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1. Equivalence between representations of quantum channels
Let us first show that the Choi-Jamio lkowski map J : L(L(X ), L(Y))→ L(Y ⊗X ) is a
linear bijection between the CPT maps on the one hand and the set of quantum states
on Y ⊗ X with partial-trace over Y being maximally mixed on the other hand.

a) Show that the inverse map can be defined by T̃ (X) = TrX [J(T )(1Y ⊗ XT )] and
makes J a bijection as described above.

Let ρT ∈ Y⊗X be the Choi-Jamio lkowski state corresponding to the quantum channel
T .

b) Determine a set of Kraus operators representing T .

c) Determine a unitary UT representing T via the Stinespring representation.

Now, let UT be a unitary representing T in the Stinespring representation.

d) Determine the Choi-Jamio lkowski state representing T .

The rank of a quantum channel is defined as the rank of its Choi matrix.

e) Show that a quantum channel with rank r can be represented as a Stinespring
dilation using an auxiliary system of dimension r.

2. Examples of quantum channels
Now we are ready to look at some examples of quantum channels acting on qubits, i.e.,
H = C2 . The following maps are important so-called noise channels

Fε(A) := εXAX + (1− ε)A

Dε(A) := εTr[A]
1
d

+ (1− ε)A

Aε(A) := εTr[A] |0〉〈0|+ (1− ε)A,

where ε ∈ [0, 1].

a) For each channel, show that it is CPT.

b) For each channel, give its Choi-Jamio lkowski state, a Kraus representation and a
Stinespring representation.

Hint: It may help to consider ε = 1 in a first step and then generalize to arbitrary
ε ∈ [0, 1].

c) Give a physical interpretation and a good name for each channel.

3. Schatten p-norms
On the last excercise sheet we have studied the `p-norms on vector spaces. The `p-
norms have important cousins on matrix spaces, the Schatten p-norms. As they are
important distant measures in quantum information, we study there different definitions
and properties in this excerice.

One way to introduce the Schatten p-norm with p ∈ [1,∞) for a matrix A ∈ Cn×n is

||A||p := (Tr [|A|p])
1
p , (1)
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where |A| :=
√
A†A is the matrix absolute value. Furthermore, the case p = ∞ is

defined as the limit ||A||∞ = limp→∞||A||p.
These norms are related to the `p-norms of the eigenvalues (or more generally the
singular values) of A.

a) Let A be a Hermitian matrix and let λ = (λ1, . . . , λn) be the vector of its eigen-
values. Show that

||A||p = ||λ||`p (2)

for all p.

With this characterisation we have also established that the Schatten p-norms are
invariant under unitary transformations.

b) Give the statement and proof for the Hölder inequality for Schatten p-norms.

Hint: Actually, proving the Hölder inequality rigorously involves proving the “von
Neumann-inequality”, which turns out to be quite intricate. In this exercise you
can simply use it:
Let A and B be two matrices and let s(A) and s(B) be the vector of singular values
of A and B, respectively, ordered decreasingly. Then it holds that

|Tr [AB] | ≤ Tr |AB| ≤
∑
i

si(A)si(B). (3)

For a proof (sketch) of this inequality, you can take a look at Bhatia’s book on matrix analysis.

Slightly more direct proofs using doubly stochastic matrices were worked out by Mirsky. A more

elementary proof was given R. D. Grigorieff in a note in ’92. You can find it on his webpage.

The most important Schatten p-norms have other interesting expressions:

c) Show that the Schatten 2-norm or Frobenius norm fulfils

||A||22 =
n∑

i,j=1

|Aij|2. (4)

In general, one can define the operator norms induced by the `p-norms:

||A||`p→`q = sup
||x||`p=1

||Ax||`q . (5)

d) What is the Schatten p-norm equal to ||·||`2→`2?
Another important properties of Schatten p-norms is sub-multiplicativity, ||AB||p ≤
||A||p||B||p for all p and A,B ∈ Cn×n. Sometimes the term matrix norm is exclusively
used for sub-multiplicative norms on matrix spaces.

e) Show the sub-multiplicativity of the Schatten p-norms.
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