
Freie Universität Berlin
Tutorials on Quantum Information Theory

Winter term 2020/21

Problem Sheet 8
Turing Machines and Complexity

J. Eisert, J. Haferkamp, J. C. Magdalena De La Fuente

1. Turing machines and computability.

Recall from the lecture the definition of a Turing machine: A Turing machine comprises
a tape, a state register, and a read-write head which moves along the tape. The machine
is characterised by a finite set of states S with distinguished start and end states S and
T , a finite set of symbols Σ and a table of instructions (the program). At any point
in time, the Turing machine with internal state s ∈ S reads in the symbol σ ∈ Σ from
the tape at the current position of the read-write head. Given the internal state and
the symbol the machine transitions to a new internal state s′ and performs an action,
which may either be ’move left’ (L) or ’move right’ (R) or ’erase σ and write σ′’ with
σ′ ∈ Σ.

A program is thus specified by a set of 4-tuples (s, σ, s′, a), where s ∈ S is the current
internal state of the machine, σ ∈ Σ is the current symbol on the tape, s′ ∈ S is the
new internal state and a ∈ Σ ∪ {L,R} is the action of the machine. The machine is
initialised in state A on the very left of tape. Upon reaching the state T the program
terminates.

We now want to write a few little programs on a Turing machine. Assume we are given
representations of natural numbers k ∈ N represented in unary notation on k + 1 bits
so that 0 is represented by 0 = 1, and k by k = 11 · · · 1︸ ︷︷ ︸

k+1

.

a) Write a Turing program that determines the parity of a number k given a tape of
the form 0k00 · · · and writes it on the tape after the input.

Hint: You may freely choose the set of symbols and internal states.

Solution: For a better readability we denote the set of tuple in S × Σ× S × Σ ∪
{L,R} defining the program as a mapping S × Σ→ S × Σ ∪ {L,R}.
Let Σ = {‘E’, ‘O’, ‘0’, ‘1’} and S = {S,E,O, T}, the program is given by

{
(S, ‘0’) 7→ (S,R) (1)

(S, ‘1’) 7→ (E,R) (2)

(E, ‘1’) 7→ (O,R) (3)

(O, ‘1’) 7→ (E,R) (4)

(E, ‘0’) 7→ (T, ‘E’) (5)

(O, ‘0’) 7→ (T, ‘O’) (6)

}.

The program writes ‘E’ if the given number is even and ‘O’ otherwise.

b) Now write a program that adds k, l ∈ N given a tape of the form (0k0l0 · · · 0) and

outputting a tape of the form (0(k + l)00 · · · .

1

Solution: The strategy we want to implement is to concatenate the two numbers
by replacing the ‘0’ in between the two numbers by a ‘1’ and deleting two ‘1’s at
the end. Let Σ = {‘0’, ‘1’} and S = {S,K,L,D1, D2, T}, the program is

{
(S, ‘0’) 7→ (S,R) (7)

(S, ‘1’) 7→ (K,R) (8)

(K, ‘1’) 7→ (K,R) (9)

(K, ‘0’) 7→ (L, ‘1’) (10)

(L, ‘1’) 7→ (L,R) (11)

(L, ‘0’) 7→ (D1, L) (12)

(D1, ‘1’) 7→ (D1, ‘0’) (13)

(D1, ‘0’) 7→ (D2, L) (14)

(D2, ‘1’) 7→ (D2, ‘0’) (15)

(D2, ‘0’) 7→ (T,R) (16)

}.

Unary encodings are not very efficient as opposed to binary encodings for which only
log2 k many bits are required.

c) Write a program that performs binary addition and writes the solution behind the
input on the tape.

Hint: Think about the following questions: How many symbols are required? What
is a sensible choice of input representation on the tape?

Solution: Σ = {0, 1,#} and let m and n be the bit strings starting with the least-
significant bit on the left representing two integers. The input should be of the
form ‘# · · ·#m#n#0### · · · ’, where we assume that the bit strings for m and
n are zero-padded to have exactly the same length.

Let A,B ∈ S, i, o ∈ Σ and m ∈ {L,R}. We use the short hand notation

A
i,o,m−−−→ B = A

i,o−→ A′ o,m−−→ B to spare writing out the trivial intermediate states
after a writing operation. The program is given by the following diagram:

2

After having executed the program the tape should look like ‘# · · ·#k# · · · ’ with
k is the bit-string representing m+ n.

