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1. Density matrix formulation of Quantum mechanics The basic ingredients of
quantum mechanics are: states, observables and dynamics. In the density matrix for-
mulation we can start from the following (incomplete) postulates:

I.) Each physical system is associated with a topological separable complex Hilbert
space (H, 〈·|·〉). The (mixed) state of a quantum system is described by a
non-negative, self-adjoint (trace-class) linear operator with unit trace, i.e. an
element of D := {ρ ∈ L(H) | ρ = ρ†, ρ ≥ 0, Tr ρ = 1}.
Remark: In quantum information theory, it will be sufficient to consider finite
dimensional Hilbert spaces most of the time. From now on, we will always
assume that Hilbert spaces are finite-dimensional in the tutorials (if not otherwise
stated).

II.) Observables are represented by Hermitian operators on H. The expectation
value of an observable A in the state ρ is given by 〈A〉ρ = Tr(Aρ).

III.) The time-evolution of the state of a quantum system is given by a differential
function ρ : R→ D such that

dρ

dt
= −i[H, ρ],

where H is the observable associated to the total energy of the system.

Let us get some geometrical intuition about the set of quantum states.

a) Show that the set P = {π ∈ L(H) | π = π†, π2 = π, rank π = 1} of orthogonal
projectors onto one-dimensional subspaces of H is a subset of D.

Solution: Let π = UΛU † be the spectral decomposition of π with Λ = diag(λ1, . . . , λd).
Then, π2 = π implies that λi = λ2

i and, hence, λi ∈ {0, 1} for all i. Thus, π ≥ 0
and furthermore Trπ =

∑
i λi = rankπ = 1.

Most probably, you have originally learned another definition for quantum states in your
first quantum mechanics course. Namely, pure quantum states are rays of the Hilbert
space H. The rays of a Hilbert space are the equivalence classes of unit vector that only
differ by a phase factor. In symbols, we have rays(H) = {|ψ〉 ∈ H | ‖|ψ〉‖2

2 = 1}/ ∼
with the equivalence relation: |ψ〉 ∼ |φ〉 if there exist α ∈ R such that |ψ〉 = eiα |φ〉.
Often physicists tend to drop the equivalence relation and talk about unit vectors as
quantum states instead of rays.

b) Show that there is a one-to-one mapping between P and rays(H).

Solution: Let [|ψ〉] ∈ rays(H) and |ψ〉 be a representative of [|ψ〉]. We can then
associated |ψ〉〈ψ | ∈ P . This is well-defined since given another represntative∣∣∣ψ̃〉 = eiα |ψ〉 with α ∈ R we have

∣∣∣ψ̃〉〈ψ̃∣∣∣ = |ψ〉〈ψ |. Let π ∈ P . The mapping is

inverted by choosing a normalised vector from range(π). This choice is unique up
to complex phase.

c) Use this mapping to translate the postulates (I.-III.) to the language of pure states
(rays).
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Solution:

I.) Each physical system . . . . The (pure) states of a quantum system is de-
scribed by a ray of the Hilbert space H.

II.) Observables . . . . The expectation value . . . is given by 〈A〉|ψ〉 = Tr(A |ψ〉〈ψ | =
〈ψ |A|ψ〉

III.) The time-evolution . . . differential function |ψ〉 : R→ D such that

d |ψ〉〈ψ |
dt

= −i[H, |ψ〉〈ψ |] (1)

⇐⇒ d |ψ〉
dt
〈ψ |+ |ψ〉 d 〈ψ |

dt
= −i (H |ψ〉 〈ψ | − |ψ〉〈ψ |H) (2)

⇐⇒ d |ψ〉
dt

= −ie−iαH |ψ〉 , (3)

where α ∈ R can be arbitrary. Showing the forward direction of the last step
rigorously seems to be not straigt-forward.

d) Argue that pur(ρ) := Tr(ρ2) is a measure for the ‘purity’ of a state ρ ∈ D.

Solution: Let ρ ∈ D and (λ1, . . . , λd) = spec(ρ). Then, λi ≥ 0 for all i and by
normalisation we have

∑
i λi = 1. Clearly the function pur(ρ) =

∑
i λ

2
i takes its

maximal value of 1 only for rank-one projectors. Moreover, its minimal value 1/d
is realized by the maximally mixed state 1/d.

