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1. Phase estimation. Perhaps at the heart of the majority of modern quantum al-
gorithms lies the phase estimation algorithm. The problem of phase estimation is the
following: Given a unitary operator U and one of its eigenvectors |u〉 with eigenvalue
e2πiφ, the phase estimation problem is to output the phase φ.

a) On the last sheet the definition and the circuit of the quantum Fourier transform
was given. Show that the quantum Fourier tranform is a unitary operator and
draw the circuit implementing the inverse of the Fourier transform.

The phase estimation algorithm is implemented via the following quantum circuit:
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|0〉 H

U2t−1

...
...

|0〉 H
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The circuit constists of H, the Hadamard gate, controlled-U2k-gates, that apply the
unitary operator U for 2k times if the control qubit is |1〉, the inverse of the quantum
Fourier transform F−1 and a measurement in the computational basis at the very end.
At the beginning, the first register comprising t qubits is initialised as |0〉⊗t and the
second register is prepared in the state |u〉. For simplicity we assume that φ can be
written with exactly t bits, i.e. φ =

∑t
k=1 φk2

−k with φk ∈ {0, 1}.
b) Show that the algorithm works.

Solution: Before applying the inverse Fourier transform, the first register will be

1√
2t

(
|0〉+ e2πi2

t−1φ |1〉
)(
|0〉+ e2πi2

t−2φ |1〉
)
· · ·
(
|0〉+ e2πit

0φ |1〉
)

(1)

=
1√
2t

2t−1∑
k=0

e2πiφk |k〉 . (2)

Thus, after applying the inverse Fourier transform the measurement will report the
fractional binary expression {φk} for φ.

c) How many calls of the unitary operator are required in the algorithms?

Solution: We need 1+2+4+ . . .+2t =
∑t

i=k 2k = 1−2t

1−2
∈ O(2t) calls of the unitary.

d) What is the computational complexity of a classical solution to the phase estima-
tion problem?
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Solution: Classically it would suffice to just apply the unitary U only once to u and
read of the phases from the resulting eigenvalue. Nevertheless, depending on the
unitary U this might be very costly.

The benefit of quantum phase estimation comes from being a subroutine in another
quantum algorithm such as Shor’s algorithm and being able to read out the phase of
a quantum state deterministically.

e) Sketch why phase estimation constitutes the core of Shor’s algorithm.

Solution: By the black magic of number theory, one can establish the equivalence of
prime factoring and order finding. For positive integers x and N , x < N , with no
common factors, the order of x mod N is defined to be the least positive integer, r,
such that xr = 1 mod N . Calculating r given x and N is the order-finding problem.

Order finding can be formulated as a phase estimation problem in the following way:
Assume you have access to unitary implementing

Ux,N |y〉 = |xy mod N〉 . (3)

(This can be done using a classical logical implementation of the corresponding circuit
and rendering it revesible by standard techniques.)

Now Ux,N has eigenstates

|us〉 =
1√
r

r−1∑
k=0

exp

{
−2πisk

r

} ∣∣xk mod N
〉

(4)

with eigenvalues e2πis/r. They fulfil

r−1∑
s=0

|us〉 = |1〉 . (5)

So we can easily prepare their superposition |1〉 and use this as the input vector on the
second register of the standard phase estimation algorithm.

Now, measuring the output of the will yield one of the phases {s/r}r−1
s=0 with equal

probability. From which we can infer r.

2. Control gates.

a) Show that the control-Z gate is invariant under swapping the two inputs with each
other and the two outputs.

Solution: One way to show this is to calculate the matrix representation of both
cZ-gates in the computational basis. We denote a unitary acting on the i-th register
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controlled by the logical qubit in the j-th register by ciUj. For c1Z2 we have

c1Z2 = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z (6)

=

(
1
)
⊗
(

1
1

)
+

(
1

)
⊗
(

1
−1

)
(7)

=


1

1
1
−1

 (8)

=


1

1

+

 1

−1

 (9)

= 1⊗ |0〉〈0|+ Z ⊗ |1〉〈1| = c2Z1, (10)

where it might be more straight-forward to start the second part of the calculation at
the end and meet in the middle.

b) The roles of the two inputs to the cNOT gate can be exchanged by applying the
gate in another basis than the computational basis. Find a local unitary that
applied to all inputs and outputs and turns a cNOT gate controlled by the first
register into one controlled by the second register.

Solution: We now that c1Z2 = c2Z1. Furthermore, we can rotate from the Z to X
eigenbasis and vice versa with the Hadamard gate H. Thus, we have HXH = Z.
Thus, the idea is to rotate c1X1 to Z basis use the result of (a) and rotate back.
Indeed, we have
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3. Probabilistic algorithm for Deutsch-Josza.

The Deutsch-Josza algorithm can determine whether a function f : {0, 1}n → {0, 1}
is balanced or constant by invoking the function (or more precisely a quantum imple-
mentation of the function) only a single time. In contrast, a deterministic classical
algorithm needs to invoke the function exponentially O(2n) often (at least in a worst-
case scenario).

Assume instead that the goal is not to distinghuish these two cases with certainty, but
only with a probability p > 1/2. How does the best classical algorithm for this problem
perform?

Solution: A probabilistic classical algorithm with high success probability can be easily
found. You simply query the function f m times and if all outputs agree, you write ”con-
stant” and else you write ”balanced”. In the latter case the error probability is 0 as f
cannot be constant. In the former case, the error probability is supressed as 2−m+1: First
you draw a string x0 and memorize f(x0). If f is balanced, the probability is 1/2 to draw
next an x1 such that f(x1) = f(x0) and so on...
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