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Chapter 4

Quantum channels

4.1 General quantum state transformations

What is the most general transformation of a quantum state that one can perform?
One might wonder what this question is supposed to mean: We already know of uni-
tary Schrödinger evolution generated by some Hamiltonian H . We also know of the
measurement postulate that alters a state upon measurement. So what is the question
supposed to mean? In fact, this change in mindset we have already encountered above,
when we thought of unitary operations. Of course, one can interpret this a-posteriori
as being generated by some Hamiltonian, but this is not so much the point. The em-
phasis here is on what can be done, what unitary state transformations are possible. It
is the purpose of this chapter to bring this mindset to a completion, and to ask what
kind of state transformations are generally possible in quantum mechanics. There is
an abstract, mathematically minded approach to the question, introducing notions of
complete positivity. Contrasting this, one can think of putting ingredients of unitary
evolution and measurement together. Fortunately, these pictures turn out to be equiva-
lent. Either way, this is given by the notion of a quantum channel. Given that we think
here of the most general transformation, the connotation of an actual communication
channel is perfectly accurate: We will see that natural communication channels (such
as provided by fibres and so on) can be captured nicely in terms of quantum channels.

4.2 Complete positivity

Mathematically speaking, quantum channels capture the legitimate transformations
that quantum states can undergo. They directly generalize the concept of a stochas-
tic matrix that maps probability vectors onto probability vectors. A stochastic matrix
is a matrix P ∈ Rd×d

+ with the property that

d∑
k=1

Pj,k = 1, (4.1)
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so that probability vectors p ∈ Rd
+ with

∑d
j=1 pj = 1 are mapped to probability

vectors.
Turning to the quantum world again: A quantum channel captures two things. First,

it is the most general valid operation that one can perform on a quantum system. Sec-
ond, it describes real communication channels as a special case. From the perspective
of a mathematical characterization, what defines a quantum channel T ? Surely, such
channels must be linear maps, so that if T1 and T2 are quantum channels, then

T = αT1 + βT2 (4.2)

with α, β ≥ 0 and α + β = 1 is a quantum channel. A quantum channel T must also
be a positive map, T ≥ 0, mapping positive operators ρ ≥ 0 onto positive operators,
such that

σ = T (ρ) ≥ 0 (4.3)

must again be a valid positive operator. Interestingly, this turns out not to be enough:
One needs a stronger form of positivity, referred to as complete positivity.

Complete positivity and quantum channels: Linear maps T on H are called
completely positive iff

T ⊗ id ≥ 0, (4.4)

where T ⊗ id is a linear map on H ⊗ H with H = Cd. Quantum channels are
trace-preserving completely positive maps satisfying

tr(T (ρ)) = 1 (4.5)

for all ρ satisfying tr(ρ) = 1.

It turns out that it is sufficient to take d having the same dimension as the dimension
of the first tensor factor. Why is that? Because T could act on a part of a larger system,
and then the operator (T ⊗ id)(ρ) must again be a valid quantum state. This is a feature
of quantum mechanics absent in classical mechanics: Although the map acts only on
a part of the system and “does nothing” to the second tensor factor, the joint map still
needs to be a positive map. The best known example of a positive but not completely
positive map is the transposition t, mapping

t : ρ 7→ ρT = ρ∗. (4.6)

Note that T denotes the element-wise transposition and ∗ the element-wise complex
conjugation. Hermitian conjugation will be denoted by †. Physically, this map reflects
a time reversal. It is easy to see that this is a positive map, so whenever ρ ≥ 0 then also
ρT ≥ 0. But partial transposition is not completely positive. Think of the quantum
state of two qubits in S(C2 ⊗ C2), given by

ρ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (4.7)
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with eigenvalues {1, 0, 0, 0}. Its partial transposition is then

ρ =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (4.8)

clearly not a positive matrix since it has eigenvalues
{
− 1

2 ,
1
2 ,

1
2 ,

1
2

}
. In fact, for single

qubits, this is basically already all there is for positive matrices. We do not offer a proof
of this statement.