Next, we will see that the generalization to density matrices is a necessary one if we want
to study subsystems. Consider a bipartite system AB with Hilbert spaceH = CdA⊗CdB

and an observable OA⊗1B. We will see that the restriction to a subsystem is described
by the partial trace: For a a linear operator M : H → H this is defined as

TrB(M) =

dB∑
j=1

(1A ⊗ 〈j|)M(1A ⊗ |j〉), (4)

where {|j〉} is an arbitrary ONB for CdB (as with the trace this definition is independent
of the choice of ONB).

e) Show that the partial trace of a state (density operator) is a state on the subsystem
A.

Solution: We first observe that taking the adjoint is additive and hence:

(TrB(ρ))† =

(
dB∑
j=1

(1A ⊗ 〈j|)M(1A ⊗ |j〉)

)†
(5)

=

dB∑
j=1

((1A ⊗ 〈j|)ρ(1A ⊗ |j〉))† (6)

=

dB∑
j=1

(1A ⊗ 〈j|)ρ†(1A ⊗ |j〉) (7)

=

dB∑
j=1

(1A ⊗ 〈j|)ρ(1A ⊗ |j〉) (8)

= TrB(ρ). (9)
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Next, we prove that the trace is preserved under the partial trace:

Tr(TrB(ρ)) = Tr

[
dB∑
j=1

(1A ⊗ 〈j|)M(1A ⊗ |j〉)

]
(10)

=

dA∑
i=1

〈i|
dB∑
j=1

(1A ⊗ 〈j|)M(1A ⊗ |j〉)|i〉 (11)

=

dA∑
i=1

dB∑
j=1

(〈i| ⊗ 〈j|)M(|i〉 ⊗ |j〉) (12)

= Tr(ρ) = 1. (13)

Here, the last line follows from observing that |i〉⊗ |j〉 is by definition an ONB for
H.

For positivity, we use consider the expectation value

〈ψ|TrB(ρ)|ψ〉 = Tr(TrB(ρ)|ψ〉〈ψ|) = Tr(TrB(ρ(|ψ〉〈ψ|⊗1B))) = Tr(ρ(|ψ〉〈ψ|⊗1B)).
(14)

It is easy to see that the latter must be positive. For this consider the spectral
decomposition of ρ =

∑
i λi|ψi〉〈ψi|. We moreover use the decomposition 1B =∑dB

j=1 |j〉〈j| The latter then yields

Tr(ρ(|ψ〉〈ψ| ⊗ 1B)) =
∑
i,j

λiTr(|ψi, j〉〈ψi, j||ψ〉〈ψ|) =
∑
i,j

λi|〈ψi, j|ψ〉|2. (15)

As all λi are positive, the latter is a sum over positive numbers and hence positive.

f) Prove that for any state ρAB we have

Tr(ρABOA ⊗ 1B) = Tr(TrB(ρAB)OA). (16)

for all observables OA. That is, the partial trace is the reduced state on the
subsystem A.

Solution: We show this for all matrices ρAB of the form MA ⊗NB. We have

Tr(MA ⊗NB(OA ⊗ 1B)) = Tr(MAOA ⊗NB) = Tr(MAOA)Tr(NB), (17)

which also equals the right hand side of (16). The claim follows from the fact that
trace and partial trace are linear and that matrices of the form MA⊗NB span the
vector space of all matrices.

g) Reduced states of pure states are not necessarily pure. Let dA = dB =: d. Show
that there is in fact no pure state |ψA〉〈ψA| acting on A that satisfies (16) for
ρAB = |ΩAB〉〈ΩAB| and all observables OA. Here,

|Ω〉 := d−
1
2

d∑
j=1

|j, j〉

is the maximally entangled state.
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Solution: We can simply choose an observable OA that violates (16). In particu-
lar, we choose OA = |φ〉〈φ|, where |i〉 is an arbitrary basis state in CdA . However,
we have that (16) always implies

Tr(ρABOA ⊗ 1) = Tr(|φ〉〈φ|1A/dA) = 1/dA. (18)

but for a pure state |ψA〉〈ψA| we have for the right hand side of (16)

Tr(|ψA〉〈ψA|φ〉〈φ|) = |〈φ|ψA〉|2. (19)

Clearly this can not be 1/dA for all choices of |φ〉.

