra-cold atoms in optical lattices, giving rise to instances of
highly controlled quantum simulators. Before that, we will discuss in great detail the
situation without the presence of an optical lattice, in form of the Bogoliubov-theory
of weakly interacting Bose gases.

6.3.2 Bogoliubov theory of weakly interacting Bose gases
In the momentum representation we can write the Hamiltonian of interacting bosons as

H =
∑
k

k2

2M
b†kbk +

1

2V

∑
k,p,q

Vqb
†
k+qb

†
p−qbpbk. (6.14)

In the following, we will make use of a series of approximations that are well justified
for dilute, weakly interacting Bose gases and give rise to a good model. To start with,
Vq is the Fourier transform of the interaction in the position representation

Vq =

∫
dxe−iqxV (x). (6.15)

For low temperatures, Bose Einstein condensation takes place into the lowest mode
corresponding to k = 0 statt. Indeed, at zero temperature and in the absence of in-
teractions, so in case of the ideal Bose gas, this is the obvious ground state: Then the
mode corresponding to k = 0 is simply occupied N times. The bosons “condense”
in the same mode, which is perfectly possible for bosons, in contrast to the fermionic
situation.
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In analogy to the ideal Bose gas one should also expect that even for small interac-
tions, this mode is macroscopically occupied. By this we mean that

N0 = 〈ψN |a†0a0|ψN 〉 ≈ N (6.16)

us expected to hold true. The number of particles outside this mode, so outside the
condensate, is hence given by

N −N0 � N0 ∼ N. (6.17)

This leads us to the first approximation step: One can neglect all interactions outside
the k = 0-mode, simply as densities are too small. We can hence discuss interactions
exclusively of the k = 0 mode with those outside of it. Under these – indeed very mild
– assumptions, we can write the Hamiltonian as

H =
∑
k

k2

2M
b†kbk +

1

2V
V0b
†
0b
†
0b0b0 +

1

V

′∑
k

(V0 + Vk)b†0b0b
†
kbk

+
1

2V

′∑
k

Vk

(
b†kb
†
−kb0b0 + b†0b

†
0bkb−k

)
, (6.18)

in a form

• in which we have neglected polynomials higher than third degree in bk.

Here V0 again refers to the Fourier transform of the interaction (and not the volume).
The symbol

∑′
k again referes to a sum that takes out the term k = 0. Of course, we

have that

b0|N0, . . . 〉 =
√
N0|N0 − 1, . . . 〉, (6.19)

b†0|N0, . . . 〉 =
√
N0 + 1|N0 − 1, . . . 〉. (6.20)

Now the following approximations are plausible. To highlight them, they are all em-
phasized in an itemized environment in this text.

• Since Since N0 is a large number, N0 ∼ 1023, both terms largely correspond to
the multiplication with the real number

√
N0.

• What is more, in comparison to N0, the impact of the commutator [b0, b
†
0] = 1 is

negligible, and hence the operators

b0 = b†0 =
√
N0 ∈ R (6.21)

can be replaced by real numbers.

This last step, needless to say, only makes sense for the mode k = 0. In this approxi-
mation, the Hamiltonian becomes

H =

′∑
k

k2

2M
b†kbk +

1

2V
N2

0V0

+
N0

V

′∑
k

(
(V0 + Vk)b†kbk +

1

2
Vk(b†kb

†
−k + bkb−k)

)
. (6.22)
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Interestingly, we do not know the precise value of N0; we rather made some assump-
tions about it. It is determined by the N/V and implicitly by the interaction. We will
now write total particle number operator of the entire system as

N0 +

′∑
k

b†kbk, (6.23)

where were know that

〈ψN |N0 +

′∑
k

b†kbk|ψN 〉 = N. (6.24)

Hence, (6.23) can always be replaced by N . That is to say, by expanding this expres-
sion, we get terms of the form

V0

2V
N2

0 =
V0

2V
N2 − NV0

V

′∑
k

b†kbk

+
V0

2V

′∑
k,k′

b†kbkb
†
k′bk′ . (6.25)

In this way, the Hamiltonian becomes

H =

′∑
k

k2

2M
b†kbk +

N

V

′∑
k

Vkb
†
kbk

+
N2

2V
V0

+
N

2V

′∑
k

Vk

(
b†kb
†
−k + bkb−k

)
+H ′, (6.26)

where

• H ′ is again a Hamiltonian with more than four creation or annihilation operators.
Such terms are, however, linear in (n′)2, where

n′ = (N −N0)/V (6.27)

is the density of those particles not contained in the condensate.

