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1. Non-uniqueness of the decomposition of mixed states.

Consider two macroscopically different preparation schemes of a large number of po-
larised photons:

Preparation A. For each photon we toss a fair coin. Depending on whether we
get head or tail, we prepare the photon to have either vertical or horizontal linear
polarisation.

Preparation B. For each photon we toss a fair coin. Depending on whether we get
head or tail, we prepare the photon to have either left-handed or right-handed circular
polarisation.

We are given a large number of photons which all were prepared by the same scheme.

a) Argue that having only access to the photons we can not distinguish which of the
preparation schemes was used.

Solution: Both preparations give rise to the same quantum state, namely, the
maximally mixed state. Hence, there is no measurement that distinguishes the
two preparations.

b) Argue that if it were possible to distinguish such types of preparations by measur-
ing the photon, locality would be violated.

Solution: Protocol: EPR setting with Bell state

Bob chooses a measurement setting, X or Z and measures his half of the state.

Then, the state reads

ρA = Tr[|ψ〉 〈ψ |P1] + Tr[|ψ〉 〈ψ |P2], (1)

where P1,2 are either |+〉 〈+| , |−〉 〈−| or |0〉 〈0| , |1〉 〈1|.
Depending on which measurement setting Bob chooses, the state on Alice’s side
reads 1

2
(|0〉 〈0|+ |1〉 〈1|) or 1

2
(|+〉 〈+|+ |−〉 〈−|).

If Alice had a way of distinguishing the two mixtures, they could have communi-
cated a bit encoded as {X,Z}.

2. Impossible machines – no cloning.

In this problem we will re-derive the impossibility results that you have seen in the
lecture but now directly using the structure of quantum theory.

Show that there does not exist a unitary map on two copies of a Hilbert space H which
acts in the following way:

∀ |ψ〉 ∈ H : U |ψ〉 |0〉 = eiφ(ψ) |ψ〉 |ψ〉 .
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Solution: Assume this was the case for |ψ〉 and |φ〉 with |ψ〉 6= eiα |φ〉 for any α.

Let us consider the scalar product between two such vectors

〈ϕ|ψ〉 = 〈0| 〈ϕ|U †U |ψ〉 |0〉
= ei(φ(ψ)−φ(ϕ)) 〈ϕ| 〈ϕ| |ψ〉 |ψ〉
= 〈ϕ|ψ〉2 ei(φ(ψ)−φ(ϕ)).

Taking absolute values on both sides shows that 〈ϕ|ψ〉 can only be 0 or 1, so it cannot
be the case that U clones arbitrary states.

3. The most general quantum measurements.

In a quantum mechanics course, measurements are typically introduced as projective
measurements of the eigenvalues of observables. But from a theoretical perspective
another measurement description is often helpful. For simplicity—and in the spirit of
information theory—we assume that the possible measurement outcomes are from a
discrete set X . 1

A measurement with outcomes X on a quantum system with Hilbert space H can
be described by a positive operator valued measure (POVM) on X . We denote by
Pos(H) := {A ∈ L(H) | A ≥ 0} the set of Hermitian positive semi-definite operators on
H. A POVM on a discrete space X is a map µ : X → Pos(H) such that

∑
x∈X µ(x) = Id.

If the system is in the quantum state ρ ∈ D(H), the probability of observing the
outcome x ∈ X is given by Tr(µ(x)ρ).

a) What is the difference between POVM measurements and the measurement de-
scription using observables?

Solution: Let A =
∑

i λiΠi be an observable with spec(A) = {λi} and Πi the
orthogonal projector to the i-th eigenspace. Then, the map spec(A) → Pos(H),
λi 7→ Πi defines a POVM, because

∑
i Π = Id. The converse however the con-

stituent operators range(µ) = {Ei} of a POVM µ are not required to be orthogonal
projectors, i.e. in general we do not have EiEj = δijEj as for the so-called projector
valued measurements (PVM) that can be directly expressed as observables. Nev-
ertheless every POVM can be implemented with PVMs using an ancillar system.
More on this, probably on a up-coming sheet.