Structure theorem for positive maps on qubits: An arbitrary positive linear map
T acting on C2 can be written as

T = αT1 ◦ t+ βT2 (4.9)

with α, β ≥ 0, t is the transposition and T1, T2 are completely positive linear maps.

4.2.1 Choi-Jamiolkowski isomorphism
More important is the following: The above definition of complete positivity does
not give rise to a criterion that can be efficiently checked. Fortunately, the following
statement provides such a criterion: It is necessary and sufficient for complete positivity
to apply the linear map to a certain single reference state.

Criterion for complete positivity: A linear map T onH is completely positive iff

(T ⊗ id)(Ω) ≥ 0 (4.10)

where Ω ∈ H ⊗H is a maximally entangled state.

Proof: We will briefly prove this statement. We will need the following tiny Lemma
for this: For any Cd×d 3 P ≥ 0 and any A ∈ Cd×d, we have that

APA† ≥ 0. (4.11)

This is an immediate consequence of the fact that for every |ψ〉 ∈ Cd,

〈ψ|APA†|ψ〉 = (〈ψ|A)P (A†|ψ〉) ≥ 0. (4.12)

Let us assume that Eq. (4.10) holds true. We will now show that

(T ⊗ id)(ρ) ≥ 0 (4.13)

for all ρ ∈ S(H⊗H). We make use of the spectral decomposition

ρ =

d2∑
j=1

pj |ψj〉〈ψj |. (4.14)
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From linearity, we have

(T ⊗ id)(ρ) =

d2∑
j=1

pj(T ⊗ id)(|ψj〉〈ψj |), (4.15)

so it is sufficient to show the statement for single state vectors |ψ〉 ∈ H. Now every
such state vector can be written as

|ψ〉 = (id⊗X)|Ω〉 (4.16)

for a suitable X ∈ Cd×d. But then we have

(T ⊗ id)(|ψ〉〈ψ|) = (T ⊗ id)
(
(id⊗X)|Ω〉〈Ω|(id⊗X†)

)
(id⊗X)(T ⊗ id)(|Ω〉〈Ω|)(id⊗X†) ≥ 0 (4.17)

from which the statement follows. In fact, it turns out that (T⊗ id)(|Ω〉〈Ω|) completely
specifies the channel.

Choi-Jamiolkowski isomorphism: Quantum channels as completely positive,
trace preserving maps T onH are isomorphic to the quantum states

(T ⊗ id)(|Ω〉〈Ω|). (4.18)

The proof is left as an exercise. In fact, one direction of the proof of the isomor-
phism we have already elaborated upon. This may not be a particularly deep statement,
but it has profound implications. Channels can be viewed as quantum states on a larger
Hilbert space. That also comes along with the insight that the set of quantum chan-
nels is again a convex set. In fact, any kind of optimization of linear functionals over
quantum channels can be cast into the form of a convex optimization problem. We
will see that in fact semi-definite programming is at the heart of the optimization of
many quantum protocols.1 In fact, many optimal success probabilities of protocols can

1Semi-definite programming generalizes linear programming and is a form of a convex optimization
problem for which the theory is very much developed, and for which interior point methods provide
an efficient solution. They are optimization problems of the form, for vectors c ∈ Rd and matrices
F0, . . . , Fd ∈ RD×D

minimize cT x, (4.19)

subject to F0 +
d∑

j=1

xjFj ≥ 0. (4.20)

The Lagrange dual is again a semi-definite problem of the form

maximize − tr(ZF0), (4.21)

subject to tr(ZFj) = cj∀j = 1, . . . , d, (4.22)

Z ≥ 0. (4.23)

Any solution to the Lagrange dual provides a lower bound to any solution to the original, the primal, problem,
which is a property most useful when using semi-definite programming in proofs.
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readily be captured as semi-definite programs of this form. In a bigger picture, ideas
of convex and non-convex programming feature strongly in quantum mechanics. In
fact, the latter works provide hierarchies of semi-definite programs to decide the above
separability problem, where each level of the hierarchy can be solved in polynomial
time.

