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1. An entanglement witness for the maximally entangled state
Let |Ω〉 be the maximally entangled state.

a) Show that W = 1− d |Ω〉〈Ω| is a witness for |Ω〉.

Solution: We first check that the expectation value of W is positive for seperable
states. To this end let ρ = (|ψ〉 ⊗ |φ〉)(〈ψ | ⊗ 〈φ|) be a pure product state. Then,

〈W 〉ρ = (〈ψ | ⊗ 〈φ|)(1− d |Ω〉〈Ω|)(|ψ〉 ⊗ |φ〉) (1)

= 1− | 〈ψ |φ〉 |2 ≥ 0, (2)

since by Cauchy-Schwarz’s inequality | 〈ψ |φ〉 | ≤ ||ψ||`2||φ||`2 ≤ 1.

Second,

〈W 〉|Ω〉 = 1− d < 0. (3)

b) Give an example of an entangled state that is not detected by W .

Solution: Let’s try a orthogonally twisted copy of |Ω〉 in the two qubits setting.
We have 〈Ω|ψ+〉 = 1

2
(〈00|+ 〈11|)(|01〉+ |10〉) = 0 and, thus, 〈W 〉ψ+ = 1 ≥ 0.

2. The reduction map as a witness
The reduction map is defined as ΛR(X) = Tr(X)1−X.

a) Show that ΛR is positive but not completely positive, in other words it is a witness.

Solution: Regarding the positivity, we calculate for a positive semi-definite X
and an arbitrary vector |ψ〉: 〈ψ |Λ(X)|ψ〉 = Tr(X)||ψ||2 − 〈ψ |X |ψ〉. Since X is
positive semi-definite, Tr(X) = ||X||1 ≥ ||X|| and, hence, the first term is lower-
bounded by ||ψ||||X||. At the same time the second term is upper bounded by
| 〈ψ |X |ψ〉 | ≤ ||ψ||||Xψ|| ≤ ||ψ||2||X||. We conclude that Λ is a positive map.

One straigt-forward way to check for complete positivity is by Choi’s theorem. To
this end, we calculate

J(ΛR) = ΛR ⊗ 1(|Ω〉〈Ω|) (4)

=
∑
i,j

1

d
Tr(|i〉〈j |)1⊗ |i〉〈j | − |Ω〉〈Ω| (5)

=
∑
i

1

d
1⊗ |i〉〈i| − |Ω〉〈Ω| (6)

=
1

d
1d2 − |Ω〉〈Ω| . (7)

Note that dJ(ΛR) is W from the previous excercise. It’s expectation value in state
|Ω〉 is not positive. Thus, the map is not completely positive.

b) Give at least one example for states that are detectable by ΛR.
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Solution: We have already seen that |Ω〉 is an example. But we should think
maybe also of less obvious examples.

c) Give at least one example for entangled states that are not detected by ΛR.

Solution: Consider ρ = 1 + αF for α ∈ [−1, 1]\{0} up to normalization.

d) What is the observable witness associated to the positive map by the Choi-Jamiolkowski-
isomorphism?

Solution: Note that (A∗, 1) = Tr(A) = (1, A) for A. With this in mind, we

calculate (ΛR(A), B) = (Tr(A)1− A,B) = Tr(A) Tr(B)− (A,B) = (A, 1 Tr(B)−
B) = (A,ΛR(B)). Thus, J(Λ∗R) = J(ΛR) = W from excericse 2.

A map Λ is called decomposable if it can be written as Λ = P1 + P2 ◦ T , where P1, P2

are completely positive maps and T is the transpose.

e) Show that any state that is detected by ΛR can also be detected by the partial
transpose criterion.
Hint: Argue first that ΛR is decomposable.

Solution: Since TrX = TrXT , we have the decomposition ΛR = Λ̃ ◦ T with
Λ̃(X) = Tr(X)1 − XT . The Choi matrix of Λ̃ is J(Λ̃) = 1 − F with F the
flip operator. This can be seen by a short calculation. Using F2 = 1, we now
observe that (1 − F)2 = 2(1 − F). Correspondingly, every eigenvalue λ of J(Λ̃)
fulfils λ = λ2/2 ≥ 0. Thus, Λ̃ is completely positive. This establishes that
ΛR is decomposable into the composition of a completely positive map and the
transposition.

In general, we have the following statement: Let Λ be a decomposable map and ρ
an entangled state detected by Λ, i.e. Λ⊗ 1(ρ) = P1 ⊗ 1(ρ) + (P2 ⊗ 1)(T ⊗ 1)(ρ))
is not positive semi-definite. Then, also T ⊗ 1(ρ) is not positive semi-definite.
Thus, ρ is also detected by the partial transpose criterion. In other words, any
decomposable witness gives rise to a weaker criterion than the partial transpose
criterion.

This applies to ΛR.

f) Translate the condition of a map Λ being decomposable to a criterion for the
observable witness J(Λ∗). What is the implication of a self-adjoint observable
witness being decomposable in this sense?

Solution: Applying the linear Choi-Jamio lkowski isomorphism yields J(Λ) =
J(P1) + J(P2 ◦ T ) = J(P1) + (1 ⊗ T )J(P2). Thus, we call a bipartite opera-
tor Wdecomposable, if it can be written as W = A1 + ATB2 , where A1 and A2

are positive semi-definite and TB denotes the partial transposition on the second
system. We have the criterion that any state detected by a decomposable W has
negative partial transpose.

