
1

Quantum information theory (20110401)
Lecturer: Jens Eisert
Chapter 8: Elements of quantum computing

2

Contents

8 Elements of quantum computing 5
8.1 Why quantum computing? . 5

8.1.1 Quantum computers reduce the complexity of certain compu-
tational tasks . 5

8.1.2 Quantum systems can simulate other quantum systems 6
8.1.3 Moore’s law has physical limits 6
8.1.4 Even small quantum circuits may be useful 7

8.2 From classical to quantum computing 7
8.2.1 Qubits and quantum parallelism 7
8.2.2 Read out and probabilistic nature of quantum computers . . . 8
8.2.3 The circuit model and universal quantum gates 8

8.3 Gottesman-Knill and Solovay-Kitaev theorems 11
8.3.1 Clifford operations . 11
8.3.2 The Solovay-Kitaev-theorem 12
8.3.3 How to program a quantum computer? 12

3

4 CONTENTS

Chapter 8

Elements of quantum
computing

8.1 Why quantum computing?

8.1.1 Quantum computers reduce the complexity of certain com-
putational tasks

One reason for aiming at building quantum computers is that they will solve certain
types of problems faster than any (present or future) classical computer – it seems that
the border between easy and hard problems is different for quantum computers than
it is for their classical counterparts. Here easy means that the time for solving the
problem grows polynomially with the length of the input data (like for the problem
of multiplying two numbers), whereas hard problems are those for which the required
time grows exponentially. Prominent examples for hard problems are the travelling
salesman problem, the graph isomorphism problem, and the problem of factoring a
number into primes1. For the latter it was, to the surprise of all, shown by Peter Shor
in 1994 that it could efficiently be solved by a quantum computer in polynomial time.
Hence, a problem which is hard for any classical computer becomes easy for quantum
computers2. Shor’s result gets even more brisance from the fact that the security of
public key encryption, i.e., the security of home banking and any other information
transfer via the internet, is heavily based on the fact that factoring is a hard problem.

One might think that the cost for the gained exponential speedup in quantum com-
puters is an exponential increase of the required accuracy for all the involved opera-

1These problems are strongly believed to be hard (the same is by the way true for a special instance
of the computer game “minesweeper”). However, in all cases there is no proof that a polynomial-time
algorithm can not exist. The question whether there exists such an algorithm (for the travelling salesman or

the minesweeper problem) is in fact the notorious P ?
= NP question for whose solution there is even a prize

of one million dollar.
2In fact Shor’s algorithm strikes the strong Church-Turing thesis, which states that every reasonable

physical computing device can be simulated on a probabilistic Turing machine with at most polynomial
overhead.

5

6 CHAPTER 8. ELEMENTS OF QUANTUM COMPUTING

tions. This would then be reminiscent of the drawback of analogue computers. For-
tunately, this is not the case and a constant accuracy is sufficient. However, achieving
this “constant” is without doubt experimentally highly challenging3

8.1.2 Quantum systems can simulate other quantum systems
Nature provides many fascinating collective quantum phenomena like superconductiv-
ity, magnetism and Bose-Einstein condensation. Although all properties of matter are
described by and can in principle be determined from the laws of quantum mechanics,
physicists have very often serious difficulties to understand them in detail and to pre-
dict them by starting from fundamental rules and first principles. One reason for these
difficulties is the fact that the number of parameters needed to describe a many-particle
quantum system grows exponentially with the number of particles. Hence, comparing
a theoretical model for the behavior of more than, say, thirty particles with experimen-
tal reality is not possible by simulating the theoretical model numerically on a classical
computer without making serious simplifications. When thinking about this problem
of simulating quantum systems on classical computers Richard Feynman came in the
early eighties to the conclusion that such a classical simulation typically suffers from
an exponential slowdown, whereas another quantum system could in principle do the
simulation efficiently with bearable overhead

In this way, a quantum computer operated as a quantum simulator could be used
as a link between theoretical models which are formulated on a fundamental level and
experimental observations. Similar to Shor’s algorithm a quantum simulator would
yield an exponential speedup compared to a classical computer. An important differ-
ence between these two applications is, however, that a useful Shor-algorithm quantum
computer requires thousands of qubits whereas a few tens of qubits could already be
useful for the simulation of quantum systems.