The Bogoliubov theory consists of this scheme of approximations. Let us briefly review
this approximation scheme: It was key to the idea to single out the mode corresponding
to k = 0 and to replace the respective operators by numbers (which makes perfect
sense for large occupation numbers). Then we have neglected higher contributions to
interaction terms, which is a good approximation for small densities. Indeed, when

n′ � N/V (6.28)
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this is a good approximation, and in fact a very good approximation for weakly inter-
acting, highly dilute Bose gases. Since we have neglected H ′, we have

H =

′∑
k

k2

2M
b†kbk +

N

V

′∑
k

Vkb
†
kbk

+
N2

2V
V0

+
N

2V

′∑
k

Vk

(
b†kb
†
−k + bkb−k

)
. (6.29)

This is again a quadratic expression in bosonic operators in the Hamiltonian. Such
systems are called free systems, or non-interacting systems, or quasi-free systems, the
latter in particular in the mathematical literature. Such systems for which the poly-
nomial is a polynomial of second order in bosonic or fermionic operators are exactly
solvable. Indeed, they constitute some of the few solvable systems in physics. The
mindset here is to understand in what way one can make approximation schemes, until
one arrives at such a quadratic Hamiltonian problem. We will solve this model first,
and later have a more systematic look at such problems.

Let us now make use of the transformation

bk = ukak + vka
†
−k, (6.30)

b†k = uka
†
k + vka−k, (6.31)

where uk, vk ∈ R, from one set of valid bosonic annihilation operators {bk} to a new
one {ak}. This is only a legitimate transformation to such a new set if the new operators
again satisfy

[ak, ak′ ] = 0, (6.32)

[a†k, a
†
k′ ] = 0, (6.33)

[ak, a
†
k′ ] = δk,k′ , (6.34)

which is nothing but1

u2
k − v2

k = 1 (6.37)

for all k. The inverse transformation is then given by

ak = ukbk − vkb†−k (6.38)

as one easily finds. Such a transformation is a symplectic transformation. Note that it is
not a linear transformation of creation operators, but a mixed transformation that brings

1The proof is rather obvious, as

[ak, ak′ ] = ukvk′δk,−k′ + vkuk′ (−δk,−k′ ) = 0, (6.35)

and similarly
[ak, a

†
k′ ] = ukuk′δk,k′ + vkvk′ (−δk,k′ ) = (u2k − v

2
k)δk,k′ . (6.36)
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together annihilation and creation operators. We will later identify the transformation
implemented here as a symplectic transformation.

Making use of a transformation that transforms the previous particles into “quasi-
particles”, we hence have

b†kbk = u2
ka
†
kak + v2

ka−ka
†
−k + ukvk(a†ka

†
−k + aka−k), (6.39)

b†kb
†
−k = u2

ka
†
ka
†
−k + v2

kaka−k + ukvk(a†kak + a−ka
†
−k), (6.40)

bkb−k = u2
kaka−k + v2

ka
†
ka
†
−k + ukvk(a†−ka−k + aka

†
k). (6.41)

In these coordinates, the Hamiltonian is given by

H =
1

2V
N2V0 (6.42)

+

′∑
k

(
k2

2M
+
N

V
Vk

)(
u2
ka
†
kak + v2

kaka
†
k + ukvk(a†ka

†
−k + aka−k)

)
+

N

2V

′∑
k

Vk

(
(u2

k + v2
k)
(
a†ka
†
−k + aka−k

)
+ 2ukvk(a†kak + aka

†
k)
)
.