3. Constructing entanglement witnesses from the partial transpose
In the entanglement theory of bi-partite systems the partial transpose criterion plays
a prominet rôle. Let T : L(H) → L(H) be the transposition map X 7→ T (X) = XT .
The partial transpose is the map T : L(H⊗H)→ L(H⊗H). Let (·, ·) be the Hilbert-
Schmidt inner-product on L(H) defined as (X, Y ) = Tr(XTY ). The adjoint Λ∗ of a map
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Λ : L(H) → L(H) with respect to (·, ·) is defined such that (Λ(X), Y ) = (X,Λ∗(Y ))
holds for all X, Y ∈ L(H).

In the lecture, we saw that for any positive but not completely positive map Λ, J(Λ∗)
is also witness. But J(Λ∗) is not necessarily detecting all the states that Λ detects. Let
Λ detect ρe and let |η〉 be an eigenvector with negative eigenvalue of (1⊗ Λ)(ρe). |Ω〉
shall be the maximally entangled state.

a) Show that 1⊗ T is self-adjoint, i.e. (1⊗ T )∗ = 1⊗ T .

Solution: We start by convincing ourself that

(AT , B) = Tr(AB) =
∑
i,j

〈
i
∣∣A∣∣j〉 〈j |B |i〉 (8)

=
∑
i,j

〈
j
∣∣A†∣∣i〉 〈i∣∣BT

∣∣j〉 = Tr(A†BT ) (9)

= (A,BT ). (10)

(One could also be convinced that this is true by observing that the trace is
invariant under transposition.) By linearity it suffice to consider tensor product
matrices A⊗B and C ⊗D and show that

(1⊗ T (A⊗B), C ⊗D) = (A,C) · (BT , D) = (A,C) · (B,DT ) (11)

= (A⊗B, 1⊗ T (C ⊗D)). (12)

b) Show that J(Λ∗) detects ρ̂e = (1 ⊗ X†)ρe(1 ⊗ X) where X is defined such that
|η〉 = 1⊗X |Ω〉.
Solution: By assumption

0 >Tr[(Λ⊗ 1)(ρe) |η〉〈η |]
= Tr[ρe(Λ

∗ ⊗ 1)((1⊗X) |Ω〉〈Ω| (1⊗X†))]
= Tr[ρe(1⊗X)(Λ∗ ⊗ 1)(|Ω〉〈Ω|)(1⊗X†)]
= Tr[(1⊗X†)ρe(1⊗X)(Λ∗ ⊗ 1)(|Ω〉〈Ω|)]

With this we have established the missing direction in the proof of the lectures’ theorem
relating positive maps and observables as witnesses.

It is also possible to construct an observable that detects ρe itself from Λ. To this end,
we define We = (1⊗ Λ∗)(|η〉〈η |).

c) Show that this construction, in fact, gives rise to an entanglement witness We for
ρe.

Solution:

0 >Tr[(Λ⊗ 1)(ρe) |η〉〈η |] = Tr[ρe(Λ
∗ ⊗ 1)(|η〉〈η |)]

As an application of this construction we consider the following setting. In our (fic-
titious) lab, we are trying to prepare a two-qubit state |ψ〉 ∈ H = C2 ⊗ C2. We use
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a simple model1 for what is actually happening in the lab, namely that we prepare a
state with some noise

ρ(p) := p |ψ〉〈ψ |+ (1− p)1
4
.

Our goal is to have an observable witness that decides whether ρ(p) is entangled or not.
To this end, we will use the fact that for two-qubits system there exist no entangled
PPT states. Therefore, if ρ(p) is entangled, the partial transpose 1 ⊗ T will always
detect ρ(p)..

d) Assume |ψ〉 has Schmidt decomposition |ψ〉 = a |01〉 + b |10〉. Determine the
values of p depending on a, b such that ρ(p) is entangled.

Solution: We know from the lecture that ρ(p) is entangled iff ρ(p)TB � 0.

ρ(p)TB =p(|a|2 |01〉〈01|+ |b|2 |10〉〈10|+ ab |00〉 〈11|+ ba |11〉 〈00|) +
1− p

4

∑
ij

|ij〉〈ij |

=(p|a|2 + (1− p)/4) |01〉〈01|+ (p|b|2 + (1− p)/4) |10〉〈10|
+ (1− p)/4 |00〉〈00|+ (1− p)/4 |11〉〈11|+ pab |00〉 〈11|+ pab |11〉 〈00|

The eigenvalues are given by

(1− p)/4, (1− p)/4± p|a||b|

with eigenvector |η〉 = 1/
√

2 |00〉− |11〉 corresponding to the potentially negative
eigenvalue. Hence, ρ(p) is entangled iff p > 1/(1 + 4|a||b|).

e) Use the eigenvector corresponding to a negative eigenvalue of (1 ⊗ T )(ρ(p)) in
order to derive an entanglement witness W for ρ(p).

Solution: W = |η〉〈η |TB = 1
2

(|00〉〈00|+ |11〉〈11|+ |01〉 〈10|+ |10〉 〈01|) =
1
2
(1− |01 + 10〉〈01 + 10|)

f) Show that, in fact, the witness W detects all entangled states of the form ρ(p).

Solution:

Tr[|η〉〈η |TB ρ(p)] = Tr[|η〉〈η | ρTBp ] < 0 iff ρ(p) is entangled .

1What is the corresponding noise channel for this model?
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