8.1.3 Moore’s law has physical limits
Apart from the computational power of a quantum computer there is a much more banal
argument for incorporating quantum mechanics into computer science: Moore’s law.
In 1965 Intel co-founder Gordon Moore observed an exponential growth in the number
of transistors per square inch on integrated circuit and he predicted that this trend would
continue. In fact, since then this density has doubled approximately every 18 months4.
If this trend continues then around the year 2020 the components of computers are at
the atomic scale where quantum effects are dominant. We have thus to inevitably cope
with these effects, and we can either try to circumvent and eliminate them as long as
this is possible and keep on doing classical computing or we can at some point try to
make use of them and start doing quantum computing.

3Note that the beginning of this chapter is largely taken from a review article of mine on quantum com-
puting.

4Actually, not every prediction of the pioneers in computer business was that foresighted: In 1943
Thomas Watson, chairman of IBM, for instance predicted a world market for five computers and in 1977
Digital Equipment Corp. founder Ken Olson stated that “there is no reason anyone would want a computer
in their home”.

8.2. FROM CLASSICAL TO QUANTUM COMPUTING 7

8.1.4 Even small quantum circuits may be useful
Besides the quantum computer with its mentioned applications quantum information
science yields a couple of other useful applications which might be easier to realize.
The best example is quantum cryptography which enables one to transmit information
with “the security of nature’s laws”. However, small building blocks of a quantum
computer, i.e., small quantum circuits may be useful as well. One potential application
is for instance in precision measurements like in atomic clocks. The latter are impor-
tant in global positioning systems as well as in synchronizing networks and distant
telescopes. By generating quantum correlations between the N relevant atoms in the
atomic clock, a quantum circuit could in principle reduce the uncertainty of the clock
by a factor

√
N . Another application of small quantum circuits is entanglement distil-

lation: in order to distribute entangled states over large distances we have to send them
through inevitably noisy channels, thereby loosing some of the entanglement. Fortu-
nately, however, we can in many cases distill a few highly entangled states out of many
weakly entangled ones.

8.2 From classical to quantum computing
Let us now have a closer look at the way a quantum computer works. We will do so by
comparing the concepts of classical computing with the basics of quantum computing.
In fact, many classical concepts have very similar quantum counterparts, like bits be-
come qubits and still the logic is often best explained within a circuit model. However,
there are also crucial differences, which we will describe on the following pages.

8.2.1 Qubits and quantum parallelism
We have already see that the elementary information carriers in a quantum computer
are the qubits – quantum bits. In contrast to classical bits which take on either the
value zero or one, qubits can be in every superposition of the state vectors |0〉 and |1〉.
This means that the vector |ψ〉 describing the state vector of the qubit can be any linear
combination

|ψ〉 = α|0〉+ β|1〉 (8.1)

of the vectors |0〉 and |1〉 with complex coefficients α and β. In the same way a system
of many qubits can be in a superposition of all classically possible states

|0, 0, . . . , 0〉+ |1, 0, . . . , 0〉+ . . .+ |1, 1, . . . , 1〉 . (8.2)

The basis {|0, 0, . . . , 0〉, |0, 1, . . . , 0〉, . . . , |1, 1, . . . , 1〉} that corresponds to the binary
words of length n in a quantum system of n qubits is called the computational basis5.

Using the superposition of Eq. (8.2) as an input for an algorithm means somehow
to run the computation on all classically possible input states at the same time. This
possibility is called quantum parallelism and it is certainly one of the reasons for the

5In finite-dimensional quantum systems as we encounter here the computational basis spans the Hilbert
space associated with the physical system.

8 CHAPTER 8. ELEMENTS OF QUANTUM COMPUTING

computational power of a quantum computer. The mathematical structure behind the
composition of quantum systems is the one of the tensor product. This implies that the
dimension of the space characterizing the system grows exponentially with the number
of qubits. A Physically, qubits correspond to effective two-level systems like ground
state and excited state of an atom, the polarization degree of freedom of light or up-and
down orientation of a spin-1/2 particle.

