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1. Gate teleportation
At the heart of measurement based quantum computing is the principle of gate tele-
portation. A simple version of this can be demonstrated in the following circuit:
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a) In the above circuit we measure one of the registers in the Z eigenbasis. What
is the resulting state on the remaining subsystem depending on the measurement
outcome?

b) Can you generalize this set-up to a ”wire”? That means a measurement based
processed that transports quantum information on a 1D line?

c) Consider a graph state on a 1D line and measure each qubit either in the eigenbasis
of eiφiZXe−iφiZ , where φi ∈ [0, 2π) is drawn uniformly randomly independently for
each qubit. What is the effective circuit acting on the last qubit?

2. Universal Quantum Computation with Cluster States In this exercise we con-
sider the two dimensional cluster state. It lies at the core of measurement based quan-
tum computation (MBQC) because, once prepared, one can perform any quantum
computation on it with single qubit measurements (in various bases!). In this exercise
we will show how an arbitrary quantum operation is performed on such a state by
mapping it to the circuit model, which might be the more intuitive way for you to
understand a quantum computation. But first, let us fix some definitions.

The 2D cluster state is defined by a graph state on a 2D square grid L (see figure
above). This means, we prepare the Lx × Ly qubits in |+〉. At this point, the qubits
are in a simple product state

⊗
i∈L

1
2
(|0〉i + |1〉i). To create the entanglement needed

for any useful quantum computation, CZi,j (controlled Z gate) is applied to every pair
of adjacent qubits (i, j). Any cluster state can be prepared in this way and as we will
for the main part of this exercise work with graph states on different graphs and only
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in the end see how all these can be obtained from the graph state defined on a square
grid.

A probably simpler way to understand a cluster/graph state is by its stabilizers. The
cluster state |L〉 is stabilized by the set of stabilizers (and by all its combinations, i.e.
the group generated by them)

S = {Xa

∏
i∼a

Zi | a ∈ L},

where i ∼ a denotes the set of qubits adjacent to qubit a. In paticular, it holds that
Sa |L〉 = |L〉 ∀Sa ∈ S.

a) Proof that the state prepared with the above procedure is indeed stabilized by S.
Hint: You can use the stabilizer formalism introduced on sheet 9.

In exercise 1 we already saw how an arbitrary 1-qubit gate in SU(2) can be performed
with a one-dimensional graph state.

b) As a recap, construct a protocol to implement a π/2 Z-rotation with the 3-qubit
graph state,

i.e. after all the measurement(s), qubit 3 should be in the state ei
π
2
Z |i〉, where |i〉

is the state into which qubit 1 is prepared in the beginning of the protocol.

In this exercise we will proof how one can perform an entangling gate on a two-
dimensional graph state und with that achieve universality with MBQC on a 2D cluster
state.

c) Consider the following graph state:

Show that the following measurements implement a CNOT gate between the two
input states |ψ〉 and |φ〉 up to local pauli corrections:

Depending on the measurement outcomes, one has to perform Pauli corrections to
obtain the pure CNOT. Which are they?
Hint: There are two ways to proof this. Either, one explicitly calculates the output
of the full circuit corresponding to the preparation and the measurements or one
uses the stabilizer formalism where one only has to keep track how the stabilizers
of the graph state change during the measurements.
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d) Show that all the individual operations introduced until now (one-qubit rotations
and CNOT) compose according to their compostion in the circuit model. What
operation has to be performed on the qubits where the graphs are “stitched to-
gether”?

Until now we have only shown that given a graph state on a graph that already has the
connectivity of the corresponding circuit in the circuit model can simulate the given
circuit. To complete our proof, it remains to be shown that any such state can be
obtained from a 2D cluster state, the graph state on a 2D grid.

e) Show that, given a 2D cluster state, one can “cut out” any 2D network and obtain
the corresponding graph state by single qubit Z measurements on the qubits that
should not participate in the computation.
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