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1. On the Kraus representation of quantum channels
The operational meaning of Kraus operators can be understood in the following set-
ting in which, for simplicity, we restrict ourselves to quantum channels with the same
input and output space L(X ). Suppose we apply a unitary U to the joint system and
environment in the state ρ⊗|0〉〈0| ∈ L(X ⊗Z), where |0〉 ∈ Z is some reference state,
and then we measure system Z in the computational basis.

a) Show that the action of the unitary on the joint system can be written as

U(ρ⊗ |0〉〈0|)U † =
∑
kl

EkρE
†
l ⊗ |k〉 〈l| ,

with respect to the basis {|i〉}i on the second system.

b) Now, we perform a von-Neumann measurement on Z in the same basis. Determine
the post-measurement state conditioned on outcome i. What is the probability of
obtaining outcome i?

c) Give the corresponding operational interpretation of the Kraus operators Ek and
the unitary U .

d) Now, suppose we want to implement a von-Neumann measurement on X via a
global unitary and a von-Neumann measurement on Z. Characterize the unitaries
U ∈ U(X ⊗Z) on the joint system that give rise to this situation. Give an example
for the case of two qubits.

Finally, we will show some properties of the Kraus representation

e) Let {Ki}Ni=1 and {K̃j}Ni=1 be two sets of linear operators in L(X ,Z) fulfilling the
completeness relation of Kraus operators. Show that if the two sets are related
by a unitary transformations U ∈ U(N) such that K̃i =

∑
j UijKj, the channels

represented by the sets coincide.

f) Show that all equal-sized Kraus representations of a given channel T are related
via a unitary transformation.

Hint: Relate the Kraus representation of two low-rank matrix factorisations of the
Choi matrix.

2. `p-norms
In quantum information we deal with a handful of different matrix spaces such as the
set of quantum states and also quantum channels. For quantitative statements we
have to equip these spaces with distance measures. Depending on the application and
context different distance measures have the desired operational meaning.

A prominent role is played by the so called Schatten p-norms. But to set the stage we
have to first familiarise ourself with their analogons on vector spaces, namely `p-norms.
For 1 ≤ p <∞ the `p-norm on the complex vector space Cn is defined as

|| • ||`p : x 7→ ||x||`p :=

(
n∑

i=1

|xi|p
) 1

p

,
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and the `∞-norm as

|| • ||`∞ : x 7→ ||x||`∞ := lim
p→∞
|| • ||`p .

We will now characterise the function ||•||`p and derive important properties. We begin
with an explicit expression for the `∞-norm.

a) Show that ||x||`∞ = max1≤i≤n |xi|.
For all of what follows the notion of a convex function will be important. Let D ⊂ R
be a convex set. We say that a function f : D → R is convex if

f

(∑
i

aixi

)
≤
∑
i

aif(xi),

for all xi ∈ D and ai ≥ 0, i = 1, . . . ,m such that
∑

i ai = 1.

b) Show that any twice continuously differentiable function on an open interval is
convex if and only if its second derivative is everywhere nonnegative.

c) Show that | • |p is a convex function for p ≥ 1.

We will now use this fact to show that || • ||`p is a norm (positive definite, absolutely
homogeneous, subadditive aka triangle inequality).

d) Argue that || • ||`p is positive definite and absolutely homogeneous for 1 ≤ p <∞
and p =∞.

That was easy. Now comes the hard part; we have to show that the norms satisfy the
triangle inequality, i.e.

||x+ y||`p ≤ ||x||`p + ||y||`p . (1)

In fact, the triangle inequality for `p-norms has even its own name, Minkowski inequal-
ity. A clever way to prove this inequality is to normalise the right hand side, introduce
normalised vectors and then use the convexity of | · |p.

e) Argue that it is sufficient to consider the case ||x||`p = λ and ||y||`p = (1−λ) with
λ ∈ (0, 1) in order to prove the Minkowski inequality.

f) Show the Minkowski inequality for the `p-norms when 1 ≤ p <∞.

A crucial property of the `p-norms is Hölder’s inequality. It generalises the Cauchy-
Schwarz inequality, which is its special case for p = 2. Let 〈·, ·〉 be the Euclidean inner
product on Cn, i.e. 〈x, y〉 =

∑n
i=1 x̄iyi with ·̄ denoting the complex conjugate. Hölder’s

inequality reads

|〈x, y〉| ≤ ||x||`p||y||`q , where
1

p
+

1

q
= 1.

Like for the proof of Minkowski’s inequality, it will be useful to use normalised vectors
in the proof of Hölder’s inequality. Furthermore, we will need to first establish the
arithmetic-geometric mean inequality

n∏
i=1

xaii ≤
n∑

i=1

aixi if xi ≥ 0, ai ≥ 0,
∑
i

ai = 1. (2)

g) Show that − log is a convex function and use this to show the arithmetic-geometric
mean inequality, Eq. (2).

h) Now, prove Hölder’s inequality for 1 < p <∞.
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i) Finally, prove Hölder’s inequality for p = 1.

More generally, for a norm ‖ · ‖ on Cd one can define its dual norm ‖ · ‖∗ as

‖x‖∗ := sup
y∈Cd,‖y‖=1

|〈x, y〉|. (3)

j) Show that for every norm ‖ · ‖ on Cd it holds:

|〈x, y〉| ≤ ‖x‖‖y‖∗ (4)

for all x, y ∈ Cd.

k) Show that the dual norm || • ||∗`p of the `p-norm || • ||`p is the `q-norm || • ||`q with
1
p

+ 1
q

= 1.

Finally, we will show another convenient property of the `p norms.

l) Show that the `p norms are ordered in the sense that

||x||`p ≤ ||x||`q , for q ≤ p.
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