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Review the old exercise sheets and good luck with the exam!

1. 7-qubit (Steane) Code
A convenient class of quantum codes are Calderbank–Shor–Steane (CSS) codes. In
CSS codes, the generators of the stabilizer group (parity check operators) of the code
are pure products of Z or X operators, so they do not contain any mixed terms. which
would be proportional to Y , or even Non-Pauli terms.1 In this exercise we will introduce
and investigate simple properties of the simplest CSS code, the 7-qubit code.
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The 7-qubit codes uses 7 physical qubits to encode logical qubit(s). It is graphically rep-
resented in the figure above. The nodes correspond to the qubits. The structure of the
graph will become clear once we have defined the stabilizer generators {S1, S2, ..., S6}.

qubit 1 2 3 4 5 6 7
S1 Z Z Z Z 1 1 1
S2 1 Z Z 1 Z Z 1
S3 1 1 Z Z 1 Z Z
S4 X X X X 1 1 1
S5 1 X X 1 X X 1
S6 1 1 X X 1 X X

The operators in the table are tensor products of single qubite X or Z operators and
jointly act on the qubits adjacent to each face in the above graph.

a) Show that the stabilizer group S = 〈S1, ..., S6〉 is Abelian. From this follows that
the generators can simultaneously diagonalized. What is the dimensionality k of
each of the eigenspaces?

b) The logical space, the codespace C, is defined by the common +1 eigenspace of all
Si. Write down a basis for that space BC = {|ā〉 | a = 0, ..., k − 1} (which can be
defined as the logical computational basis). Find corresponding logical operators

Z̄ : |a〉 7→ (−1)a |a〉 (1)

X̄ : |a〉 7→
∣∣a⊕ 1

〉
, (2)

where ⊕ denotes binary addition.

1In fact, the X part, as well as the Z part, alone can be viewed as a classical linear code.
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c) What is the distance of the code, i.e. the smallest weight non-trivial logical oper-
ator?
Hint: The logical operators you found before are not unique!

d) (extra exercise) Find an operator implementing the logical Hadamard transforma-
tion. What is special about this operator?
It suffices to consider the stabilizer generators, not the logical basis states.

2. Repetition Code and Toric Code
The repetition code is the simplest classical code one can think of. It uses n bits to
encode 1 logical bit. In the language of stabilizers, it is defined by the generators Si =
ZiZi+1. For simplicity, let us assume periodic boundary conditions, i.e. Sn = ZnZ1. In
the first part of this exercise, we will understand the classical bitstrings as states in a
vector space (just as for quantum codes). For now, you can think of a classical bit as
a qubit we only have access to one basis, e.g. the Z basis.

We can depict the repetition code (with periodic boundary conditions) as a discretized
circle (one-dimensional sphere S1),

In this representation, each node corresponds to a Z-stabilizer and every edge to a
qubit.2

a) What are the classical codewords, corresponding to basis states of the code? Which
type of errors can be detected with this code? What distance would you assign to
it (as a quantum/classical code)?

As you might have noticed already in the stabilizers, we are missing “half” of them,
namely the X stabilizers, to have a proper quantum code. However, we can still use
the above classical code to define a quantum code. This is done by taking a so called
product of two repetition codes, one defined with Z stabilizers and one with Xs at the
same places. Pictorialy, this product reads

× ≈

On the left hand side, we denoted the Z stabilizers in blue and the X stabilizers in red.
On the right hand side, the periodic boundary conditions carry over to two dimensions

2You could also see it the other way around but our convention is better suited for the construction in this exercise.
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and we obtain a cellulation of the two-torus T 2 = S1×S1 which can be seen as a product
space itself. We have yet to figure our how to consistently define the stabilizers on the
torus. It turns out that the picture above is a bit too simplified to see it just from the
right graph. The detailed construction goes beyond of the scope of this exercise but
we hope that you could at least gain an intuition for this product.

The quantum code on one obtains on the right is called the toric code and is one of
the most studied quantum codes today. In the toric code, the qubits are placed on the
edges of a cellulation of a torus (see right). For each vertex v and for each face f of
the cellulation, one defines a stabilizer generator

Sv =
∏
i∼v

Xv and Sp =
∏
i∈∂p

Zi, (3)

called vertex terms and plaquette terms. ∼ denotes “adjacent to” and ∂ the “boundary
of”.

b) Show that S = 〈{Sv, Sp}〉 is Abelian.

c) How many qubits does the toric code encode? What are the logical operators
X and Z? How do I rotate the logical basis, i.e. what operator implements the
Hadamard gate on the codespace?

d) What is the distance of the code?

e) How does a single qubit Pauli error X, respectively Z, affect the eigenstates of the
stabilizers? How can it be detected?
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