We have not yet made of all the freedom we have, however: We still have the freedom
to let the non-diagonal terms vanish, without approximation. This means that (i) for all
k (

k2

2M
+
N

V
Vk

)
ukvk +

N

2V
Vk(u2

k + v2
k) = 0 (6.43)

should hold. Together with (ii) u2
k − v2

k = 1 for all k from the preservation of the
commutation relations, we hence have a system of equations in {uk} und {vk}. This
allows us to identify the coefficients {uk} and {vk}. It is helpful to introduce the
following quantities talking – maybe unsurprisingly – the role of frequencies,

ωk =

((
k2

2M
+
N

V
Vk

)2

− (NVk/V )2

)1/2

=

((
k2

2M

)2

+
Nk2Vk
VM

)1/2

. (6.44)

In this way, we find the solution for the coefficients {uk} and {vk} as

u2
k =

ωk +
(

k2

2M + N
V Vk

)
2ωk

, (6.45)

v2
k =

−ωk +
(

k2

2M + N
V Vk

)
2ωk

, (6.46)

ukvk = − NVk
2V ωk

. (6.47)
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This finally gives for the Hamiltonian the following expression. Before spelling it out,
let us remind outselves that the last steps have been nothing but a way to decouple a
quadratic systems by means of a clever choice of coordinates. Such an approach is
always possible for quadratic systems, as we will see later. We therefore arrive at the
following simple Hamiltonian.

Hamiltonian of the weakly interacting Bose gas in the Bogoliubov approxima-
tion:

H =
N2

2V
V0 −

1

2

′∑
k

(
k2

2M
+
N

V
Vk − ωk

)
+

′∑
k

ωka
†
kak. (6.48)

We can easily interpret this Hamiltonian. The first term is a number, the ground
state energy. The second term is a collection of harmonic oscillators of different
frequency, reflecting excitations. These excitations, generated by a†k, are also called
“quasi-particles”, in fact quasi-particles with wave number k. These creation operators
correspond to both creation and annihilation operators in the original coordinates, it is
important to emphasize.

The ground state of the systems with N particles is the vacuum with state vector
|ø〉, in these coordinates. Then we have

ak|ø〉 = 0 (6.49)

for all k. In this ground states, that is, at zero temperature in a language of statistical
physics, we can now determine the number of particles (not quasi-particles), referring
to the original bosonic operators {bk}. This number is given by

N ′ = 〈ø|
′∑
k

b†kbk|ø〉 = 〈ø|
′∑
k

v2
kaka

†
k|ø〉

=

′∑
k

v2
k, (6.50)

where we have made use of the connection between quasi-particles and particles. That
means: Without any interaction, all particles are condensed. When taking interactions
into account, it is still true that no quasi-particles are excited in the ground state. But
this now means that some original particles are outside the condensate.

We would now like to make another assumption, that is,

• about the specific interaction of the particles:

We make the plausible assumptions that bosons are weakly interaction via a contact
potential such as hard balls. This means that the potential is given by

V (x) = λδ(x). (6.51)
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Making use of (6.44) as well as (6.45) and (6.47), we find for the number density of
the particles outside the condensates2

n′ =
N ′

V
=
M3/2

3π2
(λN/V )3/2. (6.52)

The number of particles in the condensate is then

N0 = N −N ′ = N − n′V. (6.53)

This is no longer N , but reduced due to the interaction. Equipped with these insights,
we can also revisit the ground state energy: In (6.48) it consists of a term that would
be the interaction energy, were all particles contained in the condensate, and another
negative term. Due to the occupation of bosonic states with k 6= 0 in the ground state
the kinetic energy is increased, while the potential energy is reduced.