4.2.2 Kraus’ theorem and Stinespring dilations
We have understood what a completely positive map is, but not how it can be parametrized
and what specific form it takes. This is given by Kraus’ theorem.

Kraus’ theorem: A linear map T onH is completely positive and trace-preserving
exactly if it can be written as

T (ρ) =

r∑
j=1

KjρK
†
j (4.24)

satisfying
r∑

j=1

K†jKj = 1. (4.25)

The smallest number r that can be achieved in such a decomposition is called the
Kraus rank.

We do not have the time to present the full proof of this. But we sketch the idea.
One direction of the proof is trivial: T is linear by construction. Also, applying (4.32)
to (4.10) immediately gives rise to a positive operator. The more technical direction is
to show that such a form can always be achieved. The key steps are to start from the
spectral decomposition

(T ⊗ id)(Ω) =
∑
i

pi|ei〉〈ei|. (4.26)

Now take an arbitrary state vector |ψ〉 ∈ H, and to extend it ontoH⊗H as |ψ∗〉⊗ |ψ〉.
One can then write

|ψ〉〈ψ| = d〈ψ∗|Ω〉〈Ω|ψ∗〉 = dtrA(|ψ∗〉〈ψ∗| ⊗ 1)|Ω〉〈Ω|). (4.27)

Then applying T can be done on the second tensor factor. The Kraus operators are then
defined by

Kj |ψ〉 =
√
dpj〈ψ∗|ej〉. (4.28)

Note that the Kraus decomposition is not unique: Any set {lk} is again a set of Kraus
operators if

lk =
∑
i

Uk,iKi (4.29)
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for U being unitary is again a legitimate set of Kraus operators. It is also not difficult to
see that the Kraus rank is exactly the standard rank of the Choi-Jamiolkowski isomorph
(T ⊗ id)(|Ω〉〈Ω|), an insight that is again left to the reader as an exercise.

Any channel can be seen as a unitary map in a larger vector space, a statement cap-
tured by Stinespring’s theorem. We will spell it out in a slightly unusual and redundant
form, yet one that is easier to communicate. This is a most important form: Its signifi-
cance stems from the observation that unitary operations originate from time evolution
in quantum mechanics, the most important quantum channel.

Hamiltonian evolution: The channel

ρ 7→ UρU† (4.30)

with U being a unitary on H captures Hamiltonian time evolution generated by
a Hamiltonian H = H† via U = exp(−itH). Such dynamics is referred to as
Schrödinger dynamics.

In fact, most elementary courses on quantum mechanics elaborate on the conse-
quences of such time evolution generated by meaningful Hamiltonians capturing im-
portant physical systems: The Schödinger equation is one of the key equations and one
of the axioms of quantum mechanics. The point of the Stinespring dilation is now to
see that any channel can be seen as such a unitary channel on a larger vector space.

Stinepring dilations: Any completely positive and trace-preserving map T onH =
Cd can be written as

T (ρ) = tr2(U(ρ⊗ η)U†) (4.31)

where η is a quantum state on CD, U is a unitary defined on Cd ⊗ CD, and tr2 is
the partial trace with respect to the second tensor factor. D has at most be taken to
be d.

4.2.3 Disturbance versus information gain

We briefly mention here that there is no way to attain any information about a system
without changing its quantum state. This is elucidated at by means of the following
statement. In fact, the labels of the Kraus’ theorem exactly correspond to the labels in a
von-Neumann measurement when the measurement postulate is applied to an auxiliary
quantum system initially in η.
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Generalized measurement: The Kraus decomposition can be realized as

KjρK
†
j = tr2((1⊗ πj)U(ρ⊗ η)U†) (4.32)

where η is a quantum state on CD, U is a unitary defined on Cd ⊗ CD, tr2 is the
partial trace with respect to the second tensor factor, and πj = |ψj〉〈ψj | are unit
rank projections from the measurement postulate.