2. An example
We consider a system with Hilbert space H = C2 and basis {|0〉 , |1〉}. We define the
states ρ1 = 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|) and ρ2 = 1

2
(|0〉〈0| + |1〉〈1|) and the

observables Z = |0〉〈0| − |1〉〈1| and X = |0〉〈1|+ |1〉〈0|.
a) Is ρ1 or ρ2 a pure state, respectively? If this is the case, give the expression of the

corresponding ray.

Solution: The state ρ1 = |ψ〉〈ψ | with ψ = 1√
2
(|0〉+ |1〉) is a pure state, while ρ2

is not because Tr(ρ2
2) = 1

4
Tr(12) = 1

2
.

b) Calculate the expectation values 〈Z 〉ρ1 ,〈Z 〉ρ2 ,〈X 〉ρ1 and 〈X 〉ρ2 .

Solution: We find 〈Z 〉ρ1 = 0, 〈Z 〉ρ2 = 0, 〈X 〉ρ1 = 1 and 〈X 〉ρ2 = 0.

c) Give an example of a physical system that can be described by H = C2 and
prescriptions to prepare the states ρ1 and ρ2 in this setting. What are the physical
observables that correspond to Z and X?

Solution: The spin degree of freedom of a spin-1/2 particle can be described by
the Hilber space C2. We identify the computational basis states |0〉, |1〉 with spin
aligned and anti-aligned in z-direction, respectively. The state ρ1 can than be
prepared by aligning the spin the particle in x-direction (e.g. by magnetic fields or
measuring and post-selection). ρ2 can be prepared by randomly choosing between
preparing spin-up or spin-down photons with probability 1

2
or just waiting until

we completely lost experimental control over the spin degree. The observables σz
and σx correspond to spin in z- and x-direction, respectively.

Another example would be the polarisation of a single photon, where one for
example identifies the computational basis states |0〉, |1〉 with horizontal and
vertically polarised

3. Dual space
On the last sheet, we got familiar with the construction of the tensor product of Hilbert
spaces. In this exercise, we will see that tensor product spaces are not only useful to
describe multi-partite systems but also come up naturally when considering linear maps
on Hilbert spaces.

The dual (vector) space of a vector space H is defined as H∗ := {〈ψ | : H → C, linear}.
H∗ possesses a dual basis {〈i|}di=1 with respect to B1 by requiring orthonomality 〈i|j〉 =
δij. The dual space is itself a vector space.1

1Note that the notation to choose “flipped” ket-vectors (bras) for elements in the dual space is a arbitrary choice
we make. As we will see in this exercise and you probably know from your introductory QM course, it can make
calculations very easy due to the similarity of the dual vector space to the vector space itself, not to mention the
obvious similarity of 〈i|j〉 to the commonly used symbol for the scalar product 〈i, j〉. Still, one has to keep in
mind why this this all works.

4



a) Define an orthonomal basis of the dual space of H1 ⊗H2.

Solution: Let {〈i|}di=1 be a orthonomal basis of H∗1 and {〈j |}Dj=1 a basis of H∗2.
The dual basis of H1 ⊗H2 can then be labelled by B∗1,2 = {〈i, j |}i=1,...,d;j=1,...,D.

b) Equip the dual space with a canonical scalar product and show that it becomes a
Hilbert space. (Regarding the completeness, a comment is sufficient.)

Solution: We can use the scalar product on H∗1 and H∗2, respectively, to define a
scalar product on (H1 ⊗H2)∗ = H∗1 ⊗ H∗2. In particular, we define 〈i, j |i′, j′〉 :=
〈i|i′〉 〈j |j′〉 = δi,i′δj,j′ . And two arbitrary elements 〈a| , 〈b| ∈ H∗1⊗H∗2 we define it

by extending it linearly. Let 〈a| =
∑d

i=1

∑D
j=1 ai,j 〈i, j | and 〈b| =

∑d
i=1

∑D
j=1 bi,j 〈i, j |.

We define

〈a|b〉 :=
d∑

i,i′=1

D∑
j,j′=1

ai,jb
∗
i′,j′ 〈i, j |i′, j′〉

=
d∑
i=1

D∑
j=1

ai,jb
∗
i,j.