Further reading : Turing (1937), a more enjoyable and clearer read than the publication
year might suggest!

2. Complexity classes and complete problems.

In the lecture, you got to know the classical complexity classes P, NP, #P as well as
the quantum class BQP. While P, NP and BQP are called ‘decision classes’, #P is
called a ‘counting class’. Decision problems are problems of the form: Given n ∈ N,
decide whether ∃x : f(x) or ¬f(x), where f : {0, 1}n → {0, 1} is some binary function.
Conversely, in a counting problem, given x and f , we are supposed to return |{x :
f(x) = 1}| that is, the number of solutions that are accepted by f .

Complexity theory deals mainly with the relations between different complexity classes
and characterising problems in terms of their complexity. In both cases, the main proof
technique is to embed already known problems into novel problems, that is, to prove
statements of the form: Assuming we could solve problem P ∈ X, then we could also
solve P ′. Hence P ′ is at least as hard as all problems in X.

For a complexity class X, we say that a problem is in X if it is contained in X. We
call a problem X-hard if it is at least as hard as all problems contained in X. We call
a problem X-complete if it is both in X and X-hard. Complete problems are therefore
those problems that characterise a complexity class, viz., lie at the boundary of the
class.

a) Look up and understand two complete problems for each of the complexity classes
NP and #P.

Solution: Examples of NP-complete problems: 3-SAT, Travelling Salesman, Clique,
Graph coloring . . .

Examples of #P-complete problems can be defined by taking the counting versions
of the above problems, i.e. #SAT, #Travelling Salesman, #Clique, . . .

The problem 3-SAT is a paradigmatic problem, which is complete for the class NP. A
3-SAT formula f on input x is a formula in conjunctive normal form, that is, a formula

3

of the form

f(x) = (x1 ∨ x2 ∨ ¬x3) ∧ (x42 ∨ ¬x10 ∨ ¬x7) ∧ · · · ,

where ¬ denotes negation, that is ¬0 = 1,¬1 = 0, ∨ denotes a logical OR, and ∧
denotes a logical AND. The 3-SAT decision problem is to decide, given a formula f ,
whether there exist assignments of the variables x = (x1, . . . , xn) such that f(x) = 1.

b) Argue that 3-SAT is in NP.

Solution: By definition a problem is in NP if we have a polynomial algorithm to
check a solution. For 3-SAT given an assignment, one can evaluate the compati-
bility in at most 3m many computational steps.

c) Show that a 3-SAT instance on n binary variables can be embedded in the prob-
lem of determining, whether the ground state energy of a classical 3-local Ising
Hamiltonian is 0 or at least 1.

Hint: Use a classical spin-1/2 Hamiltonian of the form

H =
∑

i,j,k∈[n]

hijk(1± Zi)(1± Zj)(1± Zk),

with integer coefficients hijk.

Solution: We begin by noticing that a 3-SAT clause accepts all but a single as-
signment of the three variables using that for the clause on xi, xj, xk given by
(e.g.) Cijk = (xi ∨ ¬xj ∨ xk) = ¬(¬xi ∧ xj ∧ ¬xk) so that Cijk = 0 if and only if
xi = ¬xj = xk = 0.

The idea is now to use Hamiltonian terms that penalize this configuration with an
energy penalty. So for the clause Cijk we include a term in the Hamiltonian pro-
portional to the projector onto the subspace spanned by the rejected assignment,
i.e.

|010〉〈010|ijk =
1

8
(1 + Zi)(1− Zj)(1 + Zk) (17)

and likewise for all other clauses. Since all such terms commute, after taking the
sum, the ground state of H =

∑
ijk hijk has energy 0 if and only if f(x) has a

satisfying assignment.

d) What is a natural quantum equivalent of this problem?

Solution: The quantum equivalent is the so-called local Hamiltonian problem.
In the k-local Hamiltonian problem we allow for an arbitrary Spin-Hamiltonian
consisting of Pauli operators that have non-trivial support on at most k sites.
Compared to our 3-SAT embedding we do not restrict ourself to diagonal projec-
tors, but allow for arbitrary k-local terms, e.g. Xi⊗Xj⊗Yk. This actually ‘defines’
the class QMA - Quantum NP.

4