6.3.3 Dispersion relation in the Bogoliubov theory
As mentioned before, the elementary excited states are those for which one applies
a†k to |ø〉: This gives quasi-particles with wave number k. Their energy is, as being
determined by the Hamiltonian, simply ωk. For small k we find that ωk is according to
(6.44) essentially linear in k, and one gets

ωk ≈ ck, (6.54)

where

c =

(
NV0

VM

)1/2

. (6.55)

Excitations with long wave length are hence those with linear dispersion. c can be
seen as the speed of sound that determines the velocity with which excitations travel,
a quantity that can be related to the actual information propagation speed. For large k
one finds according to (6.44)

ωk ≈
k2

2M
+
N

V
Vk, (6.56)

a quadratic expression. This is the dispersion relation of free particles, the energy of
which is shifted by an average potential of NVk/V . We will now assume – stretching
the above assumptions to an extent – that the interaction is sufficiently strong so that
we have a local minimum of ωk as a function of k that is different from k = 0: The
function increases linearly, the decreases again, only to grow subsequently. Such a
behaviour is explained by the above dispersion relation.3

2Here we encounter the subtlety that the density is not analytic in λ and simple perturbation theory does
not work.

3Let us not be too pedantic here and be too worried about whether for such strong interactions the Bo-
goliubov theory may no longer deliver good approximations. More exact computations indeed confirm this
feature of the dispersion relation that we will accept as the proper dispersion relation of the type of system
at hand.
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6.3.4 Superfluidity
We have just seen that the dispersion relation of the quasi-particles of the weakly inter-
acting dilute Bose gas first grows linearly and for large k grows quadratically. What is
more, we find a local minimum of ωk as a function of k, different from zero. We will
now see that such a dispersion relation has a remarkable implication: Such systems
can be superfluid. Superfluidity is a remarkable phenomenon: They are fluids without
any viscosity. They flow around objects, and items can be dragged through such fluids
without losing velocity. It is a perfectly frictionless fluid.

This behaviour is a consequence of the dispersion relation, for which

ink
ωk

k
= vCrit > 0 (6.57)

holds true. Again, for small values of k the dispersion relation is linear. Such quasi-
particles are called phonons. Excitations with a k nearby the local minimum are called,
for historical reasons, rotons.4 We will now see how this dispersion relation gives
rise to superfluidity. In order to see this, we will investigate a tube through which a
superfluid is flowing. We will look at this system in two reference frames:

• In the first reference frameB, the tube is at rest and the fluid moves with velocity
−v.

• In the other reference frame B′, the fluid is at rest, and the tube moves with
velocity v.

Of course, both are perfectly legitimate references frame, related to each other by a
Galilei transformation.5

4For superfluid He4 this minimum is at k0 = 1.91 × 1010m~. The effective mass of such rotons is
about 0.16 the mass of Helium, and they have an energy gap of ∆/k = 8.6K.

5Here a brief reminder on Galilei transformations: Let us assume we haveN Teilchen, the above velocity
is v and the particles have positions {xj} and momenta {pj}. Then we have in the above reference frames

xj = x′j − vt, (6.58)

pj = p′j −Mv. (6.59)

This means that
P =

∑
j

pj =
∑
j

(p′j −mv) = p′ −Mv. (6.60)

The energy transforms as (note that V is here the interaction, not the velocity)

E =
∑
j

p2j

2M
+
∑
〈j,k〉

V (xj − xk)

=
∑
j

M

2

(
p′j

M
− v
)2

+
∑
〈j,k〉

V (x′j − x′k)

=
∑
j

(p′j)2

M
− p′v +

1

2
Mv2 +

∑
〈j,k〉

V (x′j − x′k)

= E′ − p′v +
1

2
Mv2. (6.61)

This is precisely the transformation that we need, and it makes little difference whether the particles are
classical or quantum.
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We now allow for a little bit more, namely that in B′ the fluid has energy E′ and
momentum P ′. The energy E in reference frame B and the momentum are given by

P = P ′ −Mv, (6.62)

E = E′ − Pv +
1

2
Mv2. (6.63)

Let us discuss why there is no friction up to a critical velocity. Friction means that
quasi-particles are being generated that dissipate energy and transfer this energy to
other, undirected degrees of freedom. If there are no quasi-particles, there is no friction
and dissipation. Viewed in reference frame B′, when encountering dissipation quasi-
particles will have to be generated that move with the tube. In the reference frame of
the tube it looks as if the fluid was decelerated.

