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1. Tensor products
The configuration space of a quantum system with multiple degrees of freedom is de-
scribed by the tensor product of the Hilbert spaces of each degree of freedom. In the
following exercise we will familiarise ourselves with the construction of tensor product
spaces.

Let H1 and H2 be Hilbert spaces with basis B1 = {|i〉1}di=1 and B2 = {|j〉2}Di=1,
respectively. One can construct a new vector space H1 ⊗H2 by using the set of tuples
B1×B2 = {(|i〉1 , |j〉2) : |i〉1 ∈ B1, |j〉2 ∈ B2} as a basis. The basis elements (|i〉1 , |j〉2)
are also typically denoted by |i〉 |j〉, |i, j〉 or |i〉⊗|j〉. The last notation can be extended
to a bilinear composition ⊗ : H1 ×H2 → H1 ⊗H2 by defining

|ψ〉 ⊗ |φ〉 :=
d∑

i=1

D∑
j=1

〈i|ψ〉 〈j |φ〉 |i, j〉 . (1)

a) What is the dimension of the vector space H1⊗H2? What is the Hilbert space of
a system of n spin-1/2 particles? What is its dimension?

b) Show that the operation ⊗ : H1 ×H2 → H1 ⊗H2 defined above is bilinear.

c) Is ⊗ : H1 ×H2 → H1 ⊗H2 surjective? (Please argue.)

d) Show that the following identities hold for all operators A,B,C : H1 → H1 and
vectors |φ〉 , |ψ〉 ∈ H1:

(i) (A⊗B)(|φ〉 ⊗ |ψ〉) = (A |φ〉)⊗ (B |ψ〉)
(ii) (A⊗B)(C ⊗D) = (AC)⊗ (BD)

2. Pauli matrices and the Bloch sphere
The Pauli matrices are one of the most ubiquitous objects in quantum mechanics. They
act on the simplest non-trivial Hilbert space H = C2.

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

In this exercise we want to recap their properties.

a) Show that these matrices mutually anticommute, i.e. AB = −BA and that all of
them square to the identity.

b) Explicitly compute the 4 × 4 matrices X ⊗X, Z ⊗ Z, X ⊗ Y and Y ⊗X in the
tensor product basis.

c) Can you express the product XZ again as a Pauli matrix?

We now want to use Pauli matrices to study the space of all qubit observables: the
hermitian matrices h(C2). This space is canonically equipped with the Hilbert-Schmidt
inner product

〈A,B〉 := Tr(AB†).

The norm that is defined by this product is also called Frobenius norm. Both will
constant companions in this course.
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d) Show that with respect to this inner product that the Pauli matrices together with
the identity form an orthogonal basis for h(C2).

e) Find the normalized version of this basis with respect to the Frobenius norm.

Recall that a density matrix ρ is a hermitian operator with all positive eigenvalues such
that Tr(ρ) = 1. We restrict ourselves – for now – to the qubit case.

f) You have shown that the Paulis with the identity form a basis of the hermitian
matrices. Prove that, in this basis, the set of density matrices is described by a
unit ball B1(0) = {(a, b, c) ∈ R3; a2 + b2 + c2 ≤ 1} (called Bloch sphere).

g) Where do the pure states (ρ = |ψ〉〈ψ|) live in this ball? Which point corresponds
to the maximally mixed state (ρ = 1/2)?

3. Beam splitters and interferometers
In this exercise we consider a simple model of an interferometer. A key ingredient
for most interferometers is a beam splitter, an optical device with two inputs and two
outputs. An arbitrary input state as well as the corresponding output state can be
modelled as a quantum state in H = C2. A proper quantum beam splitter is modelled
by a linear, unitary operator on the above Hilbert space such that the transmitted,
respectively reflected, output state is measured with a certain probability p. Moreover,
we assume that it acts the same on both input basis states.

a) Confirm that a 50:50 beam splitter (reflecting and transmitting each basis state
with the same probability of 1/2) is described by the matrix

S =
1√
2

(
1 i
i 1

)
.

In the following we will consider such a 50:50 beam splitter if not stated otherwise. One
only needs two beam splitters to build a simple interferometer. For example, consider
a source that outputs a pure quantum state which we denote by |0〉. This state is then
inputted into a beam splitter, creating a superposition of the two orthogonal output
states. These two output states are then fed into a second beam splitter as inputs.

b) Calculate the probabilities that each of the output states of the second beam
splitter is detected.

Now assume that we repeat this construction, namely we keep adding beam splitters
that each take the output state of the preceding one as their inputs.

c) Calculate the detection probabilities of the output states of such an interferometer
with N beam splitters, where N ∈ N.

d) Let us go back to the orignial interferometer consisting of two beam splitters.
What changes if we block one of the two intermediate paths, i.e. only one of the
outputs of the first beam splitter reaches the second one?

Let us now consider more general beam splitters.

e) Construct a matrix S̃(p) that models an antisymmetric beam splitter in the sense
that each input basis state gets transmitted with a probability p instead of 1/2.
Would it be possible to have a beam splitter whose transmission probability de-
pends on the input state? If yes, how would the corresponding matrix look like?
Hint: Recall that any closed system quantum dynamics is unitary.
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