
Freie Universität Berlin
Tutorials on Quantum Information Theory

Winter term 2020/21

Problem Sheet 7
Quantum Shannon Theory and Key Distribution

J. Eisert, J. Haferkamp, J. C. Magdalena De La Fuente

1. On Shannon entropy...

To begin with let us first show some simple properties of entropies, in particular, of the
mutual information.

Recall the definition of the Shannon entropies for random variables X, Y which take
values in X ,Y and are distributed according to probability distributions p, q over X
and Y , respectively.

(1)H(X) = −
∑
x∈X

p(x) log p(x) (Shannon entropy) (1)

(2)H(X|Y ) = H(X, Y )−H(Y ) =
∑
x∈X

p(x)H(Y |X = x) (Conditional entropy)

(2)

(3) I(X : Y ) = H(Y )−H(Y |X) (Mutual information) (3)

a) Show that 0 ≤ H(X) ≤ log |X |, where the first equality holds iff there is an x ∈ X
for which p(x) = 1 and the second inequality holds iff p(x) = 1/|X | for all x.

b) Show that the Shannon entropy is subadditive, i.e., that H(X, Y ) ≤ H(X)+H(Y ).

Hint: Show that H(X, Y )−H(X)−H(Y ) ≤ 0 using that log2 x ln 2 = lnx ≤ x−1.

c) Show that H(Y |X) ≥ 0 and hence I(X : Y ) ≤ H(Y ) with equality if and only if
Y is a (deterministic) function of X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x)

d) Show that H(Y |X) ≤ H(Y ) and hence that I(X : Y ) ≥ 0 with equality if and
only if X and Y are independent random variables.

2. ... and the von-Neumann entropy

For any state ρ ∈ D(H) with dimH = d the von-Neumann entropy is defined as
S(ρ) = −Tr(ρ log ρ).

a) Show that 0 ≤ S(ρ) with equality if and only if ρ is pure. (One can also show the
upper bound S(ρ) ≤ log d.)

b) Show that the von-Neumann entropy is subadditive in the sense that if two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B).

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum
state σ.

c) Suppose that p = (pi)i is a probability vector and the states ρi are mutually
orthogonal. Show that

S

(∑
i

piρi

)
= H(p) +

∑
i

piS(ρi).
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and use this result to infer that

S

(∑
i

piρi ⊗ |i〉〈i|

)
= H(p) +

∑
i

piS(ρi),

where 〈i|j〉 = δij and the ρi are arbitrary quantum states.

d) Use the results from (b) and (c) to infer that the von-Neumann entropy S is
concave.

3. Classical capacities of quantum channels
Although this exercise might look very long, it isn’t. In the next paragraphs we just want
to give you an overview on the formalism introduced in the lecture and needed for this
exercise in a compressed fashion. No need to be intimidated ;)
In the lecture, we saw two alternative characterisations of the classical channel capacity
of a quantum channel E , which is given by the its Holevo-information χ(E). The task
here is to establish the equivalence of these expressions.

To this end, recall the definition of the quantum mutual information of a bi-partite
quantum system in a state ρAB

I(A : B)ρAB
:= S(ρA) + S(ρB)− S(ρAB). (4)

The Holevo information of channel can be defined using the following scheme: Alices
encodes the information of a classical random variable X taking values in X with prob-
ability distribution pX into a quantum state using a set of states {ρx}x∈X . To keep track
of the classical random variable but formulating everything quantum mechanically, we
think of Alice encoding the result in another faithfully register N using orthogonal
basis {|x〉}x∈X . From this notebook register N the classical information of X can be
completely recovered. Altogether, Alice prepares the bi-partite state

ρNA =
∑
x

pX(x) |x〉〈x|N ⊗ ρ
x
A. (5)

Then, the state in system A is sent to Bob using the channel E . Thus, we end up with
a final state shared between Alice’s notebook and Bob

ρNB =
∑
x

pX(x) |x〉〈x|N ⊗ E(ρxA)B. (6)

We can now ask for the mutual information between the variable X encoded in N and
Bob’s output of the channel. Analogously to the classical result, maximizing the mutual
information over all possible input variables X and encodings yields the capacity of the
quantum channel to transmit classical informations, i.e.

χ(E) = max
(X,pX ,{ρx})

I(N,B)ρNA
. (7)

a) Show that

χ(E) = max
(X,pX ,{ρx})

{
S(E(

∑
x

pX(x)ρx))−
∑
x

pX(x)S(E(ρx))

}
. (8)

Remember that Shannon’s noisy channel coding theorem states that the capacity of a
noisy channel T is given by the maximum over all inputs of the mutual information:

C(T ) = max
X,pX

I(X : Y ),

where Y is the random variable describing the output of the channel T with input X.

2



b) Determine the channel capacity of the binary symmetric channel defined by

Pr(0|0) = Pr(1|1) = 1− p
Pr(1|0) = Pr(0|1) = p.

Hint: It may be useful to expand H(Y |X) as
∑

x p(x)H(Y |X = x).

We now want to determine the channel capacity of the binary erasure channel as defined
by

Pr(0|0) = Pr(1|1) = 1− p
Pr(e|0) = Pr(e|1) = p.

c) First, use the expansion H(Y ) = H(Y, Z) = H(E)+H(Y |Z) to show that H(Y ) =
H(p)+(1−p)H(π). Here, we let Z be the random variable distinguishing between
the event E = {Y = e} and ¬E = {Y 6= e}. We have that Pr(Z = E) = p.
Furthermore we call the propability defining the distribution of the input variable
π = Pr(X = 1).

Hint: Use Eq. (2) and Pr(Y = y|Y 6= e) = Pr(X = y).

d) Use this result and proceed analogously to the binary symmetric channel to de-
termine the channel capacity of the erasure channel.

4. Detecting Eve. One key feature of the BB’84 protocol for quantum key distribution
is that Alice and Bob are able to estimate how many bits were corrupted by the channel
or Eve by comparing their results on a subset.

In this excercise, we will prove this statement. More precisely, let Alice and Bob
randomly select n of their 2n bits check for errors. We denote the number of errors in
the test bits by eT and the number of errors in the remaining, untested n bits by eR.
Then, for any δ > 0

p := Pr{eT ≤ δn ∧ eR ≥ (δ + ε)} ≤ exp
[
−O(nε2)

]
. (9)

In other words, the probability that the number of errors in the unknown bits deviati-
ates by more than ε from the observed fraction δ in the test bits gets very small large
n and ε.

We denote the total number of errors that occur in the 2n bits by µn.

a) Argue that

p ≤
(

2n

n

)−1(
µn

δn

)(
(2− µ)n

(1− δ)n

)
δn. (10)

We will need a few identities to massage this term. To this end, let H(p) = −p log2 p−
(1− p) log2(1− p) be the binary entropy.

b) Show that

nH(p) +O(log2 n) ≤ log2

(
n

pn

)
≤ nH(p) +O(log2 n). (11)

Hint: Recall Stirling’s bound
√

2π
√
nnne−n ≤ n! ≤ e

√
nnne−n.

Furthermore, one can derive the following simple bound for the binary entropy H(x) ≤
1 − 2

(
x− 1

2

)2
. (If you are curious, it is a good excercise to use Taylor’s theorem

including an estimate for the remainder to derive this bound.)

c) Plug everything together and show that p ≤ exp [−O(nε2)].
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