We will now go too much into detail here: But when captured in this form, it
should be clear that the information gain (the knowledge obtained via the statistics of
measurement outcomes) and the disturbance (the alteration of ρ to the state conditioned
on measurement outcomes) are in a close relationship to one another.

4.3 Local operations and classical communication
We have so far learned what operations can be done, and what role Kraus operators
play. In this section, we turn to the important problem of how this manifests itself in
the composite setting where quantum operations can only be implemented locally. This
is key to the understanding of distributed settings.

4.3.1 One-local operations
Let us consider a bi-partite system with Hilbert spaces HA and HB . These could be
parts of a distributed quantum systems. Naturally, one can only perform local opera-
tions in each of the parts. The action may, however, be classically coordinated.

Local operations: Local operations in a bi-partite system with Hilbert spaces HA

andHB are operations that act as either

ρ 7→
J∑

j=1

(Aj ⊗ 1)ρ(Aj ⊗ 1)†, (4.33)

ρ 7→
J∑

j=1

(1⊗Bj)ρ(1⊗Bj)
†, (4.34)

where trace preservation requires that

J∑
j=1

A†jAj = 1,

J∑
j=1

B†jBj = 1. (4.35)

Let us imagine that the measurement is performed in Alice’s laboratory. The la-
bel j can be viewed as a measurement outcome. This measurement outcome can be
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communicated to Bob who would then make use of this label to implement a unitary
operation that depends on this label.

One-local operations: One-local operations in a bi-partite system with Hilbert
spaces HA and HB with one-way communication from Alice to Bob are of the
form

ρ 7→
J∑

j=1

(Aj ⊗ U (j))ρ(Aj ⊗ U (j))†, (4.36)

where all {U (j) : j = 1, . . . , J} are unitary and where trace preservation requires

J∑
j=1

A†jAj = 1. (4.37)

4.3.2 General local quantum operations
Having said that, Bob may again implement a local operation himself, and communi-
cate the results back to Alice.

Local operation with classical communication: General local quantum opera-
tions with classical communication (LOCC) in a bi-partite system with Hilbert
spaces HA and HB are sequences of protocols in which one party, say, Alice, per-
forms a local quantum operation who transmits the label reflecting the outcome to
Bob, who then again perform a local quantum operation in general dependent on
the outcome of the form

ρ 7→
J∑

j=1

Kj∑
k=1

(Aj ⊗B(j)
k )ρ(Aj ⊗B(j)

k )†, (4.38)

where trace preservation requires

J∑
j=1

A†jAj = 1,

Ks∑
k=1

B†kBk = 1 (4.39)

for all s = 1, . . . , J .

There is a large class of operations, one that we will not give a box, however:
Separable operations are of the form

ρ 7→
J∑

j=1

(Aj ⊗Bj)ρ(Aj ⊗Bj)
†, (4.40)
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again satisfying trace preservation. A number of interesting comments are in order:

• One can see that when manipulating pure quantum states, it is always sufficient
to make use of one-local transformations. This is basically a consequence of the
Schmidt decomposition.

• In general, one can reach more states by considering more than one round of
local quantum operations and classical communication.

• In fact, one can prove that the reachable set of each round r is strictly smaller
than the reachable set in round r + 1, for all r. This is an intriguing result. So
one has to consider LOCC protocols with an arbitrary number of steps in order
not to restrict generality.

• The above box also considers separable operations. It is rather obvious that
every LOCC is also a separable operation: One has to suitably see the labels
as super-labels that collect all the communication that is done. The converse
is not true, however. In fact, since the label j is shared, they can in general
not even physically be implemented. They still constitute a convenient outer
approximation of the set of LOCC, which for the above mentioned reason is
hard to handle. Hence, often separable operations are used as proxies for LOCC.