With this definition we can check the Hilbert space properties easily. Let 〈a| , 〈b| ∈
H∗1 ⊗H∗2.

1. Symmetry: 〈b|a〉 =
∑d

i=1

∑D
j=1 a

∗
i,jbi,j =

(∑d
i=1

∑D
j=1 ai,jb

∗
i,j

)∗
= (〈a|b〉)∗,

where we used the linearity of complex conjugation.
2. Linearity: Since we have defined the scalar product as a linear extension of the
scalar product on the basis (dual) vectors, linearity follows by construction.

3. Positive definiteness: 〈a|a〉 =
∑d

i=1

∑D
j=1 ai,ja

∗
i,j =

∑d
i=1

∑D
j=1 |ai,j|2 ≥ 0 and is

equal to zero if and only if ai,j = 0∀i, j which is only the case for the zero (dual)
vector.
4. Completeness: Since the dual space is a finite dimensional vector space – just
as the non-dual space is – it is guaranteed to be complete with the above scalar
product.

We denote the vector space of linear operators on H by L(H) = {X : H → H, linear}.
c) Show that L(H) is isomorphic to H⊗H∗.

Solution: First, note that L(H) is a vector space spanned by the (linear) pro-
jectors {πi,j : H → H, πi,j(|k〉) = δj,k |i〉 ; i, j, k = 1, . . . , dim(H)}. Note that this
definition (action on the basis elements) suffices to define these projectors uniquely.
We now just have to find a one-to-one mapping from {πi,j} to H. The latter space
is spanned by {|i〉⊗ 〈j | =: |i〉〈j | ; i, j = 1, . . . , dim(H)}. The isomorphism is given
by πi,j 7→ |i〉〈j |. We confirm it by calculating the action of the right hand side on
an arbitrary basis vector |k〉: (|i〉〈j |) |k〉 = |i〉 〈j |k〉 = δj,k |i〉 = πi,j(|k〉).

d) Use the isomorphism established in the previous task to define the tensor product
A⊗B of two operators A,B ∈ L(H).

Solution: Any map in L(H) can be expanded in terms of {πi,j} and with the
isomorphism above, in terms of {|i〉〈j |}. This gives a natural way to define the
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tensor product on operators following the procedure above and on the previous

sheet. For A =
∑dim(H)

i=1 Ai,j |i〉〈j | and B =
∑dim(H)

i=1 Bi,j |i〉〈j |, we define

A⊗B :=

dim(H)∑
i,j,i′,j′=1

Ai,jBi′,j′ |i〉〈j | ⊗ |i′〉〈j′ |

=

dim(H)∑
i,j,i′,j′=1

Ai,jBi′,j′ |i, i′〉〈j, j′ | .

4. Local and realistic theories The violation of so-called Bell inequalities by quantum
mechanics lies at the (or rather, a) heart of the way in which quantum information is
distinct from classical information (as you will see in the next lecture). Bell inequalities
(and their violation by quantum mechanics) capture rigorously the discomfort that Ein-
stein, Podolsky and Rosen (EPR) famously formulate in their 1935 paper, demanding
that

“In a complete theory there is an element corresponding to each element of
reality.”

In this exercise, we want to investigate theories of the type EPR consider complete,
namely, local and realistic theories.

To this end we consider an EPR-type setting, in which two parties, Alice and Bob are
space-like separated and receive particles sent from and prepared by a third party, say,
Charlie. Alice and Bob are each capable of performing certain tests or measurements
on those particles by adjusting their measurement apparatus.

More precisely, Alice and Bob (randomly) choose between two configurations s ∈ S =
{±1} of their measurement apparatus as soon as the particles arrive. The outcomes
of their tests A,B may be ±1 and depend on how Charlie prepares the particles,
the details of his apparatus, and so on. All of Charlie’s parameters described by some
configuration λ in some configuration space Λ as well as the distribution p(λ) according
to which he picks a configuration are unknown to Alice and Bob, while, of course, their
measurement setting is known to them. We now make the following two assumptions
about this setting:

• Realism: The configuration λ and the measurement setting s uniquely determine
the outcome of the tests. Consequently, we can assign deterministic functions

A,B : S × S × Λ→ {±1} ,

for Alice’s and Bob’s test, respectively.

