Freie Universität Berlin **Tutorials on Quantum Information Theory** Winter term 2020/21

Problem Sheet 5 Channel representations and Norms for matrices part II

J. Eisert, J. Haferkamp, J. C. Magdalena De La Fuente

1. Equivalence between representations of quantum channels

Let us first show that the Choi-Jamiołkowski map $J : L(L(\mathcal{X}), L(\mathcal{Y})) \to L(\mathcal{Y} \otimes \mathcal{X})$ is a linear bijection between the CPT maps on the one hand and the set of quantum states on $\mathcal{Y} \otimes \mathcal{X}$ with partial-trace over \mathcal{Y} being maximally mixed on the other hand.

a) Show that the inverse map can be defined by $\tilde{T}(X) = \text{Tr}_{\mathcal{X}}[J(T)(\mathbb{1}_{\mathcal{Y}} \otimes X^T)]$ and makes J a bijection as described above.

Let $\rho_T \in \mathcal{Y} \otimes \mathcal{X}$ be the Choi-Jamiołkowski state corresponding to the quantum channel T.

- b) Determine a set of Kraus operators representing T.
- c) Determine a unitary U_T representing T via the Stinespring representation.

Now, let U_T be a unitary representing T in the Stinespring representation.

d) Determine the Choi-Jamiołkowski state representing T.

The rank of a quantum channel is defined as the rank of its Choi matrix.

e) Show that a quantum channel with rank r can be represented as a Stinespring dilation using an auxiliary system of dimension r.

2. Examples of quantum channels

Now we are ready to look at some examples of quantum channels acting on qubits, i.e., $\mathcal{H}=\mathbb{C}^2$. The following maps are important so-called noise channels

$$\begin{split} F_{\epsilon}(A) &\coloneqq \epsilon X A X + (1-\epsilon) A \\ D_{\epsilon}(A) &\coloneqq \epsilon \operatorname{Tr}[A] \frac{1}{d} + (1-\epsilon) A \\ A_{\epsilon}(A) &\coloneqq \epsilon \operatorname{Tr}[A] |0\rangle \langle 0| + (1-\epsilon) A, \end{split}$$

where $\epsilon \in [0, 1]$.

- a) For each channel, show that it is CPT.
- b) For each channel, give its Choi-Jamiołkowski state, a Kraus representation and a Stinespring representation.

Hint: It may help to consider $\epsilon = 1$ in a first step and then generalize to arbitrary $\epsilon \in [0, 1]$.

c) Give a physical interpretation and a good name for each channel.

3. Schatten *p*-norms

On the last excercise sheet we have studied the ℓ_p -norms on vector spaces. The ℓ_p norms have important cousins on matrix spaces, the Schatten *p*-norms. As they are important distant measures in quantum information, we study there different definitions and properties in this excerice.

One way to introduce the Schatten *p*-norm with $p \in [1, \infty)$ for a matrix $A \in \mathbb{C}^{n \times n}$ is

$$||A||_p \coloneqq \left(\operatorname{Tr}\left[|A|^p\right]\right)^{\frac{1}{p}},\tag{1}$$

where $|A| \coloneqq \sqrt{A^{\dagger}A}$ is the matrix absolute value. Furthermore, the case $p = \infty$ is defined as the limit $||A||_{\infty} = \lim_{p \to \infty} ||A||_p$.

These norms are related to the ℓ_p -norms of the eigenvalues (or more generally the singular values) of A.

a) Let A be a Hermitian matrix and let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be the vector of its eigenvalues. Show that

$$||A||_p = ||\lambda||_{\ell_p} \tag{2}$$

for all p.

With this characterisation we have also established that the Schatten p-norms are invariant under unitary transformations.

b) Give the statement and proof for the Hölder inequality for Schatten *p*-norms.

Hint: Actually, proving the Hölder inequality rigorously involves proving the "von Neumann-inequality", which turns out to be quite intricate. In this exercise you can simply use it:

Let A and B be two matrices and let s(A) and s(B) be the vector of singular values of A and B, respectively, ordered decreasingly. Then it holds that

$$|\operatorname{Tr}[AB]| \le \operatorname{Tr}|AB| \le \sum_{i} s_i(A)s_i(B).$$
(3)

For a proof (sketch) of this inequality, you can take a look at Bhatia's book on matrix analysis. Slightly more direct proofs using doubly stochastic matrices were worked out by Mirsky. A more elementary proof was given R. D. Grigorieff in a note in '92. You can find it on his webpage.

The most important Schatten *p*-norms have other interesting expressions:

c) Show that the Schatten 2-norm or Frobenius norm fulfils

$$||A||_2^2 = \sum_{i,j=1}^n |A_{ij}|^2.$$
(4)

In general, one can define the operator norms induced by the ℓ_p -norms:

$$||A||_{\ell_p \to \ell_q} = \sup_{||x||_{\ell_p} = 1} ||Ax||_{\ell_q}.$$
(5)

d) What is the Schatten *p*-norm equal to $||\cdot||_{\ell_2 \to \ell_2}$?

Another important properties of Schatten *p*-norms is sub-multiplicativity, $||AB||_p \leq ||A||_p ||B||_p$ for all p and $A, B \in \mathbb{C}^{n \times n}$. Sometimes the term matrix norm is exclusively used for sub-multiplicative norms on matrix spaces.

e) Show the sub-multiplicativity of the Schatten *p*-norms.