8.2.2 Read out and probabilistic nature of quantum computers
An important difference between classical and quantum computers lies in the read-out
process. In the classical case there is not much to say: the output is a bit-string which is
obtained in a deterministic manner, i.e., repeating the computation will lead to the same
output again6. However, due to the probabilistic nature of quantum mechanics, this is
different for a quantum computer. If the output of the computation is for instance the
state vector |ψ〉 in Eq. (8.1), α and β cannot be determined by a single measurement
on a single specimen. In fact, |α|2 and |β|2 are the probabilities for the system to be
found in |0〉 and |1〉 respectively. Hence, the absolute values of these coefficients can
be determined by repeating the computation, measuring in the basis |0〉, |1〉 and then
counting the relative frequencies. The actual outcome of every single measurement is
thereby completely indetermined. In the same manner, the state of a quantum system
consisting of n qubits can be measured in the computational basis, which means that the
outcome corresponding to some binary word occurs with the probability given by the
square of the absolut value of the respective coefficient. So in effect, the probabilistic
nature of the read out process on the one hand and the possibility of exploiting quantum
parallelism on the other hand are competing aspects when it comes to comparing the
computational power of quantum and classical computers.

8.2.3 The circuit model and universal quantum gates
A classical digital computer operates on a string of input bits and returns a string of
output bits. The function in between can be described as a logical circuit build up out of
many elementary logic operations. That is, the whole computation can be decomposed
into an array of smaller operations – gates – acting only on one or two bits like the
AND, OR and NOT operation. In fact, these three gates together with the COPY (or
FANOUT) operation form a universal set of gates into which every well-defined input-
output function can be decomposed. The complexity of an algorithm is then essentially
the number of required elementary gates, resp. its asymptotic growth with the size of
the input.

The circuit model for the quantum computer is actually very reminiscent of the
classical circuit model: of course, we have to replace the input-output function by a
quantum operation mapping quantum states onto quantum states. It is sufficient to
consider operations only that have the property to be unitary, which means that the
computation is taken to be logically reversible. In turn, any unitary operation can be

6Within the circuit model described above this is a trivial observation since all the elementary gates are
deterministic operations. Note that even probabilistic classical algorithms run essentially on deterministic
grounds.

8.2. FROM CLASSICAL TO QUANTUM COMPUTING 9

decomposed into elementary gates acting only on one or two qubits. A set of elemen-
tary gates that allows for a realization of any unitary to arbitrary approximation is again
referred to as being universal.

Universal gate set: A set of unitaries S is called a universal gate set on n qubits,
if for an arbitrary ε > 0 there exists a composition of gates S supported on a finite
subset of qubits each so that the circuit V generated in this way satisfies

‖U − V ‖ < ε, (8.3)

where ‖.‖ is the operator norm.

The operator norm is nothing but the largest singular value. An important exam-
ple of a set of universal gates is in this case any randomly chosen one-qubit rotation
together with the CNOT (Controlled NOT) operation, which acts as

|x, y〉 7→ |x, y ⊕ x〉 , (8.4)

where ⊕ means addition modulo 2.

Like in the classical case there are infinitely many sets of universal gates. Notably,
also any generic (i.e., randomly chosen) two-qubit gate (together with the possibility
of switching the leads in order to swap qubits) is itself a universal set, very much like
the NAND gate is for classical computing7. Notably, any quantum circuit that makes

7Any such generic quantum gate has so-called entangling power, in that it may transform a product
state vector into one that can no longer be written as a tensor product. Such quantum mechanical pure
states are called entangled. In intermediate steps of a quantum algorithm the physical state of the system
is in general highly multi-particle entangled. In turn, the implementation of quantum gates in distributed
quantum computation requires entanglement as a resource.

10 CHAPTER 8. ELEMENTS OF QUANTUM COMPUTING

use of a certain universal set of quantum gates can be simulated by a different quantum
circuit based on another universal set of gates with only polylogarithmic overhead.

A particularly useful single-qubit gate is the Hadamard gate, acting as

|0〉 7→ H|0〉 = (|0〉+ |1〉)/
√
2, |1〉 7→ H|1〉 = (|0〉 − |1〉)/

√
2. (8.5)

Another quantum gate often considered is the quantum Toffoli gate. It is a three
qubit analog of the CNOT gate, acting as

|a, b, c〉 7→ |a, b, c⊕ ab〉 . (8.6)

Remarkable, the Toffoli gate and the Hadamard gate together constitute a universal
gate set. That is to say, one can approximate an abitrary single-qubit rotation by means
of a suitable circuit consisting of Hadamard and Toffoli gates only, which seems highly
counter-intuitive.