It is often stated that this is the most general form of a quantum measurement. We
want to understand this statement in more detail. So what could be regarded as the
most general quantum measurement? One can start as follows: A (general) quantum
measurement M with outcomes in X is a map that associates to each quantum state
ρ ∈ D(H) a probability measure pρ on X , i.e. M : ρ 7→ pρ with pρ : X → [0, 1] such
that

∑
x∈X pρ(x) = 1.

b) Show that there is a one-to-one mapping between general quantum measurements
as defined above and POVMs on X .

Solution: Let M be a general measurement. To make sense of the other princi-
ples of quantum mechanics, in particular the statistical interpration mixtures of
quantum states, we require that M is a linear map.

Then, for fixed x ∈ X the map ρ 7→ pρ(x) is by definition an arbitrary element of
the dual space of D(H). Being equipped with an inner product (·, ·), we can use the

1More generally, one can replace X by the σ-algebra of a measurable Borel space. This is the natural structure from
probability theory to describe a set of all possible events in an experiment.
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the canonical isomorphism L(D(H)) ' L∗(D(H)) to express every element in the
dual space as an element in L(D(H)). Explicitly, we can define µ(x) ∈ L(D(H))
such that ρ 7→ pρ(x) = (µ(x), ρ). The restriction to pρ(x) ≥ 0 for all ρ and x
amounts to restricting µ(x) to an positive semi-definite operator. (Recall that
Tr(Aρ) ≥ 0 for all ρ ∈ D(H) if and only if A < 0. To see this express the trace in
the eigenbasis of ρ or A.)

Now, for fixed ρ if x 7→ pρ(x) should define a probability measure, we have the
restriction that

∑
x∈X pρ(x) =

∑
x∈X(µ(x), ρ) = 1 for all ρ. This is the case if and

only if
∑

x∈X µ(x) = Id (Uniqueness can be seen e.g. by parameter counting).

Can you come up with a more general notion of quantum measurements?

Solution: I can not.

4. Encoding classical bits. In the last exercise we introduced the description of
quantum measurements with the help of POVMs. We want to use this formulation to
study the following question:

Let H be a d-dimensional Hilbert space. Our aim is to encode n classical bits into the
space of quantum states D(H). To this end, we choose a set of 2n states {ρi}i∈{0,1}n ⊂
D(H), each state corresponding to a bit string. To decode the bit string we have to
make a measurement described by a POVM {Fi}i∈{0,1}n , where the bit string is the
outcome.

How many classical bits can be encoded and decoded in a d-dimensional quantum
system in this way?

Consider a source that outputs the bit string x ∈ {0, 1}n with probability p(x).

a) Define the success probability of the decoding procedure.

Solution: Tr[ρiFi] should be maximal (1) for each i. The total success probability
is then the expectation of that with respect to p, i.e.,

∑
x p(x) Tr[ρxFx]

b) Show that for p(x) = 2−n the success probability is bounded by 2−nd.
(Hint: Argue that 1 ≥ ρi for all i and show that for A ≥ 0 and B ≥ C it holds
that Tr(AB) ≥ Tr(AC) as a starting point.)

Solution: Clearly 1 − ρ = U(1 − Λ)U †, where U diagonalises ρ. But since ρ is
a quantum state with eigenvalues smaller than one, 1 − Λ has only nonnegative
entries, hence the claim 1 ≥ ρi for all i. If A ≥ 0 and B − C ≥ 0, then TrAB −
TrAC = Tr(A(B − C)) ≥ 0. Thus, Tr(AB) ≥ Tr(AC).

Hence, we have∑
x

p(x) Tr[ρxFx] = 2−n
∑
i

Tr[ρiFi] ≤ 2−n
∑
i

Tr[Fi] = 2−n Tr 1 = 2−nd (2)

and the claim follows.

c) What does this imply?

Solution: One cannot encode more than log2 d bits in a d-dimensional quantum
system.
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