Of course, such excitations will only arise if they are energetically favoured, and
this insight is at the heart of the matter. Let us begin in the ground state at temperature
T = 0. In the reference frame B′, energy and momentum are given by

E′ = E′g, (6.64)
p′ = 0. (6.65)

In B, these expressions are

Eg = E′g +
1

2
Mv2 (6.66)

p = −Mv. (6.67)

If a quai-particle with momentum p = k (actually, p = ~k, but we have set ~ = 1) and
energy ωk is being generated, energy and momentum in B′ are given by

E′ = E′g + ωk,

p′ = k, (6.68)

and hence in B′

E′ = E′g + ωk − kv +
1

2
Mv2,

p′ = k −Mv. (6.69)

The excitation energy in B equals, again with ~ = 1,

∆E = ωk − kv. (6.70)

For this reason, ∆E is the change of energy of the fluid due to the generation of a
quasi-particle in reference frame B. Only if

∆E < 0 (6.71)

the fluid will lessen its energy by the dissipation process. Of course, this means that,
seeing the problem as a one-dimensional problem, that

v >
ωk

k
(6.72)
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has to hold, such that energy is lost in the first place, for this excitation labeled k. In
other words, the velocity has to be larger than a critical velocity.

What does the dispersion relation have to do with all this? Well, everything. The
thing is that if (6.57) holds true and a critical velocity vCrit exists, then there is no k for

v < vCrit (6.73)

that satisfies (6.72). Therefore, there cannot be excitations that are energetically fa-
voured, and hence there is no dissipation. The phenomenon of superfluidity is hence a
consequence of a curious dispersion relation, in which the energy per wave number is
bounded from below. We have – within a framework of second quantization – hence
understood how quantum gases can flow entirely without friction and dissipation as a
genuine quantum effect. This is one of the most curious and intriguing macroscopic
quantum phenomena. For fluid Helium, this effect occurs at temperatures T < 2.18K
and can well be observed. This is one of the core results of this course.

6.3.5 Phenomenology of superconductivity
Until now the discussion was limited to the situation of zero temperature T = 0. As
mentioned before, the temperature does not have to be strictly zero (a fictitious state
of affairs anyway) in order to arrive at a superfluid. For temperatures different from
zero, superfluids are captured rather well by the two fluid model due to Tizsa: It is
a purely phenomenological model that regards such superfluid as being composite of
a superfluid component (the actual superfluid) and a normal component (that for low
temperatures largely consists of phonons). The superfluid component is assumed to
have

• zero entropy and

• can move freely through capillaries without any friction.

The normal component has a non-zero entropy, and also a viscosity different from zero.
Based on this crude model, a number of effects can be nicely explained.

• For example, the effect can be explained in which a small hole in a tank filled
with He II can serve as a “filter” for the superfluid component. If one connects
two tanks via a thin capillary and puts some pressure onto one tank, the fluid
will flow from one tank A to the other B. But then, because the superfluid
component has no entropy, the entropy per mass in tank A will increae and that
in B will decrease. Hence, A will cool down, while B will heat up. This is
indeed observed, in a fascinating effect called mechanocaloric effect.

• A further quite spectacular effect is called fountain effect: It is basically the op-
posite effect in which a temperature gradient gives rise to a difference in pressure.
If one does it well, one can generated nice fountains, hence the name.

• Finally, there is an effect called second sound: If one generates a sound wave,
both the normal and the superfluid component will usually oscillate, and hence
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one will arrive at a sinusoidal modulation of the mass density. But now there
is also another type of oscillation conceivable in which both components oscil-
late against each other with an opposite phase. This would not be a sound wave
in the ordinary sense, as the mass density will remain constant in time. But it
would give rise to a modulation of the entropy density, for the above mentioned
reason. One could therefore hope that by means of clever local heating one can
generate such waves. Then the temperature gradient would not diffusively prop-
agate, but ballistically, like a wave, propagating with some speed of sound. This
could be called a sound wave of second sound, and indeed, it can be observed in
experiments.