The SWAP gate exchanges two qubits in their quantum state. Interestingly, it has
maximum entangling power, if one things about it. It can be written in terms of three
CNOT gates.

A phase gate does nothing but multiplying one of the basis vectors with a phase,

|0〉 7→ |0〉, |1〉 7→ i|1〉, (8.7)

and a Pauli gate corresponds to one of the three unitary Pauli matrices,

|ψ〉 7→ X|ψ〉, (8.8)
|ψ〉 7→ Y |ψ〉, (8.9)
|ψ〉 7→ Z|ψ〉. (8.10)

8.3. GOTTESMAN-KNILL AND SOLOVAY-KITAEV THEOREMS 11

8.3 Gottesman-Knill and Solovay-Kitaev theorems

8.3.1 Clifford operations
The CNOT, the Hadamard, the phase gate, and the Pauli gate are quantum gates of
utmost importance. Given their key status in many quantum algorithms, one might be
tempted to think that with these ingredients alone (together with measurements of Pauli
operators, see below), powerful quantum algorithms may be constructed that outper-
form the best known classical algorithm to a problem. This intuition is yet not correct:
it is the content of the Gottesman-Knill theorem that any quantum circuit consisting of
only these ingredients can be simulated efficiently on a classical computer. The proof
of the Gottesman-Knill-theorem is deeply rooted in the stabilizer formalism that we
will encounter later in the context of quantum error correction.

Pauli group: The Pauli group G1 on one qubit is the 16 element group defined by
the Pauli operators together with prefactors ±1 and ±i, i.e.,

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}, (8.11)

The Pauli group on n qubits Gn is the group generated by the operators described
above applied to each of qubits inH = (C2)⊗n.

Closely related to the Pauli group is the normalizer of the Pauli group, the so-called
Clifford group.

Clifford group: The n-qubit Clifford group Cn is the normalizer (up to complex
phases) of the Pauli group Gn, i.e.,

Cn = {U : UGnU† ⊂ Gn}/U(1). (8.12)

Clifford operations, so the operations associated with Clifford unitaries, are ex-
tremely important in quantum information theory. Since they map Pauli operators onto
Pauli operators, they can be efficiently described, even though they can be used to
generate multipartite entanglement.

Gottesman-Knill theorem: Clifford circuits can be classically efficiently simu-
lated, i.e., in polynomial time.

12 CHAPTER 8. ELEMENTS OF QUANTUM COMPUTING

8.3.2 The Solovay-Kitaev-theorem
An important theorem in this context is the Solovay-Kitaev-theorem. It basically states
that if a set of single-qubit quantum gates generates a dense subset of SU(2) then that
set is guaranteed to fill SU(2) quickly, which means any desired gate can be approxi-
mated by a fairly short sequence of gates from the generating set.

Solovay-Kitaev-theorem: Let G be a finite set of elements in SU(2) containing its
own inverses (so that g ∈ G implies that g−1 ∈ G and such that the group 〈G〉 is
dense in SU(2). Consider some ε > 0. Then there is a constant c such that for any
U ∈ SU(2), there is a sequence S of quantum gates from G of lengthO(log c(1/ε))
such that ‖S − U‖ ≤ ε. That is, S approximates U in operator norm error.

8.3.3 How to program a quantum computer?
The good thing about the classical computer on which this chapter has been written
is that it is programmable. It is a single device capable of performing different opera-
tions depending on the program it is given: word processing, algebraic transformations,
displaying movies, etc.. To put it in more abstract words a classical computer is a uni-
versal gate array: we can program every possible function with n input and n output
bits by specifying a program of length n2n. That is, a fixed circuit with n(1 + 2n)
input bits can be used in order to compute any function on the first n bits in the register.
Is the same true for quantum computers? Or will these devices typically be made-to-
measure with respect to a single task? Nielsen and Chuang have shown that quantum
computers cannot be universal gate arrays. Even if the program is itself given in form
of a quantum state it would require a program register of infinite length in order to
perform an arbitrary (unitary) operation on a finite number of qubits – universality was
shown to be only possible in a probabilistic manner. In this sense, quantum computers
will not be the kind of all purpose devices which classical computers are. In practice,
however, any finite set of quantum programs can run on a quantum computer with a
finite program register. This issue applies, however, to the programming of a quantum
computer with a fixed hardware, which is, needless to say, still in the remote future as
a physical device.