• Locality : Alice’s performing her test (somewhere space-like separated) does not
influence the result of Bob’s measurement, and vice versa. This implies that in
fact the outcome of A,B only depends on the respective test configuration of Alice
or Bob so that we can write

A :S × Λ→ {±1}; (s, λ) 7→ As(λ)

B :S × Λ→ {±1}; (s, λ) 7→ Bs(λ)

We will now look at the S-parameter

S = 〈A1B1 + A2B1 + A1B2 − A2B2〉λ (20)

Here, 〈X〉λ =
∑

λ∈ΛX(λ)p(λ) is the expectation value of the random variable X that
depends on λ.
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a) Derive an upper bound on the absolute value of the S-parameter for a local realistic
theory of the type described above.

Solution: Observe that

〈A1B1 + A2B1 + A1B2 − A2B2〉λ
=
∑
λ

p(λ)[(A1(λ) + A2(λ))B1(λ) + (A1(λ)− A2(λ))B2(λ)] ∈ [−2, 2].

since either the first term or the second term in the sum is 0 and the other one
±2. Since p is a probability distribution the sum is upper and lower bounded by
±2, respectively.

Now assume that Charlie does not send an arbitrary pair of particles, but a quantum-
mechanical maximally entangled state |ψ〉 := (|00〉 + |11〉)/

√
2 where the first tensor

copy is sent to Alice and the second to Bob. Alice measures either A1 = X ⊗ 1 or
A2 = Z ⊗ 1 on her copy of the state, while Bob measures either B1 = 1⊗ (Z +X)/

√
2

or B2 = 1⊗ (X − Z)/
√

2.

b) Calculate S in this setting. What do you conclude?

Solution: We get

1√
2
〈ψ|Z ⊗ (X − Z)|ψ〉 = − 1√

2
1√
2
〈ψ|X ⊗ (X − Z)|ψ〉 =

1√
2
〈ψ|X ⊗ (X + Z)|ψ〉 =

1√
2
〈ψ|Z ⊗ (X + Z)|ψ〉 =

1√
2

such that S = 2
√

2

This example is an instance of the more general question, what values S can take if
the outcomes of tests as above are described by quantum mechanics. In this case,
Charlie’s configuration space is just the space of quantum states on two copies of a
Hilbert space, which we take to be the density matrices on two qubits: D(C2 ⊗ C2).
The tests Alice and Bob are allowed to perform are just two dichotomic measurements
(i.e., measurements with outcomes ±1) each, so Ai ⊗ 1, and 1 ⊗ Bi, i = 1, 2, with
Ai, Bi ∈ B(C2).

We can therefore write the S-parameter as

Sqm = 〈A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2〉ρ , (21)

where 〈·〉ρ = Tr[·ρ] now denotes the quantum-mechanical expectation value.

c) Show that

(A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2)2 = 41− [A1, A2]⊗ [B1, B2] , (22)

to derive an upper bound on Sqm.

Solution: Expand and calculate X = (A1⊗B1 +A1⊗B2 +A2⊗B1−A2⊗B2)
using that A2

i = 1 = B2
i since both are dichotomic measurements with outcomes

±1.

We are interested in Sqm = 〈X〉ρ = 〈
√
X2〉ρ. But then, it is easy to see, using that

X2 = UΛU † that

〈
√
X2〉ρ = Tr[U

√
ΛU †ρ] = Tr[

√
ΛU †ρU ] ≤ max

ρ′=U†ρU
Tr[
√

Λρ′] (23)

≤ max
ρ′

(
(max

i

√
λi)
∑
i

ρ′ii

)
= max

i

√
λi . (24)

7



We now observe that maxi
√
λi is the operator norm and use the triangle inequality

to arrive at Sqm ≤
√

8. Notice that the operator norms of 1, A,B are 1.

Alternatively, one can directly use the norm bound

〈X〉2ρ ≤ ‖X‖2 = ‖X2‖ ≤ 4‖1‖+ 4‖A1‖‖A2‖‖B1‖‖B2‖ = 8 , (25)

where we used the Hölder inequality, submultiplicativity and the triangle inequal-
ity.
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